• Aucun résultat trouvé

Td corrigé TD E3: Les oscillateurs - PCSI-PSI AUX ULIS pdf

N/A
N/A
Protected

Academic year: 2022

Partager "Td corrigé TD E3: Les oscillateurs - PCSI-PSI AUX ULIS pdf"

Copied!
1
0
0

Texte intégral

(1)

TD E3: Les oscillateurs

But du chapitre

Étude de la réalisation d’oscillateurs quasi-sinusoïdaux et non linéaires.

Plan prévisionnel du chapitre

I. Génération d’un signal quasi-sinusoïdal 1. Principe

2. Exemple : oscillateur à pont de Wien 3. Pureté d’un signal quasi-sinusoïdal.

4. Naissance des oscillations II. Oscillateurs à relaxation

1. Principe

2. Cycles d’hystérésis 3. Exemples

(2)

Savoirs et savoir-faire

Ce qu’il faut savoir :

 Repérer les deux types d’oscillateurs

 Connaître la condition de Barkhausen Ce qu’il faut savoir faire :

 Interpréter un oscillateur quasi-sinusoidal en terme d’asservissement

 Faire le lien entre l’équation différentielle d’un système et les oscillations

 Calculer la caractéristique d’un amplificateur à hystérésis

Savez-vous votre cours ?

Lorsque vous avez étudié votre cours, vous devez pouvoir répondre rapidement aux questions suivantes :

 Énoncez la condition de Barkhausen

 Que permet-elle de trouver ?

 Quelle sont les deux fonctions que l’on doit retrouver dans un oscillateur quasi- sinusoïdal ? Quels sont leurs rôles ?

 Qu’est-ce qu’un hystérésis ?

 Qu’est-ce qu’un trigger de Schmitt ?

(3)

Exercices

I. Oscillateurs quasi-sinusoïdaux

Exercice 1 :Oscillateur à pont de Wien.

On considère le montage suivant :

Figure 1 : oscillateur à pont de Wien.

On donne : R=330 , C = 10 nF, R1 = 100 .

Un tel montage est constitué :

 d’une chaîne directe amplificatrice de fonction de transfert K, composée d’un amplificateur opérationnel et des résistances R1 et R2

 d’une chaîne de retour, de fonction de transfert H (j), qui joue le rôle de filtre (passe- bande), cette chaîne étant composée d’un filtre RC du second ordre.

Un montage oscillateur peut être vu comme un asservissement instable (vu comme un montage à contre-réaction) ne comportant pas de consigne (e = 0), puisque le montage doit osciller quelle que soit l’entrée. Afin d’utiliser les outils vus en asservissement, nous allons nous ramener au schéma suivant :

Figure 2 : schéma équivalent d’un oscillateur.

C

C R

R

R1 R2

u Vs

e

= 0 -K Vs

u H ( j )

(4)

Mis sous cette forme, on peut aisément comprendre pourquoi un tel montage peut être utilisé comme oscillateur. En effet, nous avons vu en asservissement que sous certaines conditions, les montages peuvent être instables, c’est à dire oscillants. Il suffit donc de se placer dans de telles conditions, pouvant être étudiées par exemple à l’aide du critère de Nyquist.

1. Déterminer la fonction de transfert H(j) = u /Vs de la chaîne de retour.

2. Déterminer le gain de la chaîne directe K = Vs/u

Afin de travailler sur un asservissement à retour unitaire, nous allons raisonner sur la grandeur de sortie u. La fonction de transfert en boucle ouverte est alors : FTBO (j) = - K  H(j).

déduire la condition sur les résistances R1 et R2 pour avoir oscillation, et la fréquence des oscillations.

3. En appliquant la condition de Barkhausen, trouver la pulsation du signal oscillant correspondant.

Exercice 2 : Résistance négative cf devoir à la maison.

(5)

II . Oscillateurs à relaxation Exercice 1 : astable

v s

- +

R

R

1

2

R

3

C e

Figure 2

L'amplificateur est alimenté sous –15 V et +15 V. On a, par ailleurs :

R1 = R3 =10 k

R2 = 1 k

1) Préciser les valeurs de Vs(t) et V+(t) suivant le signe de e(t) . 2) Expliquer le fonctionnement du dispositif.

3) En déduire que la période du signal Vs(t) est : T=2R1C⋅ln

(

1+2RR32

)

4) Que faudrait-il modifier dans le montage ci-contre pour obtenir un signal à créneaux dissymétriques ?

(6)

Exercice 2 : Oscillateur à intégrateur pur

Fig. 3 Circuit astable

On supposera que l’on a les conditions initiales suivantes : condensateur déchargé et tension V1 positive.

1. L’AO2 fonctionne-t-il en régime linéaire ou non-linéaire ? Justifier.

2. Quelle est la fonction du montage réalisé par l’AO2, R et C ? 3. Justifier que la tension V1 vaut initialement +Vsat.

4. Quel est le rôle du montage concernant l’AO1 ? 5. Ecrire la relation entre la tension V1, V1 et V2.

6. Quel est le signe de la tension V1 à t = 0+ ?A quelle condition sur V1la tension de sortie basculera à –Vsat ?

7. Ecrire l’équation différentielle satisfaite par la tension uC en fonction, entre autre, de la tension V1.

8. En tenant compte des conditions initiales, en déduire l’expression temporelle de la tension uC, puis celle de la tension V2 (en justifiant).

On impose au système la condition supplémentaire suivante : R1=R2=R, hypothèse que l’on prendra jusqu’à la fin de l’exercice.

9. Que devient, sous cette condition, l’expression de V2 ?

10. Représenter les allures des tensions suivantes : uC, V2, V1 , V1et 1V1V1 (avec l’hypothèse précédente)

11. Déduire des questions précédentes le temps t1 pour lequel le système bascule vers un autre état.

12. Quelles sont les nouvelles conditions initiales en t = t1+ pour les tensions suivantes : uC, V2, V1 , V1et 1V1V1 ?

13. Montrer alors, par une étude analogue, que le système basculera au bout d’un temps RC

t 2

(On pourra s’aider des graphes de la question III.2.6 que l’on compètera).

14. En déduire l’expression de la fréquence du signal créneau généré par ce dispositif, en fonction de RC.

15. Proposer des valeurs raisonnables pour R et C afin d’obtenir une fréquence voisine de 1 kHz.

Références

Documents relatifs

Dans tous les cas, on indique le nombre et la nature des ligands dans le complexe puis l’atome ou l’ion central (la nomenclature varie à ce niveau selon la charge du complexe), puis

 Définir les termes suivants : pH, constante d’acidité, produit ionique de l’eau, diagramme de prédominance, diagramme de distribution des espèces, acide fort / acide faible,

 Lors du choix des variables intensité de chaque branche d'un réseau électrique, il faut tenir compte tout de suite de la loi des nœuds pour limiter le nombre de variables?.

On désire projeter l'image d'un petit objet AB sur un écran E, parallèle à AB. Pour ce faire, on utilise une lentille mince convergente de centre O et de distance focale f’ >

On cherche, par un calcul direct, le potentiel créé dans tout l'espace par une sphère de centre O et de rayon R uniformément chargée en surface avec une charge surfacique σ. Calculer

5. A l’équilibre, le poids du bouchon est compensé par la poussée d’Archimède donc :.. DEUXIEME PROBLEME : UTILISATION DE SOLENOIDES Première partie : Champ magnétique créé par

4°) En déduire, en appliquant les lois de composition des vitesses et des accélérations, les vecteurs vitesse et accélération de A par rapport à R, exprimés dans la base de R’.

Quel lien existe-t-il entre le courant électromoteur d'une source de courant (représentation de Norton) et l'intensité du courant de court-circuit de la source équivalente dans