• Aucun résultat trouvé

from the analysis of VLF whistler wave data. The outer surface of the plasmasphere is generally characterized by a sharp decrease of the plasma density: the plasmapause.

N/A
N/A
Protected

Academic year: 2021

Partager "from the analysis of VLF whistler wave data. The outer surface of the plasmasphere is generally characterized by a sharp decrease of the plasma density: the plasmapause. "

Copied!
8
0
0

Texte intégral

(1)

Plasmasphere and Plasmapause

12.7 Plasmasphere and P lasmapause

Viviane Pierrard*

12. 7.1 Introduction

The plasmasphere is the extension of the ionosphere at higher altitudes. This roughly toroidal region of the mag- netosphere

surro

unds the Earth at low and middle lati- tudes. It contains a relatively dense plasma of low-energy (typically 1 eV) electrons and protons

,

with also a small

amount of helium ions. It was discovered in 1963

from the analysis of VLF whistler wave data. The outer surface of the plasmasphere is generally characterized by a sharp decrease of the plasma density: the plasmapause.

Whistlers and in situ satellite observations show that the plasmapause forms closer to Earth when the geomagnetic activity level is enhanced. Depending on the strength of the level of geomagnetic activity, the equatorial position of the observed plasmapause knee changes from 7

RE

to

2.5 RE.

The position of the plasmapause is due to the interplay between the electric field associated with the Earth's rota- tion (that dominates at small radial distances) and the convection electric field associated with geomagnetic activity (that dominates at larger distance) (Lemaire and Pierrard,

2008).

The depleted region beyond the plasma- pause is called the plasma trough

.

12.7.2 Recent Progress with Observations

Recent spacecraft observations have revolutionized our under- standing of the plasmasphere. Especially, IMAGE/EUV pro- vided from

2000

to

2006

the first global images of the plasmasphere in the equatorial plane when the spacecraft was above the North Pole (Goldstein et al.,

2005;

Darrouzet et al.,

2009).

These images allowed magnetic local time (ML

T)

ana- lyses of the plasmapause evolution with time (Pierrard and Cabrera,

2006).

With sensitive EUV cameras, IMAGE pro- vided global views of the plasmasphere by imaging the distribu- tion of He

+

ions in its

30.4

nm resonance line integrated along the line of sight. An example is illustrated in Figure

12.

7.

I.

New structures like plumes, notches and shoulders have been detected. More recently, the first global meridian images of the plasmasphere were obtained with TEX instrument on board KAGUY A and provided useful information on physical processes of plasmapause formation (Murakami et al.,

2016).

Moreover, many spacecraft determine the plasma density along their orbit and show in situ spatial and temporal structures inside and outside the plasmasphere and the evo- lution of the plasmapause positions. The four CLUSTER spacecraft make multipoint measurements and the observa- tions of the instrument WHISPER (that determines the low-

175

Figure 12.7.1 The global plasmasphere seen by EUV/IMAGE on 22 June 2001 at 0519 UT (when the satellite was above the North Pole and projected in the geomagnetic equatorial plane). The irregular line corresponds to the threshold of 40% of the maximum luminosity and illustrates the plasma pause position. The circles correspond to the Earth's surface and L = 2, 4, 6 and 8. (A black- and-white version of this figure appears in some formats. For the colour version, please refer to the plate section.)

energy plasmaspheric density) could be complemented by measurements of higher energy instruments to analyze the links between the plasmapause and the radiation belts boundaries (Darrouzet et al.,

2013).

Data from Van Allen Probes also showed the influence of the plasmasphere to limit the ultra-relativistic electrons of cosmic rays and solar origin from reaching low altitudes (Baker et al.,

2014).

Simultaneous THEMIS observations are also available to complement the plasmaspheric observations (Bandic et al.,

2017).

Statistical studies have been made to determine the dependence of the plasmapause positions on solar and geo- magnetic indices (Verbanac et al.,

2015,

with Cluster; Bandic et al.,

2016,

with CRRES for instance) and the thickness of the plasmapause boundary layer (Kotova et al.,

2018,

with MAGION). Empirical relations between the plasmapause equatorial distance and a variety of geomagnetic indices like

Kp, Dst or AE have been deduced as well as their dependence

and propagation in ML T.

* Y. Pierrard thanks the Solar-Terrestrial Center of Excellence and the Royal Belgian Institute for Space Aeronomy.

M., Yau, A., and Petrovský, E., doi:10.1017/9781108290135, Cambridge University Press, Cambridge, UK, 2019.

(2)

176 The Magnetosphere

2015-3-16 2015-3-17 2015-3-18

~~~ ~-~

Figure 12. 7 .2 Density of the electrons in the

equatorial (left) and meridian plane (right) obtained with the SPM plasmaspheric model (Pierrard and Voiculescu, 2011) for the date of 17 March 2015 at 1300 UT, during a geomagnetic storm. The plasmasphere corresponds to the dark region with higher density, the plasmapause is illustrated by the diamonds and the low-density plasma beyond the plasma pause corresponds to the plasma trough. The upper panel shows the planetary geomagnetic activity index of Bartels Kp observed from 16 to 18 March 2015. (A black- and-white version of this figure appears in some formats. For the colour version, please refer to the plate section.)

1 2 3 4

10 -10

5

Equatorial plane

5 0 -5

days

-10 -10

-5 10 4 2 O 0 - '0 -21

-4 5 10

2015-3-17 13.0 UT

5 0 -5 -10

4 2 0 -•~2

-4

5 0 -5 -10

Meridian plane 10 ... ~~_,_.

10 5 0

~_,_.~~ ... 10 -5

10

-10

100 Electron Density (cm-3)

12.7.3 Recent Progress in Modeling

In addition to empirical models, more physics-based models have been developed (Pierrard et al.,

2009,

for a review). Recent progress in plasmasphere modeling was obtained by the development of three-dimensional dynamic models taking into account the influence of the geomagnetic activity. The highly dynamic region of the plasmasphere is disturbed during geomagnetic storms and substorms, with formation of a sharp plasmapause closer to the Earth and the generation of a plume in the afternoon MLT sector rotating with the Earth. The position of the plasmapause, the limit of the plasma- sphere, is highly dynamic and depends on the level of geomagnetic activity. During quiet times

,

the plasma- pause is located further from the Earth and the iono- sphere refills the plasmasphere in a few days typically.

Figure

12. 7 .2

illustrates an example of the plasmasphere electron density as obtained from the SWIFF (Space Weather Integrated Forecasting Framework) Plasmasphere Model (SPM) (Pierrard and Voiculescu,

2011)

for the date of

17

March

2015

during a geomagnetic storm. During mag- netic storms, the plasmasphere is eroded and structures like plasma plumes and channels can appear. Such a plume is clearly visible on the figure. This model is available for free run at any chosen date on the space weather portal

1000

(www.spaceweather.eu) and is now provided also in real time on ESA website of SSA (Space Situational Awareness) at http://swe .ssa.esa.int/space-radiation. It provides the time variations of plasmapause position in the geomagnetic and meridian planes, the density of electrons and ions inside and outside the plasmasphere and the temperature of the particles and is coupled with the ionosphere to be able to simulate refilling processes after storms (Pierrard and Voiculescu,

2011).

The density and temperature in the ionosphere are modulated by day/night activity. Different waves circulate inside and outside the plasmasphere and also along the plas- mapause, so that such a model of the plasmasphere is useful also to determine its influence on the radiation belts dynamics.

The results of the simulations have been compared with

various satellite observations to determine the most relevant

physical mechanisms of plasma pause formation and the most

appropriate electric field configurations depending on geo-

magnetic activity (Lemaire and Pierrard,

2008;

Pierrard et al.

, 2008,

Verbanac et al.,

2018).

As predicted by quasi-inter-

change mechanism of plasma pause formation used in SPM

model

,

the plasmapause positions at the post-midnight

observed from the meridian perspective by KAGUYA

clearly show a plasmapause fo1mation first near the equator-

ial region and in the post-midnight sector.

(3)

References

Akasofu, S. I. (I 964), 'The development of the auroral substorm', Planet. Space Sci., 12(4), 273-82. doi: I0.1016/0032-0633(64) 90151-5

Akasofu, S. I., S. Chapman and C. I. Meng (1965), 'Polar electro- jet', J. Atmos. Terr. Phys., 27(11-1), 1275. doi: 10.1016/0021- 9 I 69(65)90087-5

Anderson, B. J., and D. C. Hamilton (1993), 'Electromagnetic ion cyclotron waves stimulated by modest magnetospheric com- pressions', J. Geophys. Res., 98(A 7). doi: 10.1029/93JA00605.

Angelopoulos, V. (2008), 'The THEMIS mission', Space Sci. Rev., 141(1-4), 5-34. doi: 10.1007/sl 1214-008-9336-1

Angelopoulos, V., et al. (2008), 'Tail reconnection triggering sub- storm onset', Science, 321(5891), 931-5. doi: 10.1126/

science.1160495

Angelopoulos, V., et al. (2009), 'Response to comment on "Tail reconnection triggering substorm onset"', Science, 324(5933).

doi: I 0.1126/science.1168045

Baker, D. N., et al. (2013), 'A long-lived relativistic electron sto- rage ring embedded in Earth's outer Yan Allen belt', Science, 6129, 186-90. doi: 10.l 126/science.1233518

Baker, D. N., et al. (2014). 'An impenetrable barrier to ultrarela- tivistic electrons in the Yan Allen radiation belts', Nat. Lett., 515, 531-4. doi: I0.1038/naturel3956

Baker, D., T. Pulkkinen, V. Angelopoulos, W. Baumjohann and R. L. McPherron (1996), 'Neutral line model of substorms:

Past results and present view', J. Geophys. Res., I0l(A6), 12975-13010. doi: 10.1029/95JA03753

Baker, D. N., et al. (2014), 'An impenetrable barrier to ultra- relativistic electrons in the Van Allen radiation belts', Nature, 515, 531-4.

Baker, D. N. (2014). 'New twists in Earth's radiation belts', Am.

Sci., I 02(5), 374-381.

Baker, D.N., S. G. Kanekal, X. Li, S. P. Monk, J. Goldstein and J.

L. Burch (2004), 'An extreme distortion of the Van Allen belt arising from the "Hallowe'en" solar storm in 2003', Nature, 432, 878-8 I. doi: I 0. I 038/nature03 l I 6

Baker, D. N., S. G. Kanekal, V. C. Hoxie, M. G. Henderson, X. Li, H. E. Spence, S. R. Elkington, R.H. Friedel, J. Goldstein, M. K.

Hudson, G. D. Reeves, R. M. Thorne, C. A. Kletzing and S. G.

Claudepierre (2013), 'A long-lived relativistic electron storage ring embedded within the Earth's outer Van Allen Radiation Zone', Science, 340, 186-90. doi: 10. l 126/science.1233518 Balikhin, M. A., et al. (20 I 5), 'Observations of discrete harmonics

emerging from equatorial noise', Nat. Comm., 6, 7703. doi:

I 0.1038/ncomms8703

Bandic, M., G. Yerbanac, M. Moldwin, V. Pierrard and G.

Piredda (2016), 'ML T dependence in the relationship between plasmapause, solar wind and geomagnetic activity based on CRRES: 1990-1991', J. Geophys. Res., 121, 4397-4408. doi:

I 0.1002/20 l 5JA022278

Bandic, M., G. Verbanac, V. Pierrard and J. Cho (2017), 'Evidence of ML T propagation of the plasmapause inferred from THEMIS data', J. Atmos. Sol. Terr. Phys., 161, 55-63. doi:

I 0.1016/j.jastp.2017 .05.005

Belian, R. D., T. E. Cayton and G. D. Reeves (1995), 'Quasi- periodic, substorm associated, global flux variations observed at geosynchronus orbit', in Space Plasmas: Coupling between Small and Medium Scale Processes, ed. M. Ashour-Abdalla,

T. Chang and P. Dusenbery, p. 143, American Geophysical Union, Washington, DC. doi: 10.1029/GM086p0143 Boardsen, S. A., et al. (2014), 'Van Allen Probe observations of

periodic rising frequencies of the fast magnetosonic mode', Geophys. Res.Lett., 41, 8161-8. doi: 10.1002/2014GL062 020 Burch, J. L., and T. D. Phan (2016), 'Magnetic reconnection at the dayside magnetopause: Advances with MMS', Geophys. Res.

Lett., 43, 16, 8327. doi: 10.1002/2016GL069787

Burch, J. L., et al. (2016), 'Electron-scale measurements of mag- netic reconnection in space', Science, 352, aaf2939. doi:

1 0. l l 26/science.aaf2939

Caan, M. N., R. L. McPherron and C. T. Russell (1973), 'Solar wind and substorm-related changes in the lobes of the geo- magnetic tail', J. Geophys. Res., 78(34), 8087-96. doi:

I 0.1029/JA078i034p08087

Cai, X., and C. R. Clauer (2009), 'Investigation of the period of sawtooth events', J. Geophys. Res., 114, 9. doi: I 0. I 029/

2008ja013764

Carpenter, D. L., and J. Lemaire (2004). 'The plasmasphere boundary layer', Ann. Geophys., 22, 4291-8. doi: I 0.5194/

angeo-22-4291

Cassak, P. A., and M. A. Shay (2007), 'Scaling of asymmetric magnetic reconnection: General theory and collisional simu- lations', Phys. Plasmas, 14, 102114.

Cassak, P.A., and S. A. Fuselier (2016), 'Reconnection at Earth's dayside magnetopause', in Magnelic Reconnection, ed. W.

Gonzalez and E. Parker, pp. 213-76, Springer, Switzerland.

doi: 10.1007/978-3-319-26432-5

Chapman, S. (1962), 'Earth storms: Retrospect and prospect', J.

Phys. Soc. Jpn., l7(A-1), 6.

Chapman, S., and V. C. A. Ferraro (1931), 'A new theory of magnetic storms, Part I, The initial phase', Terr. Mag.

Atmos. Elect., 36, 7.

Chappell, C. R. (I 972), 'Recent satellite measurements of the morphology and dynamics of the plasmasphere', Rev. Geophys., 10(4), 951-79. doi: I0.1029/RG0I0i004 p00951

Chaston, C. C., et al.(2015), 'Extreme ionospheric ion energization and electron heating in Alfven waves in the storm time inner magnetosphere', Geophys. Res. Lett., 42, 10531-40. doi:

I 0.1002/2015GL066674

Coroniti, F. V., R. L. McPherron and G. K. Parks ( 1968), 'Studies of magnetospheric substorm. 3. Concept of magnetospheric substorm and its relation to electron precipitation and micro- pulsations', J. Geophys. Res., 73(5), 1715-22. doi: 10.1029/

JA073i005p01715

Daglis, I. A., and J. U. Kozyra (2002), 'Outstanding issues of ring current dynamics', J. Atmos. Sol. Terr. Phys., 64(2), 253-64.

doi: 10.1016/S l 364-6826(01)00087-6.

Daglis, I. A., R. M. Thorne, W. Baumjohann and S. Orsini (1999), 'The terrestrial ring current: Origin, formation, and decay', Rev. Geophys., 37(4), 407-38. doi: I 0.1029/

1999 R G900009

Darrouzet, F., J. De Keyser and V. Pierrard (2009), The Earth's Plasmasphere: Cius/er and IMAGE- A Modern Perspeclive, Springer, New York.

Darrouzet, F., et al. (2009), 'Plasmaspheric density structures and dynamics: Properties observed by the CLUSTER and IMAGE missions', Space Sci. Rev., 145(55). doi: 10.1007/

s l 1214-008-9438-9

(4)

178

Darrouzet, F., V. Pierrard, S. Benck, G. Lointier, J. Cabrera, K.

Borremans, N. Ganushkina, and J. De Keyser (2013), 'Links between the plasmapause and the radiation belts boundaries as observed by the instruments CIS, RAPID and WHISPER on CLUSTER', J. Geophys. Res., 118, 4176-88. doi: 10.1002/

jgra.50239

De La Beaujardiere, 0., L. R. Lyons, J.M. Ruohomemi, E. Friss- Christensen, C. Danielsen, F. Rich and P. Newell (1994),

'Quiet-time intensifications along the poleward auroral

boundary near midnight', J. Geophys. Res., 99(AI), 287-98.

doi: 10.1029/93JAOI947

Delong, A. D., A. J. Ridley, X. Cai and C.R. Clauer (2009), 'A statistical study of BR!s (SMCs), isolated substorms, and individual sawtooth injections', J. Geophys. Res., 114. doi: I 0.1029/2008ja013870

DeJong, A. D., and C.R. Clauer (2005), 'Polar UVI images to study steady magnetospheric convection events: Initial results', Geophys. Res. Lett, 32(24), 4. doi: 10.1029/2005gl024498 Delong, A. D., X. Cai, R. C. Clauer and J. F. Spann (2007),

'Aurora and open magnetic flux during isolated substorms,

sawteeth, and SMC events', Ann. Geophys., 25(8), 1865-76.

doi: I 0.5 l 94/angeo-25-1865-2007

Dungey, J. W. (1961), 'Interplanetary magnetic field and the aur- oral zones', Phys. Res. Lett., 6, 47-8.

Eastman, T. E. (2003), 'Historical review (pre-1980) of magneto- spheric boundary layers and the low-latitude boundary layer', in Earth's Low-Latitude Boundary Layer, Geophys. Monograph 133, ed. P. T. Newell and T. Onsager, pp. 1-12, American Geophysical Union, Washington, DC.

Elvey, C. T. (I 957), 'Problems of auroral morphology', Proc. Natl.

Acad. Sci. USA, 43(1), 63-75.

Fairfield, D. H., and L. J. Cahill Jr (I 966), 'Transition region magnetic field and polar magnetic disturbances', J. Geophys.

Res., 71(1), 155-69.

Fear, R. C., et al. (2014), 'Direct observation of closed magnetic flux trapped in the high latitude magnetosphere', Science, 346, 6216. doi: I 0.1 l 26/science.1257377

Fennell, J. F., et al. (2015), 'Van Allen Probes show the inner radia- tion zone contains no MeV electrons: ECT/MagEIS data', Geophys. Res. Lett., 42, 1283-9. doi: I0.1002/2014GL062874 Fennell, J. F., S. G. Claudepierre, J.B. Blake, T. P. O'Brien, J. H.

Clemmons, D. N. Baker, H. E. Spence and G. D. Reeves (2015), 'Yan Allen Probes show that the inner radiation zone contains no MeV electrons: ECT/MagEIS data', Geophys.

Res. Lett., 31(5), 1283-9. doi: 10.1002/2014GL062874 Ferrero, V. C. A. (I 952), 'On the theory of the first phase of a

geomagnetic storm I the new illustrative calculation based on an idealized (plane not cylindrical) model field distribution', J.

Geophys. Res., 57(15), 1952.

Frank, L., K. Ackerson and R. Lepping (I 976), 'On hot tenuous plasmas, fireballs, and boundary layers in the Earth's magne- totail', J. Geophys. Res., 81(34), 5859-81. doi: 10.1029/

JA08 I i034p05859

Friedrich, E., J. Samson, I. Voronkov and G. Rostoker (2001), 'Dynamics of the substorm expansive phase', J. Geophys.

Res., 106(A7), 13145-63. doi: I0.1029/2000JA000292 Fuselier, S. A., J. L. Burch, J. Mukherjee, K. J. Genestreti, S. K.

Vines, R. Gomez, J. Goldstein, K. J. Trattner, S. M. Petrinec, B. Lavraud and R. J. Strangeway (2017), 'Magnetospheric ion

The Magnetosphere

influence at the dayside magnetopause', J. Geophys. Res., 122, 8617-31. doi: I0.1002/2017JA02415

Gallagher, D. L., and R.H. Comfort (2016), 'Unsolved problems in plasmasphere refilling', J. Geophys. Res., 121, 1447-51.

doi: I0.1002/2015JA022279

Gkioulidou, M., A. Y. Ukhorskiy, D. G. Mitchell, T. Sotirelis, B.

H. Mauk and L. J. Lanzerotti (2014), 'The role of small-scale ion injections in the build up of Earth's ring current pressure:

Van Allen Probes observations of the 17 March 2013 storm', J. Geophys. Res., 119, 7327-42. doi: 10.1002/2014JA020096 Goldstein, J., B. R. Sandel, W. T. Forrester, M. F. Thomsen and

M. R. Hairston (2005), 'Global plasmasphere evolution 22-23 April 2001', J. Geophys. Res., 110, Al2218. doi: 10.1029/

2005JA011282

Haerendel, G., G. Paschmann, N. Sckopke, H. Rosenbauer and P.

C. Hedgecock (1978), 'The frontside boundary layer of the magnetosphere and the problem of reconnection', J. Geophys.

Res., 83, 3195.

Hirshberg, J., and D.S. Colburn (1969), 'Interplanetary field and geomagnetic variations-A unified view', Planet. Space Sci., 17, 1183-1206.

Hubert, B., J.C. Gerard, S. E. Milan and S. W. H. Cowley (2017), 'Magnetic reconnection during steady magnetospheric con- vection and other magnetospheric modes', Ann. Geophys., 35 (3), 505-24. doi: 10.5l94/angeo-35-505-2017

Hultqvist, B., M. 0ieroset, G. Paschmann and R. Treumann (Eds.) (1999), Magne/ospheric Plasma Source and Losses, Kluwer, Dordrecht.

Jacobs, J. A. (Ed.) ( I 987), Geomagnelism. 2 vols. Academic Press, New York.

Jelly, D., and N. Brice (I 967), 'Changes In Yan Allen radiation

associated with polar substorms', J. Geophys. Res., 72(23),

5919-31.

Keika, K., L. M. Kistler and P. C. Brandt (20 I 3), 'Energization of O+ ions in the Earth's inner magnetosphere and the effects on ring current build up: A review of previous observations and possible mechanisms', J. Geophys. Res., 118, 4441-64. doi:

I 0.1002/jgra.50371

Kim, H.-J., and A. A. Chan (I 997), 'Fully adiabatic changes in storm time relativistic electron fluxes', J. Geophys. Res., 102 (AIO), 22107-16. doi: 10.1029/97JA01814

Kissinger, J., F. D. Wilder, R. L. McPherron, T. S. Hsu, J.B. H.

Baker and L. Kepko (2013), 'Statistical occurrence and dynamics of the Harang discontinuity during steady magneto- spheric convection', J. Geophys. Res., 118(8), 5127-35. doi:

I 0.1002/jgra.50503

Kissinger, J., R. L. McPherron, T. S. Hsu and V. Angelopoulos (2011 b ), 'Steady magnetospheric convection and stream inter- faces: Relationship over a solar cycle', J. Geophys. Res., 116.

doi: I 0. I 029/20 IOjaOI 5763

Kissinger, J., R. L. McPherron, T. S. Hsu and V. Angelopoulos (2012b), 'Diversion of plasma due to high pressure in the inner magnetosphere during steady magnetospheric convec- tion', J. Geophys. Res., l l 7(A5), A05206. doi: I 0. I 029/

2012ja017579

Kissinger, J., R. L. McPherron, T.-S. Hsu and V. Angelopoulos (2011 a), 'Steady magnetospheric convection and stream inter- faces: Relationship over a solar cycle', J. Geophys. Res., 116 (13), 1-11. doi: 10.1029/2010JA015763

(5)

Kissinger, J., R. L. McPherron, T.-S. Hsu, V. Angelopoulos and X. Chu (2012a), 'Necessity of substorm expansions in the initia- tion of steady magnetospheric convection', Geophys. Res.

Lett., 39(Ll5105), 1-5. doi: I0.1029/2012GL052599

Kletzing, C. A., et al. (2017), 'Phase sorting wave-particle correla- tor', J. Geophys. Res., 122, 2069-78. doi: 10.1002/

2016JA023334

Kletzing, C. A., et al. (2013), 'The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP', Space Sci. Rev. doi: 10.1007/sl 1214-013-9993-6 Kotova, G., M. Verigin, J. Lemaire, V. Pierrard, V. Bezrukikh and

J. Smilauer (2018), 'Experimental study of the plasma sphere boundary layer using MAGION 5 data', J. Geophys. Res., 123, 1251-9. doi: I0.1002/2017JA024590

Kurth, W. S., et al.(2015), 'Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes', J. Geophys. Res., 120, 904-14, doi: 10.1002/

2014JA020857

Lemaire, J., and V. Pierrard (2008), 'Comparison between two theoretical mechanisms for the formation of the plasmapause and relevant observations', Geomagn. Aeron., 48(5), 553-70.

doi: I 0.1134/S00 16793208050010

Li, X., D. N. Baker, M. Temerin, D. Larson, R. P. Lin, G. D.

Reeves, M. Looper, S. G. Kanekal and R. A. Mewaldt (1997a), 'Are energetic electrons in the solar wind the source of the outer radiation belt?', Geophys. Res. Lett., 24(8), 923- 6. doi: I0.1029/97GL00543

Li, X., D. N. Baker, M. Temerin, T. D. Cayton, E. G. D. Reeves, R. A. Christensen, J.B. Blake, M. D. Looper, R. Nakamura and S. G. Kanekal (1997b), 'Multisatellite observations of the outer zone electron variation during the November 3-4, 1993, magnetic storm', J. Geophys. Res., 102(A7), 14123-40. doi:

I0.1029/97JA0I 101

Li, X., D. N. Baker, T. P. O'Brien, L. Xie and Q. G. Zong (2006), 'Correlation between the inner edge of outer radiation belt electrons and the innermost plasmapause location', Geophys. Res. Lett., 33(14). doi: I0.1029/2006GL026294

Li, X., R. S. Selesnick, D. N. Baker, A. N. Jaynes, S. G. Kanekal,

Q.

Schiller, L. Blum, J. Fennell and J.B. Blake (2015), 'Upper limit on the inner radiation belt MeV electron intensity', J. Geophys. Res., 120(2), 1215-28. doi: I 0.1002/2014JA020777 Lui, A. T. Y. (2009), 'Comment on "Tail reconnection triggering

substorm onset"', Science, 324(5933), 3. doi: 10.1126/

science.1167726

Lui, A. T. Y., C.-I. Meng and S.-I. Akasofu (1976), 'Search for the magnetic neutral line in the near-Earth plasma sheet, I.

Critical reexamination of earlier studies on magnetic field observations', J. Geophys. Res., 81 (34), 5934-40. doi: I 0.1029/JA08 li034p05934

Lui, A. T. Y., C.-L. Chang, A. Mankofsky, H.-K. Wong and D.

Winske (1991), 'A cross-field current instability for substorm expansions', J. Geophys. Res., 96(A7), 11389-401. doi:

I 0.1029/91JA00892

Lui, A. T. Y., R. E. Lopez, S. M. Krimigis, R. W. McEntire, L. J. Zanetti and T. A. Potemra (1988), 'A case study ofmagnetotail current sheet disruption and diversion', Geophys. Res. Lett, 15 (7), 721-4. doi: I0.1029/GL0l5i007p00721

Lyons, L. R., Y. Nishimura, Y. Shi, S. Zou, H. J. Kim, V.

Angelopoulos, C. Heinselman, M. J. Nicolls and K. H.

Fornacon (2010), 'Substorm triggering by new plasma intru- sion: Incoherent-scatter radar observations', J. Geophys.

Res., 115(13). doi: 10.1029/2009ja015168

Malakit, K., M. A. Shay, P. A. Cassak and D. Ruffolo (2013), 'New electric field in asymmetric magnetic reconnection', Phys. Rev. Lett., 111, 135001.

McPherron, R. L. (1970), 'Growth phase of magnetospheric sub- storms', J. Geophys. Res., 75(28), 5592-9. doi: 10.1029/

JA075i028p05592

McPherron, R. L. (1991 ), 'Physical processes producing magneto- spheric substorms and magnetic storms', in Geomagnetism, vol.

4, ed. J. Jacobs, pp. 593-739, Academic Press, London.

McPherron, R.L.(2015), 'Earth's Magneto tail', in Magneto tails in the Solar System, ed. A. Keiling, C. M. Jackman and P. A.

Delamere, pp. 61-84, Blackwell Science, Oxford. doi: I 0.1002/

978 l I I 8842324.ch4

McPherron, R. L., and X. Chu (2017), 'The mid-latitude positive bay and the MPB Index of substorm activity', Space Sci. Rev., 206(1-4), 91-122. doi: 10.1007/sl 1214-016-0316-6

McPherron, R. L., C. T. Russell and M. Aubry (1973), 'Satellite studies of magnetospheric substorms on August 15, 1968, 9.

Phenomenological model for substorms', J. Geophys. Res., 78 (16), 3131-49.

McPherron, R. L., J.M. Weygand and T. S. Hsu (2008), 'Response of the Earth's magnetosphere to changes in the solar wind', J.

Atmos. Sol. Terr. Phys., 70(2-4), 303-15. doi: 10.1016/j. jastp.2007 .08.040

McPherron, R. L., T. P. O'Brien and S. M. Thompson (2005), 'Solar wind drivers for steady magnetospheric convection', in Multiscale Coupling of Sun-Earth Processes, ed. A. T. Y. Lui, Y. Kamide and G. Consolini, pp. 113-24, Elsevier, Amsterdam. doi: I0.1016/B978-044451881-1/50009-5 McPherron, R. L., T. S. Hsu, J. Kissinger, X. Chu and V.

Angelopoulos (2011), 'Characteristics of plasma flows at the inner edge of the plasma sheet', J. Geophys. Res., 116. doi:

I 0.1029/20 l 0ja0 15923

McPherron, R. L., T.-S. Hsu and X. Chu (2015), 'An optimum solar wind coupling function for the AL index', J. Geophys.

Res., 120(4), 2494-2515. doi: I0.1002/2014ja020619

Meredith, N. P., et al. (2003), 'Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES', J. Geophys. Res., 208, 1250.

Murakami, G., K. Yoshioka, A. Yamazaki, Y. Nishimura, I.

Yoshikawa and M. Fujimoto (2016), 'The plasmapause forma- tion seen from meridian perspective by KAGUY A', J. Geophys.

Res., 121(11), 973-11984. doi: I0.1002/2016JA023377

Nishida, A. (1994), The Geotail mission', Geophys. Res. Lett, 21 (25), 2871-3. doi: 10.1029/94gl01223

Nishimura, Y ., et al. (2014), 'Day-night coupling by a localized flow channel visualized by polar cap patch propagation', Geophys.

Res. Lett, 41(11), 3701-9. doi: 10.1002/2014gl060301

Nishimura, Y., L. Lyons, S. Zou, V. Angelopoulos and S. Mende (20 I 0), 'Substorm triggering by new plasma intrusion:

THEMIS all-sky imager observations', J. Geophys. Res., 115(A7), A07222. doi: 10.1029/2009ja015166

Nishimura, Y., L. R. Lyons, V. Angelopoulos, T. Kikuchi, S. Zou and S. B. Mende (2011), 'Relations between multiple auroral streamers, pre-onset thin arc formation, and substorm auroral onset', J. Geophys. Res., 116(10). doi: I0.1029/2011ja016768

(6)

180

O'Brien, T. P., S. M. Thompson and R. L. McPherron (2002),

'Steady magnetospheric convection: Statistical signatures in

the solar wind and AE', Geophys. Res. Lett., 29(7). doi:

10.1029/2001 GL014641

Ohtani, S. (2004), 'Flow bursts in the plasma sheet and auroral substorm onset: observational constraints on connection between midtail and near-Earth substorm processes', Space Sci. Rev., 113(1-2), 77-96. doi: 10.1023/B:SPAC.0000042940 .59358.2 f

Pierrard, V., and J. Cabrera (2006), 'Dynamical simulations of plasmapause deformations', Space Sci. Rev., 122(1-4), I 19- 26. doi: I 0.1007 /s l 1214-005-5670-8

Pierrard, V., J. Goldstein, N. Andre, V. K. Jordanova, G. A. Kotova, J. F. Lemaire, M. W. Liemohn and H. Matsui (2009), 'Recent progress in physics-based models of the plasmasphere', Space Sci. Rev., 145, 193-229. doi: 10.1007/sl 1214-008-9480-7 Pierrard, V., G. Khazanov, J. Cabrera and J. Lemaire (2008),

'Influence of the convection electric field models on predicted plasmapause positions during the magnetic storms', J.

Geophys. Res., 113, A082 I 2, 1-21. doi: I 0.1029/

2007JAOl 2612

Pierrard, V., and M. Voiculescu (201 !), 'The 3D model of the plasma sphere coupled to the ionosphere', Geophys. Res.

Lett., 38, L12104. doi: 10.1029/2011GL047767

Poppe, A. R., et al. (2016), 'ARTEMIS observations of terrestrial ionospheric molecular ion outflow at the Moon', Geophys.

Res. Lett., 43, 6749-58, doi: I0.1002/2016GL069715

Pytte, T., R. L. McPherron, E.W. Hones and H. L. West (1978), 'Multiple satellite studies of magnetospheric substorms:

Distinction between polar magnetic substorms and convec- tion-driven bays', J. Geophys. Res., 83(Na2), 663-79. doi:

I 0.1029/JA083iA02p00663

Reeves, G. D., et al. (2013), 'Electron acceleration in the heart of the Van Allen radiation belts', Science, 1237743. doi: 10.1126/

science.1237743

Rosenbauer, H., H. Griinwaldt, M. D. Montgomery, G.

Paschmann and N. Sckopke (1975), 'Heos 2 plasma obsera- tions in the distant polar magnetosphere: The plasma mantle', J. Geophys. Res., 80, 2723-37.

Russell, A. J. B., T. Karlsson and A. N. Wright (2015), 'Magnetospheric signatures of ionospheric density cavities observed by Cluster', J. Geophys. Res., 120, 1876--87.

Schroeder, J. W.R., et al. (2016), 'Direct measurement of electron sloshing of an inertial Alfven wave', Geophys. Res. Lett., 43,

4701-7. doi: 10.1002/2016GL068865

Selesnick, R. S., D. N. Baker, A. N. Jaynes, X. Li, S. G. Kanekal,

M. K. Hudson and B. T. Kress (2014), 'Observations of the

inner radiation belt: CRAND and trapped solar protons', J. Geophys. Res., I I 9. doi: 10.1002/20 I 4JA020 I 88

Sergeev, V. A., R. J. Pellinen and T. I. Pulkkinen (1996), 'Steady magnetospheric convection: a review of recent results', Space Sci. Rev., 75(3-4), 551-604.

Shiokawa, K., et al. (1998), 'High-speed ion flow, substorm current wedge, and multiple Pi 2 pulsations', J. Geophys.

Res., 103(A3), 4491-4507. doi: 10.1029/97ja01680

The Magnetosphere

Shiokawa, K., W. Baumjohann and G. Haerendel (1997), 'Braking of high-speed flows in the near-Earth tail', Geophys. Res.

Lett, 24(10), 1179-82. doi: I 0.1029/97g10 I 062

Shprits, Y. Y., R. M. Thorne, R. Friedel, G. D. Reeves, J. Fennell, D. N. Baker and S. G. Kanekal (2006), 'Outward radial diffusion driven by losses at magnetopause', J. Geophys.

Res., 111, Al 1214. doi: 10.1029/2006JA0l 1657

Singh, S., and J. L. Horwitz (1992), 'Plasmasphere refilling: Recent observations and modeling', J. Geophys. Res., 97, 1049-79.

doi: I 0. I 029/9 IJA02602

Stewart, B. (1861), 'On the great magnetic disturbance of28 Aug.

to 7 Sep. 1859', Philos. Trans. London, 151, 423-30.

Summers, D., B. Ni and N. P. Meredith (2007), 'Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves', J.

Geophys. Res., 112, A04207. doi: 10.1029/2006JA0l 1993 Thorne, R. L., et. al.(2013), 'Rapid local acceleration of relativistic

radiation-belt electrons by magnetospheric chorus', Nature, 504(7480), 411. doi: 10.1038/naturel2889

Thorne, R. M., E. J. Smith, R. K. Burton and R. E. Holzer (I 973), 'Plasmaspheric hiss', J. Geophys. Res., 78(10), 1581-96. doi:

I 0.1029/JA078i0 I 0p0l 581

Torbert, R. B., et al. (2016), 'Estimates of terms in Ohm's law during an encounter with an electron diffusion region', Geophys. Res. Lett., 43, 5918. doi: 10.1002/2016GL069553 Ukhorskiy, A. Y., B. J. Anderson, P. C. Brandt and N. A.

Tsyganenko (2006), 'Storm time evolution of the outer radia- tion belt: Transport and losses', J. Geophys. Res., 111, Al IS03. doi: I0.1029/2006JA0I 1690

Van Allen, J. A., G. H. Ludwig, E. C. Ray and C. E. Mcilwain (1958), 'Observations of high intensity radiation by satellites 1958 Alpha and Gamma', Jet Propul., 28, 588-92.

Verbanac, G., M. Bandic and V. Pierrard (2018), 'MLT plasma- pause characteristics: comparison between THEMIS observa- tions and numerical simulations', J. Geophys. Res., 123, 2000--2017. doi: 10.1002/2017JA024573

Verbanac, G., V. Pierrard, M. Bandic, F. Darrouzet, J.-L. Rauch and P. Decreau (2015), 'Relationship between plasmapause, solar wind and geomagnetic activity between 2007 and 20 I I using Cluster data', Ann. Geophys., 33, 1271-83. doi:

I 0.5l94/angeo-33-1271-2015

Walsh, B. M., et al. (1974), 'Simultaneous ground- and space-based observations of the plasmaspheric plume and reconnection', Science, 343(6175), 1122-5. doi: I0.1126/science.1247212 Walsh, B. M., T. D. Phan, D. G. Siebeck and V. M. Souza (2014),

'The plasmaspheric plume and magnetopause reconnection', Geophys. Res. Lett., 41 (2), 223-8. doi: I 0.1002/2013GL058802 Weimer, D. R. (1992), 'Characteristic time scale of substorm expansion and recovery', Proc. lnt. Conf. Substorms, ICS-1, 581-6.

Wilson, L. B., III (2016), 'Relativistic electrons produced by fore- shock disturbances observed upstream of the Earth's bow shock', Phys. Rev. Lett., 117(21). doi: 10.1103/PhysRevLett .117.215101

(7)

radiation belts within the same volume of space near Earth (NASA/Troy Benesch).

Figure 12.7.1 The global plasmasphere seen by EUV/IMAGE on 22 June 200 I at 0519 UT (when the satellite was above the North Pole and projected in the geomagnetic equatorial plane). The irregular line corresponds to the threshold of 40% of the maximum luminosity and illustrates the plasma pause position. The circles correspond to the Earth's surface and L = 2, 4, 6 and 8.

(8)

2015-3-16 2015-3-17 2015-3-18

· l ~

1 2 3 4

days Equatorial plane

10 5 0 -5 -10

-10f

3

' 1-10

2015-3-17 13.0 UT fiit7

10 5 0 -5

-S r ~ -s r ,__

i-5

4 2

01 ~ - J ~o1

-2

sr ~ :,.,...·sr

~ i5 -4

10 5 0 -5

Meridian plane

10 10

10 5 0 -5 -10

10 100

Electron Density (cm- 3)

1000 -10

4 2 0 - ~2

-4 -10

Figure 12.7.2 Density of the electrons in the equatorial (left) and meridian plane (right) obtained with the SPM plasmaspheric model (Pierrard and Voiculescu, 2011) for the date of 17 March 2015 at 1300 UT, during a geomagnetic storm. The plasmasphere corresponds to the dark region with higher density, the plasmapause is illustrated by the diamonds and the low-density plasma beyond the plasmapause corresponds to the plasma trough. The upper panel shows the planetary geomagnetic activity index of Bartels Kp observed from 16 to 18 March 2015.

Dst index (blue, nT) and 10.7 cm radio flux (red, 10- 22 Jlstm2/Hz)

•oo- - ~ - - - ~ - - - ~ - - - ~ ~

300 200 100

-400 -500

-600~ - ~ - - - ~ - - - ~ - - - ~ - - - ~ - - - , - ~ ~ 2010

1960 1970

• Ost (blue) since 1957, hourly index based on horizontal field at Hermanus, Kakioka, Honolulu, San Juan

• SYM-H (green) established in 1981 is like Dst, but more observatories (always Honolulu, Memambetsu +4 others), different baseline calculation - evaluated at 1 minute intervals.

1980

1'-

k

A

~

1990 2000

Year

1957-2006 Hourly Dst Index, 1999 SYM-H 10'

10•

10•

10' 10'

10' 10-1 10-2

10-3 10-•

10-• 10-s 10-2 10-1 100 101 102 10s Frequency days-I

Figure 13.1.2 (a) Hourly Dst index variations from 1957 on compared with I 0.7 cm radio flux. (b) the power spectrum of Dst from 1957 to 2006 and of SYM-H from 1999. SYM-H has I min sampling.

Références

Documents relatifs

The plasmasphere (shaded region I) is filled with nearly corotating thermal plasma held by the Earth's gravitational field. The shaded region III is the convection region of

However the pressure gradient will force the particles located beyond the 'Roche-Limit' surface to penetrate into the outermost region III (in Fig. 3) where the

Institut d'Aeronomie Spatiale de Belgique, 3 Avenue Circulaire, B 1180 Brussels, Belgium Abstract--We consider the plasmapause as a stationary boundary layer (a sheath)

To establish a correlation between density and wave intensity deeper inside the outer plasmasphere, we extrapolate the electron density from the spacecraft potential after fitting

In contrast to the clear F 10.7 -dependent variations of the oxygen and hydrogen ions, the daytime helium ion density has no obvious solar activity variation, suggesting that

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

According to the zonation proposed here, the ridge of Mount Valva and Mount Marzano is subdivided into four main areas on the basis of the processes which take place in the

$watermark-text.. I) Animals with innate circadian rhythm close to 24 hours (+/− 7 minutes, red survivorship curve, N=24) enjoy longer lifespan (p=0.0047) than animals with