• Aucun résultat trouvé

The contribution of the lesion approach to the neuroscience of creative cognition

N/A
N/A
Protected

Academic year: 2021

Partager "The contribution of the lesion approach to the neuroscience of creative cognition"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: hal-02271207

https://hal.sorbonne-universite.fr/hal-02271207

Submitted on 26 Aug 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

The contribution of the lesion approach to the

neuroscience of creative cognition

Marcela Ovando-Tellez, Theophile Bieth, Matthieu Bernard, Emmanuelle

Volle

To cite this version:

Marcela Ovando-Tellez, Theophile Bieth, Matthieu Bernard, Emmanuelle Volle. The contribution of

the lesion approach to the neuroscience of creative cognition. Current Opinion in Behavioral Sciences,

Elsevier, 2019, 27, pp.100-108. �10.1016/j.cobeha.2018.10.011�. �hal-02271207�

(2)

The

contribution

of

the

lesion

approach

to

the

neuroscience

of

creative

cognition

Marcela

P

Ovando-Tellez

1

,

Theophile

Bieth

1

,

Matthieu

Bernard

and

Emmanuelle

Volle

Psychologicalandrecentneuroimagingfindingsindicatethat creativityreliesonabalancebetweenassociativethinkinglikely supportedbythedefaultmodenetworkandcognitivecontrol processessustainedbycontrol-relatednetworksincluding frontoparietalregions.Exploringpatientswithbrainlesions allowstestingthismodelandascertainingamorecausallink betweencreativeprocessesandbrainsystems.Resultsfrom thelesionapproachprovideargumentsforthecriticalroleof thedefaultmodenetworkandthefrontoparietalcontrol networkforassociativeandcontrolledprocesses,respectively, andidentifycriticalnodeswithinthesenetworks.Thefewlesion studiesthathavebeenperformedalsosuggestafunctional specializationofseveralprefrontalregionsfordistinctcreative processes.Inthecurrentreview,weintegratetheresultsof lesionstudieswiththefindingsemergingfrombothrecent functionalimagingandnon-invasivebrainstimulationstudies, inanattempttobetterunderstandthecognitiveandbrain mechanismsofcreativityorthepotentialwaystoimprovethis knowledge.

Address

FRONTLAB,Institutducerveauetlamoelle(ICM)–SorbonneUniversite´, INSERM,CNRSHoˆpitalPitie´ Salpeˆtrie`re,47,bddel’hoˆpital,F-75013, Paris,France

Correspondingauthor:Volle,Emmanuelle(emmavolle@gmail.com)

1

Theseauthorsequallycontributedtothereview.

Introduction

Acreativeproductioncanbeviewedbothastheresultof high-level control functions or top-down processes (includinginhibitorycontrol)andastheresultofa relax-ationofone’sconstraintsorinhibitions,possiblyfavoring spontaneous associative thinking and bottom-up pro-cesses. These two views make opposite predictions regarding the role of the prefrontal cortex (PFC), that support controlled functions, in creativity. Recent

cognitive modelstry to conciliate theseviews and con-siderspontaneousassociativeandcontrolledprocessesas complementary rather than paradoxical in the creative process[1–5].Withthedevelopmentofnetwork neuro-sciencebasedonfunctionalconnectivity,the neuroimag-ingofcreativecognitioninhealthysubjectshavestarted toclarifythemultiplebrainsystemsinvolvedin associa-tiveandcontrolledcreativeprocesses,andtospecifythe placeofthePFCinthesesystems. Thelesionapproach may be especially useful in complementing functional imaging toward a better understanding of the cerebral substrateofcreativity,byidentifyingcriticalnodesinthe diversityofbrain networksreportedin functional imag-ing, and precising their specific role in the creativity processes[6].Surprisingly,very fewlesion studieshave investigatedcreativeabilitiesinbrain damagedpatients [7–14,15,16,17,18](Table1).Focusingonthe neurosci-entific literature of creativity, especially coming from patients, this review will explore not only whether the PFCiscriticalforcreativeabilities,butmoreimportantly whatprefrontal systems are necessaryfor associative or controlledcreativeprocesses.

Recent

cognitive

and

neuroimaging

findings

Thecognitiveneuroscienceof creativityprovides abun-dantexperimentalevidenceoftheimportantroleof PFC-dependentcognitive control functions in creative abili-ties. These functions include inhibition of prepotent responses[19–21],controlledretrieval[22–24]and work-ing memory [25,26]. Neuroimaging data using task-relatedactivationandfunctionalconnectivityin healthy subjects are consistent with this view. Several meta-analysesofcreativity-relatedactivationstudieshave reli-ablyshown thatlateralfrontalandparietalareasarethe mostrecruitedset ofregionsin creativitytasks [27–29]. Functional connectivity analyses have highlighted the importance of the control-related networks including the frontoparietal network in creativity [30,31]. The lateralPFCregionmaybeespecially recruitedfor inhi-bition of dominant responses [20], controlled retrieval [23,24],andselectionorevaluationprocesses[32].

Aside from the deliberate control processes, creative thinkingalsoinvolvesmorespontaneousassociative pro-cesses.Theroleof associativethinkingabilitiesin crea-tivity may rely on the organization of associations between elements of one’s semantic knowledge that determinesthe abilityto generateand combineremote

(3)

Table 1

Patient group studies on creative cognition in adults. The table includes studies in patients that related creative abilities to an anatomical location of a lesion or neurodegenerative impairment. Case reports already described in a previous review [60] are not included

Study Task Region Network Effect

Group studies of focal lesions

Reverberi et al. [7]a Match stick problem-solving Lateral PFC versus controls N.A. " correct responses (type C)

‘Pure’ medial PFC versus controls and versus lateral PFC N.A. # correct responses (type A) Shamay-Tsoory et al. [10]b TTCT and AUT mPFC versus controls and versus parietotemporal patients N.A. # total score & originality

mPFC+IFG versus controls and versus parietotemporal patients

N.A. # total score & originality

Right mPFC region N.A. # originality with " lesion size

Left parietotemporal patients N.A. " originality with " lesion size Identified a subgroup of patients with mainly left

parietotemporal or IFG lesions with higher originality index

N.A. " originality

Abraham et al. [11]c AUT Lateral PFC versus controls N.A. # originality, fluency

Imagery task Lateral PFC versus controls N.A. # practicality

Imagery task Temporoparietal patients versus controls N.A. # practicality

CET Temporoparietal patients versus controls N.A. More constrained

Concept expansion Tested but no significant lesion location N.A.

RAT Tested but no significant lesion location N.A.

Duff et al. [12] TTCT Hippocampal damage versus controls N.A. # originality, fluency, flexibility & elaboration Ghacibeh et al. [13] TTCT Left versus right anterior temporal lobectomy N.A. No difference between left & right

lobectomy (no control group)

Warren et al. [15] RAT Hippocampal damage versus controls N.A. # correct responses

VSLM and disconnection-deficit mapping on focal lesions

Bendetowicz et al. [17] RAT-like Left rostrolateral PFC, FMT, ATR, FSP Left FPCN # remote associates combination Word-association task Right rostromedial PFC, Cingulate tract DMN # remote word associations Group studies on neurodegenerative diseases

Rankin et al. [8]d Figural TTCT FTD versus controls N.A. # resistance to premature closure

SD versus controls N.A. # fluency, originality, elaboration & resistance to premature closure

De Souza et al. [9] TTCT FTD versus controls N.A. # originality, fluency, flexibility

FTD versus Parkinson patients N.A. # originality, fluency, flexibility VBM-like analysis on SPECT data identified the rostral PFC,

posterior parietal and laterotemporal regions

N.A. Integrity of these regions correlated with TTCT scores

Canesi et al. [16] ATTA PSP versus controls, versus Parkinson patients and versus MSA patients

N.A. # originality, fluency, flexibility, elaboration

ATR: anterior thalamic radiations; ATTA: abbreviated Torrance test for adults; AUT: alternative uses test; CET: constraints of examples task; DMN: default mode network; FMT: frontomarginal tract; FPCN: frontoparietal control network; FTD: frontotemporal dementia, that is, frontal variant of frontotemporal lobar degeneration characterized by predominantly frontal atrophy; FSP: frontostriatal projections; IFG: inferior frontal gyrus; mPFC: medial prefrontal cortex; PFC: prefrontal cortex; MSA: multiple system atrophy characterized by subcortical and cortical damage in several lobes; PSP: Progressive supranuclear palsy characterized by atrophy in frontal cortex, basal ganglia, and midbrain; RAT: remote associates task; SD: semantic dementia, that is, temporal variant of frontotemporal lobar degeneration characterized by predominantly temporal atrophy; TTCT: Torrance test of creativity thinking; VBM: voxel-based morphometry; VSLM: voxel-based lesion-symptom mapping analysis.

a‘Pure’ medial PFC refers to the subset of the medial group that had pure medial or orbitofrontal damage. Performance of the whole group of patients in the different problem types with

predominantly medial PFC lesions did not differ significantly from lateral PFC and control groups.

b

In this study, the comparison between the IFG group and controls or parietal patients was not significant. The IFG group had higher performance than the mPFC group in the AUT task.

c

Only significant results reported at a p value<0.05 are included in the table. This study also tested patients with basal ganglia lesions, but their performance was not significantly different from controls at p< 0.05.

(4)

associations[33].Insupportofthistheory,psychological studieshaveshownthatmorecreativepeoplehavemore flexiblesemanticassociations,allowing themtoconnect more distant concepts or words [34–36,37,38,39,40]. Althoughthecerebralsubstratesofassociativeprocessing arenotelucidated, recentevidencesupportstherole of thedefaultmodenetwork(DMN)inunconstrained asso-ciativethinking [40] and more broadly in spontaneous cognition [41] including mind wandering [42,43] and contextualassociations[44].Severalstudieshaveshown that the morphometry and functional connectivity of DMN regionscorrelate with creative performance [45– 51].Consistentwith therole ofsemanticassociationsin creativity,semanticmemoryregionsarealsoimportantfor creative abilities[11,27,28]and have both overlaps and functionalinteractionswiththeDMNthatremaintobe clarified[20,52,53].

Overall, the cognitive neuroscience of creativity now considersthatcreativeabilitiesresultfromaninteraction orabalancebetweenassociativeandcontrolledprocesses [1–5]. Recent functional connectivity studies strongly support this viewby demonstrating that two main net-worksinteractduringcreativitytasks:alateral frontopar-ietalcontrolnetwork(FPCN),knowntosupportcontrol functions,andtheDMN,thathasbeen relatedto asso-ciative thinking and spontaneous cognition [31,32,54,55].The interactionbetweenthesesystems might be mediatedby theSalience network [30] or by regionsofthesenetworksactingasconnectorhubs.The identificationof largescalenetworksthatinvolve differ-entpartsofthePFCisanimportantstepinunderstanding thecerebralbasisforcreativityandoffersnewpredictions regardingwhichcreativitymechanismscanbeimpacted byspecificlesionlocations.

Critical

role

of

the

DMN

and

FPCN

for

creativity

(

Table

1

)

ToexplorewhethertheDMNandFPCNarecriticalfor creative processes, Bendetowicz et al. [17] performed a lesionstudyonpatientswithsinglefocalfrontallesions. To assess creative abilities,the authors used the Com-bined Association Task, an adaptation of Mednick’s RemoteAssociatesTask(RAT),inwhichthreeunrelated cuewordsarepresented,andthesubjecthastoprovidea solution word related to all three cue words. Because Mednick’stheorypredictsthatassociativeprocessesare requiredduring RAT-like tasks, thesame patients per-formed a simple word-to-word association task. In this task, patients were instructed to provide the first word thatcametomindinresponsetoagivencuewordandan unusual associate of the same cue word. The results showed that damage to the left FPCN impaired the performance on the RAT-like task, while damage to theDMNimpairedtheabilitytogenerateunusualword associations. Hence, these results confirm recent

functional connectivity findings [30,31] by showing thecrucialroleof bothDMNandFPCN increativity.

Thecriticalrole of theDMNin creativity isconsistent withpreviouslesionstudiesthatshowedadeficitinboth RAT[15]anddivergentthinking[12]tasks inpatients withdamagetothehippocampus,aDMN-relatedregion. A rostromedial PFC damage, another region that is thoughttobelongtotheDMN,hasbeenassociatedwith adivergentthinkingimpairmentinShamay-Tsooryetal.’ sstudy[10],whichhighlighteddifficultiesin generating originalideasinthesepatients.However,thisresultwas not replicated by Abraham et al., who did not observe significantdeficitsin divergentthinking in polarand/or orbitofrontal patients [11]. A medial PFC lesion also appearstoimpactmindwandering[56],amentalactivity shown to be related to creativity abilities. In line with lesion studies, direct brain stimulation studies using transcranial direct-current stimulation (tDCS) have shown that stimulating themedial PFC could improve theremotenessof wordassociations duringa word-gen-erationtaskincertain conditions[57,58],and inhibiting this region could also decrease mind wandering [59]. According to Bendetowicz et al. [17], the DMN, and especially itsmedial PFC regions, maybe criticalfor a particular thinking type or mode characterized by a spontaneous and associative spread of thoughts that is essential in RAT-like tasks. Voxel-based lesion deficit mappinganalyses revealed that when a lesion affected the rostromedial prefrontal region, patients produced morecommonortypicalwordassociates,withorwithout the instruction to think unusually, which is consistent witha‘rigidity’insemanticassociations,andmayexplain thatthesepatientsalsohadpoorcreativityperformance. The ‘rigidity’ of semantic associations that may results from aDMN lesion impacts the generation of unusual associations,whichimpairsremotethinkinginboth con-vergentanddivergenttasks.Thisinterpretationsupports Mednick’shypothesis,onlytestedpreviouslyin healthy subjects.The organization of semanticassociations also likelyrelatesto semanticmemory thathas beenshown criticalfordivergentthinking[8;butseeRef.13]. How-ever,therelationshipsbetweentheDMNandsemantic memory networkfor associative thinking remainsto be clarified.

ThecriticalroleoftheFPCNhasbeenshowninseveral patientstudies.Inpatientswithafrontal neurodegenera-tive disease, De Souza et al. [9]showed that divergent thinking scores correlated with atrophy in prefrontal, temporal, and parietal regions that overlap with the FPCN.Rankin etal. [8,see alsoRef. 16]reported that both frontal and temporal neurodegenerative diseases affecteddivergentthinking.Inpatientswithfocallesions, aleftrostrolateral PFClesion hasbeenassociated with decreased performance on RAT-like tasks [17]. More caudal lateral PFC lesions as explored by Abraham

(5)

et al. [11] were associated with decreased fluency and originalityof ideasproducedindivergentthinkingtasks andtemporoparietallesionswithanincreasedfixationon examples.Bothlateralfrontalandtemporoparietallesions impacteddivergentthinkingtasksandacreativeimagery task[11].Thesedatasuggest thatseveralregionsofthe FPCN are essential to various creativity tasks. On the contrary,otherfindingssuggestedanincreasedoriginality of ideasafteraleftposteriorparietotemporallesion,and possiblyaleftinferiorfrontallesion[10,seealsoRef.14], and better problem solving abilities aftera lateral PFC lesion [7]. A few patient reports have described the emergence or improvement of creative artistic abilities after a frontotemporal disease ([60,61] for reviews). Hence, patientstudiesprovide inconsistent conclusions regarding the critical role of frontoparietal regions in creativity.Similarly,non-invasivebrainstimulation stud-iestargetingtheleftlateralprefrontalcortexhaveshown divergenteffectsoncreativeperformance:bothcathodal [62,63,64] andanodal[65–68]tDCS of theleftlateral PFC,aimingtosuppressorelicittheactivityofthisregion respectively, have been reported to increase creative abilities. Overall, the few lesion and brain stimulation studiesthathavebeenconductedconfirmtheimportance of FPCN regionsfor creativity,but some ofthem chal-lenge theroleof theleftlateral PFC.Thisdiscrepancy maybeexplainedbythecombinationof:firstly,alackof precisionregardingtheexactlocationof lesions/stimula-tion and the networks impacted by them, secondly, a functional heterogeneity of prefrontal regionsregarding creativity processes and thirdly, differences in the pro-cesses most required by the creativity tasks that have been used.

Specialization

of

the

lateral

PFC

for

distinct

creative

mechanisms

(

Figure

2

)

The PFC appearsto be themostconsistentlyexplored and/or reported regionin lesion (and brain stimulation) studies,whichmayallowtoexaminewhetherafunctional PFC organization for creativity canemerge. It is likely thatpatientandbrainstimulationstudieslackanatomical precision and targetdistinctareasof thePFCwithinor outside the FPCN. Except for Bendetowicz et al. [17], lesion studies on creativity did not use voxel-based methods to specify the locationof thecritical area and did not analyze which networks were affected by the lesion. By using these approaches [69], Bendetowicz et al. [17] were ableto identify aspecific area that was critical for verbal creativity,and clarifiedto which net-worksitwasconnected.IntheleftFPCN,the rostrolat-eral PFC region and its connections were critical for solvingRAT-likeproblems(Figure1).Yet,patientswith a lesion in this region did not have any difficulties generating close or remote word associates, indicating that the left rostrolateral PFC plays a critical role in RAT-liketasks byaffecting controlrather than associa-tiveprocesses.ThepivotalroleoftherostrolateralPFCin

RAT-liketasksparallelsmorphometryfindingsinhealthy subjects,showingthatthevolumeoftheleftrostrolateral PFCwasassociatedwithbetterperformanceinsuchtask [70]. In addition, a meta-analysis of functional MRI studies showedthat tasks involving thecombination of remoteelementsactivatedtheleftrostrolateralPFCmore than other creativity tasks [27]. Combined with the established of the left rostrolateral PFC in relational integrationandmultitasking,andconsistentwiththelink between theRAT and relational reasoning[71–74,75], these data suggest that the role of this region is to integratetherelationshipsbetweenseveralpairsofwords duringRATtrials,possiblybycoordinatingorbranching theassociative andcontrolledprocessing.

In posteriorareas, afunctional specializationof distinct prefrontal subregionsorFPCN subregionsforcreativity processeshasbeenproposed[24](Figure2).Forinstance, ventralanddorsalprefrontalregionsareproposedtoplay a role in the generative versus evaluative steps of the creativeprocess,respectively.Althoughfunctional imag-ing studies have highlighted the key role of the left inferior frontal gyrus in creativity [20,23,27,40,76,77], several studies suggested that idea generation may improvewhensuppressingitsactivity.Brainstimulation studiesthattargetedtheleftinferiorfrontalgyrusshowed thatinhibitingthisregionimprovedideagenerationina divergentthinkingtask[62,64,78,79],especiallyifitwas

Figure1

Lesion method

fMRI method VBM method

ConvergingresultsontheroleoftheleftrostrolateralPFCincreativity. Onabrainsurfacerenderingisdisplayedtheoverlapofthecritical lesionlocationforRAT-likeperformanceinpatients(red;[17]),a morphometrymapofbrainregionswhichstructurecorrelatedwith RAT-likeperformanceinhealthysubjects(green;[70])andresultsfrom ameta-analysisoffunctionalimagingstudyshowingtheregionsthat weremorerecruitedincombinationtasksrelativetofreegeneration tasks(yellow;[27]).

(6)

combined with a right inferior frontal stimulation, and suggested that the activity of the ventrolateral PFC is deleterioustotheideageneration step.One hypothesis thathasbeenput forwardisthatsomeofthecontrolled processessupported bythe PFCN are impaired aftera left ventrolateral PFC damage, releasing spontaneous associativeprocessingandspontaneousflexibility. Relax-ingthe control onassociative thinkingmay benefitthe generationoforiginalideasinsometasksandconditions [67,68].However,thisexplanationquestionsthenatureof the interaction between left inferior frontal gyrus and DMN which functional connectivity has been demon-stratedtoincreaseduringideagenerationandtocorrelate with creative abilities [31,76,77]. Alternatively, decreasing left lateral prefrontal activity may unfilter and increase the availability of bottom-up perceptual information processed in posterior occipitotemporal regions, which might be explained by theparticipation oflateralPFCsubregionsinothernetworksincludingthe attentional networks [2,54,62]. Another hypothesis that hasbeenproposedtoexplaintheimprovementofcertain

problemsolvingabilitiesafterdamage[7]orbrain inhibi-torystimulation[63]of theleftlateral PFCisthatthis regionplays a rolein sculpting the responsespacein a givensituation,resultinginconstrainingthefieldofideas directlyavailable.AlteringthefunctionofthelateralPFC mayreleasethis constrainingroleof thecontext.

Althoughaconstrainingroleoftheleftinferiorfrontalgyrus maybeconsistentwithitscriticalroleincontextualcontrol [80],itsnegativeinfluenceonideagenerationmayseemto contradictaseriesof studiesthathavedemonstratedthe roleof thisregion in the controlled retrievalof memory [23,53,81–83]. Specifically, patients withleft inferior frontal lesionwereshowntobeimpairedinretrievingdistantword associates,suggestinganimpairmentingeneratingunusual associationsorideas[84].Thepotentiallimitingroleofthe lateralPFCinideagenerationandoriginalityalsoremains difficulttoreconcilewithpatientstudiesthatshowedthe crucialroleoftheinferiorPFCininhibitionofdominant responses[85–87].Todate,twomainhypothesesof pre-frontalorganisationhavebeen proposedto reconcilethe

Figure2

Creativity

Associative

thinking

DMN and MemN

Controlled

processes

FPCN and SalN

Spontaneous semantic associations

- Search constraint / contextual control - Inhibition of spontaneous flexibility

- Inhibition of prepotent ideas (right?) - Controlled retrieval and selection (left?)

- Filtering of bottom up information* Combination of remote elements / relational integration

Tentativesummaryofthefindingsoflesionstudies.Theschemarepresentsthereportedeffectofbrainlesions,whichdecreased(plainarrows)or increased(emptyarrow)creativeperformance,andproposeshypotheticalprocessesthat,whenaffected,canexplaintheseeffects.Pleasenote thatthisschemaisnecessarilysimplisticanddoesnotdepictallpossiblemechanismsandnetworkdamagesbywhichbrainlesionscould theoreticallyimpactcreativity.*theexactlocationoflateralprefrontallesions(ventraland/ordorsal)andnetworkdisruption(FPCN,salienceor attentionalnetworks)thatmayfavorcreativeperformanceareunclear.DMN:defaultmodenetwork;FPCN:frontoparietalcontrolnetwork;MemN: semanticandepisodicmemorynetworks;SalN:saliencenetwork.

(7)

beneficial and deleterious effects of caudal prefrontal lesions/brainstimulationoncreativity.Thefirstone con-siders that ventral and dorsal caudalPFC regions have opposite rolesin the generativeand evaluative stepsof divergentthinking.TheactivityoftheventrolateralPFC maybedeleterioustothegenerationstepthatrequiresless controlprocesses[32,64],whileotherprefrontalregions areimportant forthemorecontrolledevaluationstep[67]or fortheinhibitionofconstraints[20].Thesecondoneisto considerabalancebetweenleft andrightventrolateralPFC rather than the role of each region separately [78]. For instance, the left and rightventrolateralPFC mayhave specificroles,inconstrainingthesearchaccordingtothe contextandinhibitingtheinappropriateorlessinteresting responses,respectively.Overall,the specializationofthe caudalPFCforcreativityprocessesaccordingtoan inferior-superiororaleft-rightaxisremainstobetested(Figure2).

Finally,apotentialfactorinfluencingthereportedresultsis thatdifferentcreativitytasksrequire adifferentbalance betweenassociativeandcontrolledprocesses,sothat alter-ingcontrolledprocessesmayormaynotimpactagiventask [67].ExistingtDCSstudiesmaysupportthisexplanation. Infact,toourknowledge,alltDCSstudiestargetingtheleft lateral PFC with anodal stimulation showed improved performance in RAT tasks [65,88,89].All tDCS studies targetingthesame regionwithcathodalstimulationshowed an improvement of divergent thinking tasks [62,64,78,79].Onlyonestudyshowedanimprovement of divergentthinkingafteranodalstimulationoftheleft dorsolateral PFC, but it was conditioned by a priming instruction to think divergently [66], which may have involvedmorecontrolledprocessesthandivergent think-ingtasksusuallyrequire.Thesedatasuggestthat original-ityindivergentthinkingtasksmaydependmoreon spon-taneousassociationscomputedbytheDMNwhile RAT-liketasks additionallyrequirethelateralPFC, likelyfor controlledprocesses.Problemsolvingtasksvaryaccording tocontroldemands[63].Therelianceoncontrolled pro-cessestosolvethedifferentcreativitytaskmayshapethe performanceobservedafteraprefrontallesion.

Hence,thespecificroleofdistinctprefrontalsubregionsin creativityprocessesremains tobeclarifiedandintegrated withfindingsfromotherfieldsofcognitiveneurosciences. Although thelesionapproachmaybe especiallyusefulto address this question, the conclusions that canbe drawnfrom existing patient studies are limited by the fact that they rarely consideredthefunctionalandconnectivepropertiesofthe damagedareasandexploredarelatively smallnumber of patients.Preciselydefiningthelesionlocationanatomically isthusessentialinfuturestudiesascloseregionsinfrontal, temporalandparietallobesarefunctionallyheretogeneous andmaybelongtodistinctnetworks,includingtheFPCN, DMNbutalsosalienceandattentionalnetworks[90].The useofvoxel-basedlesionmethodswithlargersamplesize couldimprovetheanatomicalresolutionofbrain–behavior

correlations,andismorecomparabletofunctionalimaging findings.Inaddition,connectivityapproachesinpatientsare neededtoidentifythenetworksthatareanatomicallyand functionally impacted by the lesion [69] (or the brain intervention[91]).Newanatomicalandfunctional connec-tivity methods integrating network-based and lesion approaches in patients are promising avenues for future research on creativity[92]. Such approachesmayhelp to clarifyhowdistinctnetworksandtheirinteractionssupport distinctcreativitymechanisms,toidentifythecriticalhubs allowingtheseinteractions,and,forinstance,todisentangle therole ofdefaultmode,semantic,attention,andcontrol networksincreativity.

Conclusions

Patientstudiescanprovideimportantinformationtothe neuroscienceofcreativitybyidentifyingthecritical net-works and pivotal nodes withinthe networks.The few lesion studiesthathavebeenperformedconfirmed that the integrity of both the DMN and the left FPCN is important for creative performance. In agreement with predictions fromfunctionalimaginginhealthysubjects, theDMNappearscriticalforassociative processingand theFPCNforcontrolledprocesses. Brainlesions affect-ingsomeregionsoftheleftcontrol-relatednetworkmay imbalance the associative and controlled processes involved in creative thinking,affecting creative perfor-mance differently depending on which process is the mostrequiredbythetask.Thelesionapproachalsohelps to clarify the functional organization of the PFC for distinct creativeprocesses,showingamedial-lateral dis-sociationinrostralPFCfor associativeversuscontrolled processes, andsuggesting arostrocaudal lateral speciali-zation fordistinctcontrolled processes.

Thecontributionoflesionstudiestotheneuroscienceof creativitycouldbeenhancedinthefuturebycombining different measures of creativity with anatomical and functionalconnectivitymethodstoidentifythenetworks impactedbythelesion.

Conflict

of

interest

statement

Nothingdeclared.

Acknowledgements

EmmanuelleVolleissupportedbyFRMgrantDEQ20150331725and program‘Investissementsd’avenir’ANR-10-IAIHU-06.MarcelaOvando TellezissupportedbyaCONICYTfunding.TheophileBiethwas supportedbyafundingfrom‘Journe´esdeneurologiedelanguefranc¸aise’.

References

and

recommended

reading

Papersofparticularinterest,publishedwithintheperiodofreview, havebeenhighlightedas:

 ofspecialinterest ofoutstandinginterest

1. BeatyRE,SilviaPJ,NusbaumEC,JaukE,BenedekM:Theroles ofassociativeandexecutiveprocessesincreativecognition. MemCognit2014,42:1186-1197.

(8)

2. ChrysikouEG,WeberMJ,Thompson-SchillSL:Amatchedfilter hypothesisforcognitivecontrol.Neuropsychologia2014, 62:341-355.

3. JungRE:Evolution,creativity,intelligence,andmadness: “herebedragons”.FrontPsychol2014,5.

4. VolleE:Associativeandcontrolledcognitionindivergent thinking:theoretical,experimental,neuroimagingevidence, andnewdirections.In TheCambridgeHandbookofthe NeuroscienceofCreativity.EditedbyJungRE,VartanianO.2017.

5. BenedekM,JaukE:Spontaneousandcontrolledprocessesin creativecognition.OxfHandbSpontaneousThought.2018

http://dx.doi.org/10.1093/oxfordhb/9780190464745.013.22. 6. VolleE,LevyR,BurgessPW:Aneweraforlesion-behavior

mappingofprefrontalfunctions.In PrinciplesofFrontalLobe Function.EditedbyStussDT,KnightRT.USA:OxfordUniversity Press;2013:500-523.

7. ReverberiC,ToraldoA,D’AgostiniS,SkrapM:Betterwithout (lateral)frontalcortex?Insightproblemssolvedbyfrontal patients.Brain2005,128:2882-2890.

8. RankinKP,LiuAA,HowardS,SlamaH,HouCE,ShusterK, MillerBL:Acase-controlledstudyofalteredvisualart productioninAlzheimer’sandFTLD.CognBehavNeurol2007, 20:48-61.

9. deSouzaLC,VolleE,BertouxM,CzerneckiV,FunkiewiezA, AllaliG,LeroyB,SarazinM,HabertM-O,DuboisBetal.:Poor creativityinfrontotemporaldementia:awindowintothe neuralbasesofthecreativemind.Neuropsychologia2010, 48:3733-3742.

10. Shamay-TsoorySG,AdlerN,Aharon-PeretzJ,PerryD, MayselessN:Theoriginsoforiginality:theneuralbasesof creativethinkingandoriginality.Neuropsychologia2011, 49:178-185.

11. AbrahamA,BeudtS,OttDVM,YvesvonCramonD:Creative cognitionandthebrain:dissociationsbetweenfrontal, parietal–temporalandbasalgangliagroups.BrainRes2012, 1482:55-70.

12. DuffMC,KurczekJ,RubinR,CohenNJ,TranelD:Hippocampal amnesiadisruptscreativethinking:creativethinkingandthe hippocampus.Hippocampus2013,23:1143-1149.

13. GhacibehGA,HeilmanKM:Creativeinnovationwithtemporal lobeepilepsyandlobectomy.JNeurolSci2013,324:45-48.

14. MayselessN,Aharon-PeretzJ,Shamay-TsooryS:Unleashing creativity:theroleoflefttemporoparietalregionsinevaluating andinhibitingthegenerationofcreativeideas.

Neuropsychologia2014,64:157-168.

15.

 Warrendefinite,DE,andKurczekclothing?J,DuffAnarticleMC:Whatdescribingrelatesnewspaper,deficitsin convergentproblemsolvingandcreativityfollowing hippocampaldamage:hippocampaldamageimpairs convergentproblemsolving.Hippocampus2016,26:835-840.

Thislesionstudyprovidesthefirstevidenceofthecriticalroleofthe hippocampusincreativeproblemsolvingusingtheremoteassociates taskinpatientswithmedialtemporallobedamage.

16. CanesiM,RusconiML,CeredaE,RanghettiA,CeredaV,MoroniF, PezzoliG:DivergentthinkinginParkinsonism:acase–control study.FrontNeurol2017,8.

17. BendetowiczD,UrbanskiM,GarcinB,FoulonC,LevyR, Bre´chemierM-L,RossoC,ThiebautdeSchottenM,VolleE:Two criticalbrainnetworksforgenerationandcombinationof remoteassociations.Brain2018,141:217-233.

18.

 traumaticRigonA,ReberbrainJ,injury:PatelanNN,investigationDuffMC:Convergentofperformancethinkingonandthe remoteassociatetest.BrainInj2018,32:1110-1114.

Thisstudyindicatesthatmoderatetoseveretraumaticbraininjuryhasan impact on convergent problem solving assessed using the remote associatetask.

19. EdlS,BenedekM,PapousekI,WeissEM,FinkA:Creativityand theStroopinterferenceeffect.PersonalIndividDiffer2014, 69:38-42.

20. BeatyRE,ChristensenAP,BenedekM,SilviaPJ,SchacterDL: Creativeconstraints:brainactivityandnetworkdynamics underlyingsemanticinterferenceduringideaproduction. NeuroImage2017,148:189-196.

21. CamardaA,BorstG,Agogue´ M,HabibM,WeilB,Houde´ O, CassottiM:Doweneedinhibitorycontroltobecreative? Evidencefromadual-taskparadigm.PsycholAesthetCreatArts 2018,12:351-358.

22. BenedekM,JaukE,FinkA,KoschutnigK,ReishoferG,EbnerF, NeubauerAC:Tocreateortorecall?Neuralmechanisms underlyingthegenerationofcreativenewideas.NeuroImage 2014,88:125-133.

23. MadoreKP,ThakralPP,BeatyRE,AddisDR,SchacterDL:Neural Mechanismsofepisodicretrievalsupportdivergentcreative thinking.CerebCortex2017:1-17http://dx.doi.org/10.1093/ cercor/bhx312.

24. BenedekM:Theneuroscienceofcreativeideageneration.In ExploringTransdisciplinarityinArtandSciences.Editedby KapoulaZ,VolleE,RenoultJ,AndreattaM.SpringerInternational Publishing;2018:31-48.

25. VartanianO,JobidonM-E,BouakF,NakashimaA,SmithI,LamQ, CheungB:Workingmemorytrainingisassociatedwithlower prefrontalcortexactivationinadivergentthinkingtask. Neuroscience2013,236:186-194.

26. LeeCS,TherriaultDJ:Thecognitiveunderpinningsofcreative thought:alatentvariableanalysisexploringtherolesof intelligenceandworkingmemoryinthreecreativethinking processes.Intelligence2013,41:306-320.

27. Gonen-YaacoviG,deSouzaLC,LevyR,UrbanskiM,JosseG, VolleE:Rostralandcaudalprefrontalcontributiontocreativity: ameta-analysisoffunctionalimagingdata.FrontHumNeurosci 2013,7:465.

28. BocciaM,PiccardiL,PalermoL,NoriR,PalmieroM:Wheredo brightideasoccurinourbrain?Meta-analyticevidencefrom neuroimagingstudiesofdomain-specificcreativity.Front Psychol2015,6.

29. WuX,YangW,TongD,SunJ,ChenQ,WeiD,ZhangQ,ZhangM, QiuJ:Ameta-analysisofneuroimagingstudiesondivergent thinkingusingactivationlikelihoodestimation.HumBrain Mapp2015,36:2703-2718.

30. BeatyRE,BenedekM,SilviaPJ,SchacterDL:Creativecognition andbrainnetworkdynamics.TrendsCognSci2016,20:87-95.

31.

 BenedekBeatyRE,M,KenettChenYN,Q,FinkChristensenA,QiuJ,AP,KwapilRosenbergTR,KaneMD,MJetal.: Robustpredictionofindividualcreativeabilityfrombrain functionalconnectivity.ProcNatlAcadSciUSA2018, 115:1087-1092.

Theauthorsusedconnectome-basedpredictivemodelingbasedonMRI functionalconnectivityandshowthatcreativeabilitiescanbepredicted bythestrengthoftheinteractionbetweenregionsfromthedefaultmode, salience,andexecutivecontrolnetworks.

32. EllamilM,DobsonC,BeemanM,ChristoffK:Evaluativeand generativemodesofthoughtduringthecreativeprocess. NeuroImage2012,59:1783-1794.

33. MednickSA:Theassociativebasisofthecreativeprocess. PsycholRev1962,69:220-232.

34. GroborzM,NeckaE:Creativityandcognitivecontrol: explorationsofgenerationandevaluationskills.CreatResJ 2003,15:183-197.

35. KenettYN,AnakiD,FaustM:Investigatingthestructureof semanticnetworksinlowandhighcreativepersons.Front HumNeurosci2014,8.

36. RossmannE,FinkA:Docreativepeopleuseshorterassociative pathways? PersonalIndividDiffer2010,49:891-895.

37.

 BenedekstructureM,andKenettintelligenceYN,UmdaschcontributeC:Howtocreativesemanticthought:memorya networkscienceapproach.ThinkReason2017,23:158-183.

(9)

Theauthorsdevelopedanewrelatednessjudgmenttasktobuild indi-vidualsemanticnetworks.Theresultsshowthatthepropertiesof seman-ticnetworkscorrelatewithcreativitymeasures.

38.

 KenettFlexibilityYN,ofLevythoughtO,KenettinhighDY,creativeStanleyindividualsHE,FaustM,representedHavlinS: bypercolationanalysis.ProcNatlAcadSciUSA2018, 115:867-872.

Thisstudyquantifiedtheflexibilityofthoughtinhighandlowcreative people byassessingtheeffectofremoving specificlinksinsemantic networks.Thispercolationanalysisshowedthatcreativeabilitieswere relatedtotheflexibilityorrobustnessofthenetworks.Therobustnessto networkpercolationcouldbeexplainedbythestructureofthenetworks, especially bystrongerlinksbetweennetwork componentsincreative people’sgraphs.

39. KenettYN:Investigatingcreativityfromasemanticnetwork perspective.In ExploringTransdisciplinarityinArtandSciences. EditedbyKapoulaZ,VolleE,RenoultJ,AndreattaM.Springer InternationalPublishing;2018:49-75.

40.

 MarronHendlerTR,T,FaustLernerM:Y,ChainBerantfreeE,Kinreichassociation,S,Shapira-Lichtercreativity,andI,the defaultmodenetwork.Neuropsychologia2018,118(Pt.A):40-58 http://dx.doi.org/10.1016/j.neuropsychologia.2018.03.018. ThisfMRIstudyexploredthebraincorrelatesofassociativethinkingusing achainassociativefluencytask.Theresultsshowed thatassociative fluencyrecruitedthedefaultmodenetworktogetherwithlateralprefrontal andtemporolateralregionsandsuggestedthattheunconstrainedand spontaneousnatureofanassociativefluencytaskmightberelatedto DMNactivity,whilemorecontrolledprocessesoffluencytaskrelyon prefrontalregions.

41. Andrews-HannaJR,ReidlerJS,HuangC,BucknerRL:Evidence forthedefaultnetwork’sroleinspontaneouscognition.J Neurophysiol2010,104:322-335.

42. FoxKCR,SprengRN,EllamilM,Andrews-HannaJR,ChristoffK: Thewanderingbrain:meta-analysisoffunctional

neuroimagingstudiesofmind-wanderingandrelated spontaneousthoughtprocesses.NeuroImage2015, 111:611-621.

43. ChristoffK,IrvingZC,FoxKCR,SprengRN,Andrews-HannaJR: Mind-wanderingasspontaneousthought:adynamic framework.NatRevNeurosci2016,17:718.

44. BarM,AminoffE,MasonM,FenskeM:Theunitsofthought. Hippocampus2007,17:420-428.

45. TakeuchiH,TakiY,HashizumeH,SassaY,NagaseT,NouchiR, KawashimaR:Theassociationbetweenrestingfunctional connectivityandcreativity.CerebCortex2012,22:2921-2929.

46. JungRE:Thestructureofcreativecognitioninthehuman brain.FrontHumNeurosci2013,7.

47. FinkA,KoschutnigK,HuttererL,SteinerE,BenedekM,WeberB, ReishoferG,PapousekI,WeissEM:Graymatterdensityin relationtodifferentfacetsofverbalcreativity.BrainStruct Funct2014,219:1263-1269.

48. Ku¨hnS,RitterSM,Mu¨llerBCN,vanBaarenRB,BrassM, DijksterhuisA:Theimportanceofthedefaultmodenetworkin creativity-astructuralMRIstudy.JCreatBehav2014, 48:152-163.

49. ChenQ-L,XuT,YangW-J,LiY-D,SunJ-Z,WangK-C,BeatyRE, ZhangQ-L,ZuoX-N,QiuJ:Individualdifferencesinverbal creativethinkingarereflectedintheprecuneus. Neuropsychologia2015,75:441-449.

50. JaukE,NeubauerAC,DunstB,FinkA,BenedekM:Graymatter correlatesofcreativepotential:alatentvariablevoxel-based morphometrystudy.NeuroImage2015,111:312-320.

51. JungRE,WertzCJ,MeadowsCA,RymanSG,VakhtinAA, FloresRA:Quantityyieldsqualitywhenitcomestocreativity:a brainandbehavioraltestoftheequal-oddsrule.FrontPsychol 2015,6.

52. WirthM,JannK,DierksT,FederspielA,WiestR,HornH: Semanticmemoryinvolvementinthedefaultmodenetwork:a functionalneuroimagingstudyusingindependentcomponent analysis.NeuroImage2011,54:3057-3066.

53. HumphreysGF,HoffmanP,VisserM,BinneyRJ,Lambon RalphMA:Establishingtask-andmodality-dependent dissociationsbetweenthesemanticanddefaultmode networks.ProcNatlAcadSciUSA2015,112:7857-7862.

54. ZabelinaDL,Andrews-HannaJR:Dynamicnetworkinteractions supportinginternally-orientedcognition.CurrOpinNeurobiol 2016,40:86-93.

55.

 TakeuchiNakagawaH,S,TakiSekiguchiY,NouchiA,IizukaR,YokoyamaK,YamamotoR,KotozakiY,HanawaY,Setal.: Regionalhomogeneity,resting-statefunctionalconnectivity andamplitudeoflowfrequencyfluctuationassociatedwith creativitymeasuredbydivergentthinkinginasex-specific manner.NeuroImage2017,152:258-269.

This fMRI study explored the linksbetween resting state functional connectivity and divergentthinking according togender. Theresults showedthatthefunctionalconnectivitypatternsbetweenseveral net-worksorregionsassociatedwithdivergentthinkingvaryaccordingto sex.

56. BertossiE,CiaramelliE:Ventromedialprefrontaldamage reducesmind-wanderingandbiasesitstemporalfocus.Soc CognAffectNeurosci2016,11:1783-1791.

57. Brunye´ TT,MoranJM,CantelonJ,HolmesA,EddyMD, MahoneyCR,TaylorHA:Increasingbreadthofsemantic associationswithleftfrontopolardirectcurrentbrain stimulation:aroleforindividualdifferences.NeuroReport2015, 26:296-301.

58. GreenAE,SpiegelKA,GiangrandeEJ,WeinbergerAB, GallagherNM,TurkeltaubPE:Thinkingcapplusthinkingzap: tDCSoffrontopolarcorteximprovescreativeanalogical reasoningandfacilitatesconsciousaugmentationofstate creativityinverbgeneration.CerebCortex2016,27:2628-2639.

59. BertossiE,PecceniniL,SolmiA,AvenantiA,CiaramelliE: Transcranialdirectcurrentstimulationofthemedialprefrontal cortexdampensmind-wanderinginmen.SciRep2017, 7:16962.

60. deSouzaLC,GuimarA˜£esHC,TeixeiraAL,CaramelliP,LevyR, DuboisB,VolleE:Frontallobeneurologyandthecreativemind. FrontPsychol2014,5.

61. VolleE,DeSouzaLC:Neurologieetcre´ativite´.Esthe´tiqueet complexite´ –II-Neurosciences,e´volution,e´piste´mologie, philosophie2015:373-403.

62. ChrysikouEG,HamiltonRH,CoslettHB,DattaA,BiksonM, Thompson-SchillSL:Noninvasivetranscranialdirectcurrent stimulationovertheleftprefrontalcortexfacilitatescognitive flexibilityintooluse.CognNeurosci2013,4:81-89.

63.

 LuftconstraintsCDB,ZiogathroughI,BanissycathodalMJ,BhattacharyatDCSontheJ:leftRelaxingdorsolaterallearned prefrontalcortex.SciRep2017,7:2916.

Thisstudyshowedthatinhibitorystimulationoftheleftlateralprefrontal cortexusingtDCSledtobetterperformanceininsightproblemsolving and that itcould beexplained by a relaxation ofpreviouslylearned constraintsimplicitlyimposedbythecontext.

64.

 KleinmintzKreininI,KleinOM,E,AbecasisShamay-TsooryD,TauberSG:A,ParticipationGevaA,ChistyakovoftheAV,left inferiorfrontalgyrusinhumanoriginality.BrainStructFunct 2018,223:329-341.

ThiscombinedfMRIandTMSstudyshowedthatinhibitingactivityinthe leftinferiorfrontalgyruscanfacilitatethegenerationandevaluationof originalideas.

65. MetukiN,SelaT,LavidorM:Enhancingcognitivecontrol componentsofinsightproblemssolvingbyanodaltDCSofthe leftdorsolateralprefrontalcortex.BrainStimul2012,5:110-115.

66. ColomboB,BartesaghiN,SimonelliL,AntoniettiA:Thecombined effectsofneurostimulationandprimingoncreativethinking.A preliminarytDCSstudyondorsolateralprefrontalcortex.Front HumNeurosci2015,9.

67. WeinbergerAB,GreenAE,ChrysikouEG:Usingtranscranial directcurrentstimulationtoenhancecreativecognition: interactionsbetweentask,polarity,andstimulationsite.Front HumNeurosci2017,11.

(10)

68. LucchiariC,SalaPM,VanutelliME:Promotingcreativitythrough transcranialdirectcurrentstimulation(tDCS).Acritical review.FrontBehavNeurosci2018,12:167.

69.

 FoulonUrbanskiC,M,CerlianiVolleE,L,ThiebautKinkingne´hundeSchottenS,LevyM:R,RossoAdvancedC, lesion symptommappinganalysesandimplementationas BCBtoolkit.GigaScience2018,7.

Theauthorsimplementedseveralmethodsinafreelyavailablesoftware toassesslesion-deficit mappingwhileconsidering thefunctionaland structuralremoteeffectsofabraindamage.

70. BendetowiczD,UrbanskiM,AichelburgC,LevyR,VolleE:Brain morphometrypredictsindividualcreativepotentialandthe abilitytocombineremoteideas.Cortex2017,86:216-229.

71. BurgessP,AldermanN,VolleE,BenoitR,GilbertS:Mesulam’s frontallobemysteryre-examined.RestorNeurolNeurosci2009, 27:493-506.

72. GreenAE,KraemerDJM,FugelsangJA,GrayJR,DunbarKN: Neuralcorrelatesofcreativityinanalogicalreasoning.JExp PsycholLearnMemCogn2012,38:264-272.

73. JonesLL,EstesZ:Convergentanddivergentthinkinginverbal analogy.ThinkReason2015,21:473-500.

74. MansouriFA,KoechlinE,RosaMGP,BuckleyMJ:Managing competinggoals-akeyroleforthefrontopolarcortex.NatRev Neurosci2017,18(11):645-657.

75.

 deUrbanskiSchottenM,Bre´chemierM,FoulonC,M-L,RossoGarcinC,Clarenc¸B,BendetowiczonF,DupontD,ThiebautS, Pradat-DiehlPetal.:Reasoningbyanalogyrequirestheleft frontalpole:lesion-deficitmappingandclinicalimplications. BrainJNeurol2016,139:1783-1799.

Thislesionstudydemonstratesthattheleftrostro-lateralprefrontalregion isacriticalnodeinthenetworksubservinganalogicalreasoning.The authorssuggestthattheuseofanalogytasksinclinicalpracticecould improvetheassessmentofabstractionandreasoningabilitiesinpatients withfrontallesions.

76. BeatyRE,BenedekM,WilkinsRW,JaukE,FinkA,SilviaPJ, HodgesDA,KoschutnigK,NeubauerAC:Creativityandthe defaultnetwork:afunctionalconnectivityanalysisofthe creativebrainatrest.Neuropsychologia2014,64:92-98.

77.

 Vartanianwaytraffic:O,theBeattyinferiorEL,SmithfrontalI,BlacklergyruscontrolsK,LamQ,brainForbesactivationS: One-inthemiddletemporalgyrusandinferiorparietallobuleduring divergentthinking.Neuropsychologia2018,118(Pt.A):68-78 http://dx.doi.org/10.1016/j.neuropsychologia.2018.02.024. ThisfMRIstudyusedaneffectiveconnectivitymethodandshowedthat thelateralprefrontalcortexPFCexertsaunidirectionalcontroloverthe middletemporalgyrusandtheinferiorparietallobuleduringdivergent thinking.

78. MayselessN,Shamay-TsoorySG:Enhancingverbalcreativity: modulatingcreativitybyalteringthebalancebetweenright andleftinferiorfrontalgyruswithtDCS.Neuroscience2015, 291:167-176.

79.

 IvancovskydirectcurrentT,KurmanstimulationJ,Morio(tDCS)H,Shamay-TsoorytargetingtheS:leftTranscranialinferior frontalgyrus:effectsoncreativityacrosscultures.Soc

Neurosci2018,16:1-9http://dx.doi.org/10.1080/ 17470919.2018.1464505.

Theauthorsinvestigatedtheroleoftheinferiorfrontalgyrusindivergent thinkingbyusingtDCSintwodifferentculturalpopulations.Theresults showedthatstimulatingtheleftinferiorfrontalgyrusdecreaseddivergent thinkingperformance,suggestingthatthisregionmayhaveaninhibitory roleincreativity,andhighlighteddifferencesacrossthetwocultures. 80. AzuarC,ReyesP,SlachevskyA,VolleE,KinkingnehunS,

KouneiherF,BravoE,DuboisB,KoechlinE,LevyR:Testingthe modelofcaudo-rostralorganizationofcognitivecontrolinthe humanwithfrontallesions.NeuroImage2014,84:1053-1060.

81. BadreD,WagnerAD:Semanticretrieval,mnemoniccontrol, andprefrontalcortex.BehavCognNeurosciRev2002, 1:206-218.

82. KanIP,Thompson-SchillSL:Selectionfromperceptualand conceptualrepresentations.CognAffectBehavNeurosci2004, 4:466-482.

83. LambonRalphMA,JefferiesE,PattersonK,RogersTT:The neuralandcomputationalbasesofsemanticcognition.Nat RevNeurosci2016,18:42.

84. Thompson-SchillSL,SwickD,FarahMJ,D’EspositoM,KanIP, KnightRT:Verbgenerationinpatientswithfocalfrontal lesions:aneuropsychologicaltestofneuroimagingfindings. ProcNatlAcadSciUSA1998,95:15855-15860.

85. VolleE,CostelloAdeL,CoatesLM,McGuireC,TowgoodK, GilbertS,KinkingnehunS,McNeilJE,GreenwoodR,PappsB etal.:Dissociationbetweenverbalresponseinitiationand suppressionafterprefrontallesions.CerebCortex2012, 22:2428-2440.

86. AronAR,RobbinsTW,PoldrackRA:Inhibitionandtheright inferiorfrontalcortex:onedecadeon.TrendsCognSci2014, 18:177-185.

87. RobinsonGA,CipolottiL,WalkerDG,BiggsV,BozzaliM, ShalliceT:Verbalsuppressionandstrategyuse:aroleforthe rightlateralprefrontalcortex? Brain2015,138:1084-1096.

88. CerrutiC,SchlaugG:Anodaltranscranialdirectcurrent stimulationoftheprefrontalcortexenhancescomplexverbal associativethought.JCognNeurosci2009,21:1980-1987.

89. ZmigrodS,ColzatoLS,HommelB:Stimulatingcreativity: modulationofconvergentanddivergentthinkingby transcranialdirectcurrentstimulation(tDCS).CreatResJ 2015,27:353-360.

90. ThiebautdeSchottenM,UrbanskiM,BatrancourtB,LevyR, DuboisB,CerlianiL,VolleE:Rostro-caudalarchitectureofthe frontallobesinhumans.CerebCortex2017,27:4033-4047.

91. ChenAC,OathesDJ,ChangC,BradleyT,ZhouZ-W,WilliamsLM, GloverGH,DeisserothK,EtkinA:Causalinteractionsbetween fronto-parietalcentralexecutiveanddefault-modenetworks inhumans.ProcNatlAcadSciUSA2013,110:19944-19949.

92. SiegelJS,RamseyLE,SnyderAZ,MetcalfNV,ChackoRV, WeinbergerK,CorbettaM:Disruptionsofnetworkconnectivity predictimpairmentinmultiplebehavioraldomainsafter stroke.PNAS2016,113:E4367-E4376.

Figure

Figure 2 CreativityAssociative thinking DMN and MemN Controlledprocesses FPCN and SalN Spontaneous semantic associations

Références

Documents relatifs

axisyrnmetric notched tensile specimen. 2) A simple 2-D quasistatic FEM model of the instrumented Charpy impact test is sufficient for application of the Beremin model at

Gwenaël PIGANEAU, Directeur de recherche, CNRS Adam EYRE-WALKER, Professor, University of Sussex Carole SMADJA, Chargée de recherche, CNRS Laurent DURET, Directeur de recherche,

Nous avons donc réalisé une étude de stabilité sur des moitiés de comprimés de lansoprazole sortis de leur emballage.. Les comprimés de lansoprazole orodispersibles (Prevacid MD

The objective is to compare the values of the harmonic components of the ADC evaluated using the proposed strategy to the ones obtained using a standard test configuration. To

Par suite, et après avoir appréhendé les différents concepts liés au domaine de la gestion et ingénierie des connaissances, nous réalisons à travers le chapitre suivant un

Appendix B collect the main properties of the solutions to the rescaled equation ( 1.14 ) and, in particular, the appearance of pointwise lower bounds which is fundamental for the

The first aim of this study was to validate the properties of a French translation of the SAPAS in its original form (interviewer-administered) in a clinical sample (pre-test) and

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des