• Aucun résultat trouvé

Overview of Proposed Flight Test

N/A
N/A
Protected

Academic year: 2022

Partager "Overview of Proposed Flight Test "

Copied!
24
0
0

Texte intégral

(1)

National Aeronautics and Space Administration!

21 June 2012 Henry Wright

Dr. F. McNeil Cheatwood

High Energy Atmospheric Reentry Test (HEART)

Overview of Proposed Flight Test

(2)

MSL in Launch Vehicle Fairing (http://marsprogram.jpl.nasa.gov/msl/

multimedia/images/?ImageID=3684)

•  Aeroshell size limited by Launch Vehicle fairing. HIAD could reduce constraints of launch vehicle

fairing on entry system size.

•  Lower ballistic coefficient from increased drag area allows higher altitude deceleration (aerocapture or entry) providing access to higher surface elevations and/or increased landed mass (MSR, Robotic

Precursor missions to Mars)

•  Increased time for EDL sequence to allow for additional maneuvering – either deceleration for larger payloads and/or precision landing

•  Mars thin atmosphere makes it difficult to decelerate large masses and limits accessible surface altitudes.

HIAD could provide access to higher elevation terrain (such as Mars Southern Highlands)

•  Improved payload access

MSL HEART

m=3300 kg 3500 kg D=4.5 m 8.5 m BC=125 kg/m

2

40 kg/m

2

Comparable Entry Masses

m  =  2200  kg  

Mo#va#on  for  HIAD  

(3)

Overview of HIAD Activities

Flight test to demonstrate system

performance at relevant scales and

environments.

Robotic Missions

(entry or aerocapture):

– Mars – Venus – Titan

– Neptune (and other gas giants)

Robotic or Crewed Earth Return

(entry or aerocapture) : – LEO (including ISS)

– GEO, NEO, Lunar

DoD Applications

Technology

Development & Risk Reduction for Human Mars Missions

6 –25 meter HIAD Class

System Development and Qualification

Sub-Orbital Flight Testing

Development and ground testing of HIAD components.

System Demonstration

Sub-orbital flight tests on a cost-effective test

platform (heating, lift, maneuverability).

ARMD and OCT investments

spans these elements Potential on-ramps for future investments.

TPS

Inflatable Structures

IRVE-II

IRVE-3 & 4

High-Energy

Atmospheric

Reentry Test

(4)

HEART by the numbers…

Ø  Entry Mass: 3500 - 5500 kg Ø  Downmass: 0 – 2000 kg

Ø  Ballistic Coeff.: 40 – 80 kg/m 2 Ø  8-10 m diameter HIAD

(55-60 deg sphere cone) HEART is a Flight Test…

Ø  To demonstrate performance in an environment relevant for robotic Earth and Planetary entry (Mars & Titan)

Ø  To demonstrate effects of scale on development and performance

Ø  Provide data needed to correlate and update high fidelity predictive models (environments, TPS,

structures, etc.)

Ø  To demonstrate the ability to be integrated into existing spacecraft without wholesale changes in capability

21  June  2012   IPPW-­‐9:    HEART  Flight  Test  Overview   4  

HEART Summary

(5)

HEART Concept of Operations

(6)

Launch Configurations – Cygnus with HEART

21  June  2012   IPPW-­‐9:    HEART  Flight  Test  Overview   6  

Launch Configuration: HEART and Cygnus

Ø Cygnus SM + Interstage + Stowed HIAD Module + Flight restraint with cover + PCM + Upmass Cargo

Pressurized Cargo Module (PCM)

with Upmass Cargo inside (Orbital)

Cygnus

Service Module (Orbital)

Stowed HIAD Module with IAD flight restraint (LaRC)

Interstage Structure (Orbital)

Interstage to

PCM Interface

(7)

Separation

Deployment Configurations

Separation & Deployment Configuration: HEART and Cygnus

Ø Cygnus SM + Interstage + Stowed HIAD Module + Flight restraint with cover + PCM + Downmass Cargo

PCM with Downmass

Cargo

Stowed HIAD Module

SM

Separation

Deployment Inflation

Flight Restraint

& Cover

(8)

8.3 m PCM

~ 3.0 m diameter 4.75 m

HEART Entry Configuration

21  June  2012   IPPW-­‐9:    HEART  Flight  Test  Overview   8  

TPS

Inflatable

Structure

(9)

Trajectory

!

!

Hawaii

(10)

6m Test Article before June 5 Tests

Inflatable Structure Test Article (6 m)

(11)

Thermal Protection System

TPS – Flexible, Insulating, Multi-Layer Laminate

Nextel – BF-20 Nextel – BF-20 Pyrogel – 2250 Pyrogel – 2250 Pyrogel – 2250 Pyrogel – 2250 Pyrogel – 2250 Gas Barrier (Kapton + Kevlar)

Inflatable Structure Flow

Nextel Outer Layer

Pyrogel Insulating

Layers

Gas Barrier

!

(12)

HEART TPS Maturation (HIAD 1 st Generation TPS)

21  June  2012   IPPW-­‐9:    HEART  Flight  Test  Overview   12  

Develop Physics Based Analytical

Model Develop Flexible TPS Margin Policy

Characterize 1

st

Generation Flex. TPS Performance:

smooth, seams, stagnation, shear, age

Characterize 1

st

Generation Flex.

TPS thermophysical properties

Update HEART Baseline TPS

Fabricate 6 m size EDU TPS

Shear Test

Stagnation Test

Nose Cap Test

(13)

Aeroheating Environments

Peak Heat Rate point (2255) Modified configuration Minor sensitivity (~10%) to

angle of attack

Peak Heat Rate point (2255) Modified configuration Unmargined heat rate for

design assessments

(14)

Summary/Conclusion

Ø HEART flight test will demonstrate the readiness of HIAD for mission infusion

Ø HEART will demonstrate capabilities consistent with future robotic planetary missions

Ø HEART has a clear path for implementation

Ø  HEART flight test is ready and relevant

21  June  2012   IPPW-­‐9:    HEART  Flight  Test  Overview   14  

(15)

HEART Inflatable Structure Maturation (HIAD 1 st Generation IS)

Develop Structural Modeling capability

Characterize 1

st

Generation Inflatable Structure material

properties

Update HEART Baseline IS

Fabricate and test 3 m, 6 m, and 8 m EDU Inflatable

Structures

3 m EDU

6 m EDU-Aero Load

Testing at NFAC

(16)

Rigid Structure

21  June  2012   IPPW-­‐9:    HEART  Flight  Test  Overview   16  

!

Nose Equipment

Decks

Torus Attachment

Rings

Baseline Rigid Structure

•  Aluminum (Composite – future study)

•  Supports subsystems

•  Provides load path for IAD to ballast (PCM)

(17)

Cruise and Deployment Configurations

Cruise Configuration: HEART and Cygnus

Ø Cygnus SM + Interstage + Stowed HIAD Module + Flight restraint

with cover + PCM + Upmass Cargo (or Downmass Cargo)

(18)

HEART Interfaces With Cygnus & Antares

Ø  HIAD External Interfaces (depicted in stowed HIAD configuration)

19-­‐20  July  2011   HIAD  Project  -­‐  HEART  Mission  Concept  Review   18  

Cygnus PCM

Cygnus SM

Ground Handling and Transportation

Equipment Ground Stations

M = Mechanical S = Signal P = Power

C = Thermal Conditioning

Simulation

M, S, P

P, S, M, C

C

M, S

Cygnus Interstage

M S

P, S, C

Launch Vehicle

S

GSE Control Room S

Tank filling and venting

M, S

(19)

Inflatable Structure

!

Attachment of Inflatable !

Structure to Rigid Structure

Torus – Braided Kevlar TM for

structure; Silicone bladder

for gas retention; RTV film

for adhesion and sealing

(20)

Avionics Subsystem – 1 of 2

21  June  2012   IPPW-­‐9:    HEART  Flight  Test  Overview   20  

(21)

Avionics Subsystem – 2 of 2

Element   Descrip#on  

Controller   FPGA  based  sequencing  controller.  Inflatable  structure  pressure   is  primary  controlled  item  

Telecom   S-­‐band  to  TDRSS  –  criYcal  events;  conYnuous;  omni  patch   antennas  mounted  on  PCM  

X-­‐band  to  ground  staYon(s)  –  all  data  (including  resend  of   criYcal  events);  a_er  blackout;  patch  antenna(s)  on  the  nose   NavigaYon   Space  Integrated  GPS  Instrument  (SIGI)  –  includes  IMU  and  

GPS;  GPS  antennas  mounted  on  PCM;  pressure  switch  for   alYtude  –  only  return  navigaYon  sensor  data,  no  navigated   soluYon  determined  in-­‐flight  

Data  AcquisiYon   MulYple  data  acquisiYon  units  –  include  signal  condiYoners  and   communicaYons  interfaces  

Electrical  Power   Primary  baceries,  switching/isolaYon,  grounding  

Sensors   Thermocouples  in  TPS  layers,  Heat  Flux  sensors  on  nose,  

pressure  transducers  at  nose  (FADS),  pressure  transducers  on  

back  side,  accelerometers  on  inflatable  structure,  load  cells  at  

strap  mounts  

(22)

Inflation Subsystem

21  June  2012   IPPW-­‐9:    HEART  Flight  Test  Overview   22  

!

HEART Inflation Subsystem is comprised of components rated for the launch and entry

environments while meeting the torus inflation and pressure control requirements.

(23)

Thermal Subsystem

Ø Thermal subsystem consists of

–  Passive components – coatings, thermal straps, MLI

–  Active components –

thermostatically controlled heaters

Ø Component sizing considers cruise to/from ISS while

deenergized; berthed at ISS – nadir and zenith – while

deenergized; and Entry while energized

Ø Influence of packed IAD

considered including sensitivity to varying packing density

(minimal)

Ø Straightforward approach to maintain components within limits

With Heaters Min about. -38ºF Max about 12ºF

Ba8eries    

(24)

Environments – 1 of 2

21  June  2012   IPPW-­‐9:    HEART  Flight  Test  Overview   24  

!

Peak Heat Rate point (2255) Original configuration

Elliptic nose with low curvature;

includes discontinuity at nose to conic interface

Peak Heat Rate point (2255) Modified configuration Nose curvature increased;

tangent point moved aft; reduced discontinuity at nose to conic

interface

Références

Documents relatifs

The rate of attack angle change (da/dt) is dependent on the control level and pos- sibly plane speed.. Changes in lift cause a similar

A year later (Dehaene et al., 2001), a similar contrast between masked and unmasked words, now at the whole-brain level, again revealed a strong correlation of

The promotion of these outcomes, however, depends on how the conflict is regulated and with what goals: Mastery goals predict epistemic conflict regulation and the elaboration

With a view to contribute to this question, we considered the Greater Flamingo (Phoenicopterus roseus) a suitable species for this study for the following reasons: (1) it is common

Nous avons été réveillés par le ron- flement des lourds camions chargés de tous les produits de la forêt landaise, écrasés de toute la richesse de cette

On a national and international level (IATA) he has been actively involved in process innovation in the air cargo industry and in the promotion and introduction of

3. Comparer les résultats du dimensionnement D.O.E. avec résultats obtenus avec le dimensionnement traditionnel.. Principes de base du dimensionnement 2. Dimensionnement avec

By dira ting atoms in the Bragg regime orresponding to a small latti e depth and a long intera tion time [28℄, it.. is possible to realize a superposition of only two