• Aucun résultat trouvé

Passive vibration damping of hydrofoils using resonant piezoelectric shunts

N/A
N/A
Protected

Academic year: 2021

Partager "Passive vibration damping of hydrofoils using resonant piezoelectric shunts"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02913611

https://hal.archives-ouvertes.fr/hal-02913611

Submitted on 10 Aug 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Passive vibration damping of hydrofoils using resonant piezoelectric shunts

Laetitia Pernod, Boris Lossouarn, Jacques-André Astolfi, Jean-François Deü

To cite this version:

Laetitia Pernod, Boris Lossouarn, Jacques-André Astolfi, Jean-François Deü. Passive vibration damp- ing of hydrofoils using resonant piezoelectric shunts. 9èmes Journées Jeunes Chercheurs en vibrations, Acoustique et Bruit, JJCAB 2019, Nov 2019, Besançon, France. �hal-02913611�

(2)

Passive Vibration Damping of Hydrofoils using Resonant Piezoelectric Shunts

L. Pernod, B. Lossouarn, J.-A. Astolfi and J.-F. Deü, LMSSC (Cnam) & IRENav (Ecole Navale )

Marine lifting surfaces

Introduction

Flow-induced vibrations

Shorter life cycle

Poor acoustic

performances Objective: Vibration damping under hydrodynamic flows using a resonant piezoelectric shunt

Results

St rouhal law

Lock-in

6000 6500 7000 7500 8000 8500 9000 9500 10000 10500

Reynolds Number

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

RMS Values [m/s]

10-5

Open-circuit Shunt

f

shed

~ f

mode

damping

Acknowledgements References

• Vibration damping on the 1 st torsional mode (most severe load case)

• More complex geometry: hydrofoil with a truncated trailing edge

• Numerical study and validation against experiments

Further work

Methodology Experimental Setup

Modal analysis

à 𝝎 oc and 𝝎 sc Resonant shunt design

à Identical shunt parameters

Still water (excitation by piezoelectric patches)

Hydrodynamic flows

Hyp: identical 𝝎 oc

and 𝝎 sc

U

0

∈ [0.5, 6.5] m/s

Vibrations with and without control under hydrodynamic flows

shunt

Flow-induced vibration without control

L R

U Aluminum beam

Piezoelectric transducer

Flow

n 192 mm

Amplifier Low-pass

filter GBF

FRF

Acquisition and post-processing

Vibrometer

Shunt

• Von Kármán vortex-shedding from trailing edge (Strouhal law) at frequency f shed

• Strong coupling with 1 st torsional mode and 2 nd bending mode when f shed = f mode à lock-in

• Vibration mitigation on 1 st bending mode, in particular when f shed close to f bending1

• RMS values divided by ~3 at maximum vibration mitigation

[1]. Lelong, A., Guiffant, P. and Astolfi, J.-A. An Experimental Analysis of the Structural Response of Flexible Lightweight Hydrofoils in Cavitating Flow. Journal of Fluids Engineering (2018)

[2]. Lossouarn, B., Aucejo, M., Deü, J.-F. and Multon, B., Design of inductors with high inductance values for resonant piezoelectric damping. Sensors and Actuators (2017), 259:68-76 [3]. Pernod, L., Lossouarn, B., Astolfi, J.-A. and Deü, J.-F., Passive Vibration Damping of Hydrofoils using Resonant Piezoelectric Shunt, IX ECCOMAS Thematic Conference on Smart Materials and Structures (2019)

This project is partly funded by Institut Carnot

Arts, as part of the Smart Lifting Surfaces

project. Many thanks to Jean-Michel Perron,

Alain Boulch (IRENav) and to Frédéric Guillerm

(LMSSC), for their extensive contributions to

the experimental testing.

Références

Documents relatifs

Nous avons donc effectué des traitements indirects in vitro de tumeurs du colon HCT116 avec le dispositif D-DBD argon dans les mêmes conditions que lors des traitements avec

This technique aims at reducing the structural vibration target level by using the energy pumped from another vibrating structure or vibrating mode source via bonded

model for the lo ation of ra ks based on a triangular variation of the stiness in beam stru tures.. using measured

In general, reasonable agreement was observed between numerical predictions and experimental measurements of the frequency response of the vibrating hydrofoil, and between the

Furthermore, the electromechanical conversion provided by the piezoelectric effect brings additional advantages : vibration frequency tracking if it varies over

5 Effect of the multimodal control on the velocity frequency response function of the plate - (· · · ) with open- circuited patches, (−−) with coupling to the analogous

Several electrical resonances are simultaneously tuned to the mechanical resonances, thus providing the equivalent of a multimodal vibration absorber from electromechanical

The first series of tests highlighted the existence of a strong fluid-structure interaction between the first torsion mode and the hydrodynamic excitation frequencies due to