• Aucun résultat trouvé

Neural and psychophysiological correlates of human performance under stress and high mental workload

N/A
N/A
Protected

Academic year: 2021

Partager "Neural and psychophysiological correlates of human performance under stress and high mental workload"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: hal-01402108

https://hal.archives-ouvertes.fr/hal-01402108

Submitted on 24 Nov 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Neural and psychophysiological correlates of human

performance under stress and high mental workload

Kevin Mandrick, Vsevolod Peysakhovich, Florence Rémy, Evelyne Lepron,

Mickael Causse

To cite this version:

Kevin Mandrick, Vsevolod Peysakhovich, Florence Rémy, Evelyne Lepron, Mickael Causse. Neural

and psychophysiological correlates of human performance under stress and high mental workload.

Biological Psychology, Elsevier, 2016, vol. 121, pp. 62-73. �10.1016/j.biopsycho.2016.10.002�.

�hal-01402108�

(2)

Neural

and

psychophysiological

correlates

of

human

performance

under

stress

and

high

mental

workload

Kevin

Mandrick

a

,

Vsevolod

Peysakhovich

a

,

Florence

Rémy

b

,

Evelyne

Lepron

b

,

Mickaël

Causse

a,∗

aISAE(InstitutSupérieurdel’Aéronautiqueetdel’Espace),Toulouse,France

bCentrederechercheCerveauetCognition,UniversitédeToulouseUPSandCNRS,Toulouse,France

Keywords: Mentaleffort Stress Prefrontalcortex Cardiovascularactivity Pupilresponse

Functionalnear-infraredspectroscopy

a

b

s

t

r

a

c

t

Inouranxiogenicandstressfulworld,themaintenanceofanoptimalcognitiveperformanceisaconstant challenge.Itisparticularlytrueincomplexworkingenvironments(e.g.flightdeck,airtrafficcontrol tower),whereindividualshavesometimestocopewithahighmentalworkloadandstressfulsituations. Severalmodels(i.e.processingefficiencytheory,cognitive-energeticalframework)haveattemptedto provideaconceptualbasisonhowhumanperformanceismodulatedbyhighworkloadandstress/anxiety. Thesemodelspredictthatstresscanreducehumancognitiveefficiency,evenintheabsenceofavisible impactonthetaskperformance.Performancemaybeprotectedunderstressthankstocompensatory effort,butonlyattheexpenseofacognitivecost.Yet,thepsychophysiologicalcostofthisregulation remainsunclear.Wedesignedtwoexperimentsinvolvingpupildiameter,cardiovascularandprefrontal oxygenationmeasurements.ParticipantsperformedtheToulouseN-backTaskthatintensivelyengaged bothworkingmemoryandmentalcalculationprocessesunderthethreat(ornot)ofunpredictable aver-sivesounds.Theresultsrevealedthathighertaskdifficulty(highernlevel)degradedtheperformance andinducedanincreasedtonicpupildiameter,heartrateandactivityinthelateralprefrontalcortex, andadecreasedphasicpupilresponseandheartratevariability.Importantly,theconditionofstressdid notimpacttheperformance,butattheexpenseofapsychophysiologicalcostasdemonstratedbylower phasicpupilresponse,andgreaterheartrateandprefrontalactivity.Prefrontalcortexseemstobea cen-tralregionformitigatingtheinfluenceofstressbecauseitsubservescrucialfunctions(e.g.inhibition, workingmemory)thatcanpromotetheengagementofcopingstrategies.Overall,findingsconfirmed thepsychophysiologicalcostofbothmentaleffortandstress.Stresslikelytriggeredincreased moti-vationandtherecruitmentofadditionalcognitiveresourcesthatminimizeitsaversiveeffectsontask performance(effectiveness),butthesecompensatoryeffortsconsumedresourcesthatcausedalossof cognitiveefficiency(ratiobetweenperformanceeffectivenessandmentaleffort).

1. Introduction

1.1. Mentaleffortandstress

Inouranxiogenicandstressfulworld,themaintenanceofan optimalcognitiveperformanceisaconstantchallenge.Itis par-ticularlytrueincomplexworkingenvironments(e.g.flightdeck, airtraffic controltower), where individuals have sometimesto

∗ Correspondingauthorat:ISAE−SUPAERO,DCAS,10Avenue EdouardBelin, 31055Toulouse,France.

E-mailaddress:mickael.causse@isae.fr(M.Causse).

copewitha highmental workload(Borghini,Astolfi,Vecchiato, Mattia,&Babiloni,2014)andstressful(Causse,Dehais,&Pastor, 2011) or unexpected situations (Causse et al., 2013). Accord-ing toseveral authors, contextsof high mental workload (e.g.,

Causse,Peysakhovich,&Fabre,2016;Durantin,Gagnon,Tremblay, &Dehais,2014)and/orstress(e.g.Arnsten,2009;Qin,Hermans, Marle, Luo,&Fernández,2009; Schoofs,Wolf,&Smeets, 2009) mayresultin transientimpairmentsof workingmemory(WM) andexecutivefunctions(Starcke,Wiesen,Trotzke,&Brand,2016). Also,assuggestedbyDavis,Walker,MilesandGrillon(2010)the expectancyofanunpredictableanduncontrollablestressor(inthis paper,“stress”standsfortheemotionaltensionassociated with asustainedstateofanxietyinresponsetothethreatofa

(3)

nega-tiveevent)issufficienttocreateathreateningcontextandmay deliveranemotionaltensionassociatedwithasustainedanxiety (Breieretal.,1987;Lupien,Maheu,Tu,Fiocco,&Schramek,2007), atleastwhenthependingstimulusissufficientlyaversive(Grillon, Baas,Lissek,Smith,&Milstein,2004).Forexample,threat induc-tionusingaversiveloudsoundshasbeenshowntoactuallyinduce highertonicandphasicstresscomparedtopredictablesituations (Barrett&Armony,2006;Breieretal.,1987).

Literature shows that there is no straightforward effect of stressoncognitiveperformance,andhumanbraindoesnotseem defenseless against adverse effects of stressful situations. For example,stresscandisruptWM,and,reciprocally,WMcan mod-ulateanxiousresponse(Schmeichel,Volokhov,&Demaree,2008). Twoimportantmodels(theprocessingefficiencymodelandthe cognitive-energeticalframework)haveattemptedtoprovidea con-ceptualbasisonhowhumanperformanceismodulatedbyhigh workloadandstress/anxiety.Firstly,theprocessingefficiency the-ory(Eysenck&Calvo,1992)proposesthatadverseeffectsofanxiety arenotalwaysvisibleonperformanceoutcome.Theauthorsposit thatworriesaretriggeredinstressfulsituationsandthattheyhave twomaineffects.Thefirsteffectinvolvescognitiveinterferenceby preemptingtheprocessingandstoragecapacityofworking mem-ory.Thesecondeffectinvolvesincreasedmotivationtominimize theaversiveanxietystate.Thislatterfunctionpromotesenhanced effortand useof auxiliary processing resourcesand strategies. Thus,potentialperformanceimpairmentscausedbythe preemp-tionofworkingmemoryresourcescanbecompensatedifauxiliary processingresourcesareavailable.Thetheorydiscriminates per-formance effectiveness(qualityof performance)and processing efficiency(ratiobetweenperformance effectivenessand mental effort). Given the triggeringof compensatory mechanisms(e.g. enhancedeffort;increaseduseofprocessingresources),impaired performanceeffectivenessislesslikelytooccurbutatthecostof reducedefficiency.Attentionalcontroltheory(Eysenck,Derakshan, Santos,&Calvo,2007),amajordevelopmentofEysenckandCalvo’s (1992)model,assumedthatanxietyeffectsonprocessingefficiency concernprimarilytwocentralexecutivefunctionsinvolving atten-tionalcontrol:inhibitionandshifting.However,theauthorsposited thatanxietyalsoimpairsprocessingefficiency(andsometimes per-formanceeffectiveness)ontasksinvolvingtheupdatingfunctionof workingmemorywhentheconditionsarestressful.

Theprocessingefficiencymodelhassimilaritieswiththe sec-ondmodel,thecognitive-energeticalframework.Thislattermodel positstheexistenceofcompensatorycontrolintheregulationof humanperformance understress andhighworkload (Robert & Hockey,1997).Thecognitive-energeticalframeworkalsopredicts thatperformancemaybeprotectedunderstressbytherecruitment offurtherresources,butonlyattheexpenseofincreased subjec-tiveeffort,andbehavioralandphysiologicalcosts.Evenwhenno primarytaskdecrementsaredetected,performancemayshow dis-ruptionofsubsidiaryactivitiesortheuseoflessefficientstrategies. Additionalcostsincludeincreasedpsychophysiologicalactivation, strain,and fatigueafter-effects.Otherwise, coststability canbe achievedbyreducingperformancegoals.Beyondtheirrespective theoreticalconstructs, the commonidea in theprocessing effi-ciencytheory(Eysenck&Calvo,1992)andthecognitive-energetical framework(RobertandHockey,1997)isthatstresslikelytriggers increasedmotivationandtherecruitmentofadditionalcognitive resourcesthatminimizeitsaversiveeffectsontaskperformance (effectiveness). However, these compensatory efforts consume resourcesandthus,causealossofcognitiveefficiency.

The impact of stress seems to also depend on task diffi-culty (Robinson, Vytal, Cornwell, & Grillon, 2013). Patel et al. (2015)recentlyshowedthatthethreatofanaversiveloudscream impactedWMperformanceatlowandmediumbutnothighload conditions.Consistently,ClarkeandJohnstone(2013)foundthat

thethreatof shocksignificantlydisrupted thecognitive perfor-manceunderlowWMloadwhereasnosignificantinterference(and evenatrendforperformanceimprovement)occurredinthehigh WMloadcondition.Suchresultsmaybeinterpretedasareduced distractoreffect(Hu,Bauer,Padmala,&Pessoa,2012),when atten-tionisshiftedawayfromtheaffectivestimulus(Pessoa,McKenna, Gutierrez,&Ungerleider,2002; VanDillen,Heslenfeld,&Koole, 2009),andsuggesttheexistenceofadynamicbalancebetween emotionandcognition(Drevets&Raichle,1998).Suchabalance isalsosupportedbyresultsfromBerggren,Richards,Taylorand Derakshan(2013).Intheirstudy,emotionwasdeleteriousto per-formanceinthelowloadcondition(tonesrecognition)duringa modifiedemotional antisaccadetask(aconditioninwhichgaze towardsemotionalstimulishouldbeinhibitedandparticipantshad tolookawayfromtheimageandmovetheireyestothe oppo-siteendofthescreen).Onthecontrary,emotiondidnotinfluence performanceunderthehighloadcondition(recognitionofspecific tonepitch),supportingrecentevidencethatmorecomplex cogni-tiveprocessescanreduceemotionalinfluencesonattentionand cognition.

1.2. Psychophysiologicalactivityrelatedtocognitionandemotion AccordingtoRyuandMyung(2005),physiological measures can be classified into three major categories as a function of thephysiological organs involved:brain-related measures, eye-related measures,and heart-relatedmeasures.Prefrontalcortex (PFC)relatedactivityismodulatedbyWMload,forexample,Owen, McMillan,LairdandBullmore(2005)meta-analysisof24n-back studies hasshown that higher workload is consistently associ-atedwithgreatercorticalactivation,includingcriticalPFCregions. RecentstudiesalsoshowedthatactivationsofthePFCobserved viafunctionalnearinfraredspectroscopy(fNIRS)reflectWMload duringn-backtasks(Fishburn,Norr,Medvedev,&Vaidya,2014;

Gateau,Durantin,Lancelot,Scannella,&Dehais,2015;Herffetal., 2014;Peck,Afergan,Yuksel,Lalooses,&Jacob,2014;Satoetal., 2013;Yukseletal.,2015).ItisalsoclearthatthePFCisoneof themostsensitivebrainregionstothedetrimentaleffectsofstress (Arnsten,2009), becauseithasa criticalrole in theintegration ofcognitiveandaffectivebehavior(Cerqueira,Almeida,&Sousa, 2008).Inparticular,theorbitalandmedialPFCareknowntobe involvedinregulationofemotionviaextensiveconnectionswith limbicregions(Hänsel&Känel,2008;SeoandSinha,2011(ch9)). Interestingly,dorsolateralPFCisalsolikelytoindirectlycontribute toemotionregulationthroughitsinteractionwiththeorbitofrontal cortexandtheanteriorcingulatecortex,andviatheseareas,with theamygdala(Salzman&Fusi,2010a,2010b).Inaddition,the dor-solateralPFCmaybealsoinvolvedinemotionregulationbecause itplaysacrucialroleintheneuralnetworksubservingWM func-tions(LevyandGoldman-Rakic,2000).AssuggestedbySchmeichel, Volokhov andDemaree(2008),WMcapacitycontributes tothe controlofemotionalresponseassubjectswithhigherWM capac-itysuppressedexpressionsofnegativeandpositiveemotionbetter thansubjectswithlowerWMcapacitydid.SeveralfNIRSstudies haveinvestigatedtheimpactofemotiononthePFCduringa stress-fulsituation(Doi,Nishitani,&Shinohara,2013; Morinagaetal., 2007;Tanida,Katsuyama, &Sakatani,2007;Tupaketal.,2014).

Tanidaetal.(2007)indicatedthatmentalstressinduceda predom-inanceoftherightPFCactivation,revealedbyanincreaseofHbO2

signalwithaconcomitantdecreaseoftheHHbsignal.Inaddition,

Morinagaetal.(2007)showedhigheractivationoftherightPFC activation(anincreaseofHbO2)duringanticipationofshocks.

Thepupildiameterisawell-establishedmeasureofWMload (Andreassi,2000;Beatty,1982;seealsoLaeng,Sirois,&Gredebäck, 2012,fora recentreview).Firstviewedasasimple measureof “intensity”ofattentionandmentalactivity(Kahneman&Beatty,

(4)

1966;Kahneman,1973),itisnowadmittedthatpupildiameter isalsoarelevantindicatorofaffectiveandemotionalprocessing (Bitsios,Szabadi,&Bradshaw,1998;Bradley,Miccoli,Escrig,&Lang, 2008;Clarke&Johnstone,2013;Partala&Surakka,2003).Cohen, MoyalandHenik(2015)usedpupildilationmeasurementsto mon-itortheemotionalresponsegeneratedbyaversivestimuli(pictures andsounds).Theyshowedthatemotionalresponsewasattenuated, asindexedbylowerpupildilation,whentheaversivestimuliwere precededbyincongruentflankerstimulus,providingevidencethat thephysiologicalresponseassociatedwithemotionalstimulation dependsonsituationaldemands,suchasprioractivationof exec-utivecontrolprocesses.However,theauthorsdidnot explicitly manipulatethementalworkloadintheirparadigm.

Also, task-relatedpsychophysiologicalcosts havebeen stud-iedwiththeanalysisofthecardiovascularactivity(Riese,1999). Subjectsreacttosustainedheavytaskdemandsbyaninitial reac-tioncalledthedefensereaction.Thisreactionis supposedtobe causedbyincreasedactivationofthesympatheticnervoussystem andinhibitionofthevagalsystem,inducingclassical cardiovas-cularreactions:anincreaseinbloodpressureandheartrate(HR) andadecreaseinheartratevariability(HRV)(Riese,1999;Causse, Baracat,Pastor,&Dehais,2011).Itisalsowelldemonstratedthat HRandHRVprovidesensitivemarkerstoemotionalprocesses(e.g.

Brosschot&Thayer, 2003;Laneetal.,2009;McCraty,Atkinson, Tiller,Rein,&Watkins,1995;Quintana,Guastella,Outhred,Hickie, &Kemp,2012).Forexample,BrosschotandThayer(2003)showed thatmoderateincreaseofHR(approximatively1beatperminute) canlastupto5minafternegativeevents.

Becausetherelationshipbetweenpsychologyand psychophys-iologicalreactionisnotalwaysone-to-one(e.g.onepsychological operationassociatedwithonepsychophysiologicalreaction),but alsomany-to-one, one-to-many, ormany-to-many (Cacioppo& Tassinary,1990),asZhou,Qu,HelanderandJiao(2011)wesuggest thatasinglepsychophysiologicalmeasureisnotadequatetogive afullpictureoftheongoingpsychologicalprocesses,particularly whenbothcognitiveandemotionalvariablesaremanipulated.In thepresentstudy,combinedeye-related,heart-related,and brain-relatedmeasureswereconducted.

1.3. Presentstudy

We studied the effects of stress (induced by the threat of unpredictableaversiveloudsounds)onWMperformanceunder variationsoftaskdifficulty.Wedesignedanewtask,theToulouse N-backTask(TNT),combiningtheclassicaln-backtaskwith math-ematicalprocessingtoinducedifferentlevelsofmentalworkload. ThetaskallowselicitingbothasustainedhighWMandprocessing load,whichmimicsthemultidimensionalhighmentalworkload existinginmany safety-criticaloccupations.Thepurposeofthe presentstudywastoexplicitlyinvestigatetheimpactofmental effortandstressinahighlydemandingtask,byassessing perfor-manceaswellasthepsychophysiologicalcostinvolved.Inaddition tothewelladmitteddeleteriousimpactofhighmentalworkload (Causseetal.,2016;Durantinetal.,2014),wemayhypothesize thattaskperformancewouldbeimpactedbystress.Ontheother hand,various modelssuch as processing efficiency theory and thecognitive-energeticalframeworkalsosuggestthatwemaynot observeanybehavioraleffectofstress:cognitiveperformancemay beprotectedunderstressthankstocompensatoryeffortsandthe useof cognitivecoping strategies,but onlyat theexpenseof a psychophysiologicalcost(Robert&Hockey, 1997).Yet,reduced cognitiveefficiencyand/orthecostofstrategiestocopewithstress aregenerallyexaminedthroughvariationintaskperformance(eg. longerreaction times), but their psychophysiologicalcorrelates remainunclear.Wehypothesizedthatpupildiameter,HR,and pre-frontalcortexoxygenationwouldbehigherintheconditionofhigh

mental workloadand alsoin theconditionofstress. Finally,as suggestedbyvariousauthors,wemayalsoobserveaninteraction betweenmentalworkloadandstressinawaythatthehighWM loadconditioncouldmitigatetheimpactofstress.Thislowered impactofemotionmightbeindexedbybehaviorand psychophys-iologicalmeasurements.

2. Materialsandmethods

2.1. Participants

We recruited fourteen healthy volunteers (5 women, age 25.8±3.8years) for study 1 and twenty healthy volunteers (5 women,age24.6±4.8years)forstudy2.Pupillometryrecordings wereperformedinStudy1andfNIRSrecordingswereperformed inStudy2.Cardiovascularactivitywasrecordedinbothstudies. Participantsweresplitintotwoseparatestudiesassimultaneous functionalnear-infraredspectroscopyandpupillometry measure-ment is complex becausethese two techniques overlap in the near-infraredwavelengthband.AllwerestudentsatNationalCivil AviationSchool(ENAC)and HigherInstituteof Aeronauticsand SpaceEngineeringSchool(ISAE)inToulouse,France.Nonereported neitheraffectiveoranxietydisorder,noranyneurologicalor car-diovasculardisease.Nonewasundermedicationthatmightaffect thebrainorautonomicfunctions.Allvolunteersreportednormal auditoryacuityandnormalorcorrected-to-normalvision.All par-ticipantsgavewritteninformedconsentinaccordancewithlocal ethicalboardcommittee.Thestudycompliedwiththe Declara-tionofHelsinkiforhumanexperimentationandwasapprovedby medicalCommittee(CPPduSud-OuestetOutre-MerIV,n◦ CPP15-010b/2015-A00458-41).

2.2. MentalarithmeticN-backtask(ToulouseN-backtask)

Thenewn-backtask,calledTNT,wasdevelopedforthisstudy inordertocombineaclassicaln-backtaskwithmentalarithmetic (Fig.1).Insteadofmemorizingandcomparinguniqueitems,asin theclassicaln-backtask,theparticipantshadtomemorizeandto comparetheresultsof arithmeticoperations,computed before-hand.Ineachtrial,volunteerswererequiredtocomputetheresult andcompareitwitheitherafixednumber(0-back)ortheresult obtained1(1-back)or2(2-back)trialsbefore.Arithmetic opera-tionswereeitheradditionsorsubtractions,ofwhichallsummands werea multipleof 5 (e.g.,15+40, 90–35). Therefore, WMload wasvariablebetweenconditions,withthe2-backtaskgenerating thehighestload.Duringtherestingperiods,screenswith“00+00” operationswerepresentedandvolunteersdidnothavetogiveany response.

Operationsweredisplayedinthecenterofagraybackground. Participantsweregivena2-buttonCedrusresponsepad(RB-740, CedrusCorporation,SanPedro,CA)andwereaskedtopresseither agreenbuttoniftheresultmatchedthetargetnumberorared buttonifnot.Participantshadtogivetheirresponseasquicklyas possible.ThetaskwasimplementedinMatlab(MathWorks)using thePsychophysics Toolbox(Psychtoolbox3,Kleiner,Brainard,& Pelli,2007).

2.3. Threatusingauditorystressors

Stress(i.e.sustainedanxiety)wasinducedwiththethreatof unpredictableloudsounds(Pateletal.,2015).Theauditory stress-orsoccurrencewasnon-contingentupon thetaskperformance. Wecreatedasetof34aversivesoundsinspiredfromthe litera-ture(Grillon,Pine,Lissek,Rabin,&Vythilingam,2009;Hiranoetal., 2006;Kumar,Forster,Bailey,&Griffiths,2008;Zald&Pardo,2002). Thesoundswereperceivedasmildlystressful,uncomfortableand

(5)

Fig.1.ToulouseN-backTask.AnexampleoftrialsfortheTNT,inwhichparticipantscombinedmentalcalculationswithn-backtask.The0-,1-,and2-backtaskblocks lasted36s,interleavedwith18sresting(R)periods.Stimuliwerepresentedfor2swithaninter-stimulusintervalof1s.Participantsrespondedtotargetsandnon-targets bypressingoneoftwodifferentbuttons.Eachblockcontained4targetsinrandompositions.Duringthe0-back(leftpartofthefigure),asimplecomparisonofthecurrent resultwith“50”wasrequired.Duringthe1-back(middlepartofthefigure)andthe2-back(rightpart)tasks,thecurrentresulthadtobecomparedwiththeonecomputed 1or2trialsbefore,respectively.

unpleasantby87participantsduringapilotstudy(ratings>6using a 10-point scale, with 10 meaning “extremely unpleasant and stressfultogether”).

Thestressfulnessofthesoundswasalsovalidatedbya spec-tralfrequency–temporalmodulationanalysis(seeSupplementary material).Soundsweremodifiedtoequalizeloudnessandduration. Eachsoundsamplewaspresentedonlyoncetopreventhabituation andmakethestimulationmoresalientandstressful.Participants wereinformed thattheywould beexposed todifferent unpre-dictableaversiveloudsoundsduringagivenblockorrestingperiod. However,theonsetofsoundswasunknowntoparticipantsinorder tomaintainacontinuousthreat(Grillonetal.,2009;Zald&Pardo 2002).Thesoundswereplayedfor7sviaAKGK171MkIImonitor headphonesinstereomodeandata95-dBsoundpressurelevel, ascontrolledusinganoisemeter(Grillonetal.,2009;Hiranoetal., 2006).

2.4. Subjectivedifficultymeasures

FollowingatrainingperiodwiththeTNT,participantsrated dif-ficultyusingaDP15scale(Delignières,Famose,&Genty,1994).The DP15scaleconsistsina15-pointcategoryscale,with7labels,from 2(extremelyeasy)to14(extremelydifficult),symmetricallyplaced aroundacentrallabel8(somewhatdifficult).

2.5. Subjectiveanxietymeasures 2.5.1. Sensitivitytoauditorystressors

Toassess individualsensitivitytoauditorystressors, partici-pantswererequested tolistento each ofthe 34 aversive loud sounds(presentedwithillustrativeimages)−beforeorafterthe experiment,theorderwascounterbalancedacrossparticipants−

andtorateeachsoundunpleasantnessandinduced-stressusinga 10-pointscale(with10meaning“extremelyunpleasantand stress-fultogether”).

2.5.2. Anxietyquestionnaire

Subjectiveevaluationoftheanxietystatewasobtainedbytwo completionsoftheState-TraitAnxietyInventory(STAIformY-A, Frenchtranslation)(Gauthier&Bouchard, 1993), precedingand followingthewholeexperimentalprotocol.Thistestconsistedofa 20-itemself-administeredquestionnairewith4-pointLikertscale response(Spielberger,Gorsuch,&Lushene,1970).

2.6. Experimentalprocedure

ParticipantswerefirsttrainedforeachleveloftheTNTthrough a shortsequence of5min,in whichaversive loudsoundswere presentedrandomly. Experimentalrunsconsistedofafirst10-s fNIRSbaselinefollowedbyalternatingTNTandrestblocks.Two runsincludedunpredictableaversiveloudsounds(“threat”runs) andonerunwaswithoutanythreats(“safe”run).Theorderofthe TNTblockswithinarunandtheorderof“threat”and“safe”runs werecounterbalancedacrossparticipants.Toavoidfatigue,ashort breaklastingapproximatively5minwasgivenattheendofeach run.BeforeandduringTNTblocks,a3-sinstructionscreenwas displayedtoinformtheparticipantaboutupcomingTNTdifficulty (“0-back”,“1-back”,“2-back”)andaboutthreatcondition(safevs. threat)(Fig.2).During thesaferun,participantswerereminded thatnosoundwillbeplayed.Duringthreatruns,participantswere remindedthataversiveloudsoundsmayoccuratanytime, includ-ingduringrestingperiods.

Thesaferunincluded12blocks(4blocks ofeachdifficulty). The two threat runs included 9 blocks each (3 blocks of each

(6)

Fig.2. Experimentaltimeline.TNTexperimentalblockdesignsessionswithtworunsforthreatconditionandonerunforthesafecondition.Runordersandblockswere counterbalancedandpseudo-randomized.Unpredictableaversiveloudsoundswereplayedrandomlyduringathreatrunandcouldoccurduringrestingperiod.

difficulty).Fortheanalysisofthethreatruns,we discardedthe blockscontainingsounds(6blocksintotal)toexcludeany poten-tialeffectofsounddistractionandtofocusonthestressrelated totheexpectancyoftheunpredictablesounds(Clarke&Johnstone, 2013).Wethuscomparedthe12threatblocksinwhichparticipants expected,butdidnotactuallyhearsounds,withthe12safeblocks. Hence,4blocks(4×12trials)percondition(0-,1-,2-backxSafe, Threat)wereincludedintheanalyses.Forthepupillaryanalyses, 12blocksofrestingperiods(12×6trials)werealsoincluded. 2.7. Behavioralmeasurements

TNTaccuracywascalculatedusingthed-primemeasure, com-putedasfollows:z(hitrate)−z(falsealarmrate).Additionally,the numberofmisses(noresponse)wascomputed,thislattermeasure likelyreflectinganexhaustionofcognitiveresources.

2.8. Study1:Pupillometrymeasurements

Participantswereseatedat approximately70cm froma22’ computerscreen (1680×1250 pixels). Ambient luminance was of 10lx.During thewhole experiment, participants’gaze posi-tionandpupildiameterweretrackedusingaremoteSMIRED500 eye-tracker(SensoMotoricInstrumentsGmbH,Germany)ata sam-plingrateof120Hz.Thisdeviceallowstrackingthepupildespite smallheadmovements.Beforeeachrun,participantsperformeda 5-pointcalibrationprocedurevalidatedwith4additionalfixation points.ThedataacquisitionroutineusediViewXSDKto communi-catewithMatlabsoftware.Periodsofsignallossandblinks(both weremarkedaszerosbytheeye-trackingsystem)werelinearly interpolated.Thenthesignalwasfilteredwithatwo-pass9-point filter(low-passwithacutofffrequencyof5.9Hz).Fortonicpupil diameteranalyses,weusedthemedianpupildiametervaluefor each block.We also conducted(event-related) phasicpupillary responseanalyses.Forthisanalysis,thepupillaryrecordingswere segregatedin3-ssegmentscorrespondingtoeachtrial.Forall par-ticipants,anaveragephasicpupillaryresponsewasobtainedfor eachcondition.Atrialwasexcludedifthetotaldurationof sig-nallossorblinkingexceeded50%(1.5s)orifmediangazeposition duringthetrialdeviatedfromthescreencenterofmorethan150 pixels.Anaverageof44.6(SD=8.4)trialsoutof48werevalidated perexperimentalcondition.Anaverageof58.1(SD=14.6)trialsout of72werevalidatedforrestingperiods.Thenumberofvalidated trialswasnon-dependentonthecondition(p>0.05).Median val-uescalculatedonthe500-msperiodprecedingthetrialonsetwere usedasbaselines.Forstatisticalanalysesofphasicpupilresponse, weusedthemaximumpupildiameterintheintervalbetween1 and2spost-stimulus.Restingperiodswereincludedinthe

pupil-Fig.3. fNIRSheadband.Locationoftheoptodesonparticipant’sforeheadwitha flexiblefNIRSsensorpadlabeledfromchannel1tochannel16.Emittersaremarked asEandDindicatesdetectors.Areasunderlyingthechannelareapproximatelyover Brodmann’sareas10and46.

lometryanalysestoconfirmthatthepupillaryreactionwasdueto thepsychophysiologicalphenomenonandnotvisualfactors. Thir-teenparticipantswereincludedin thepupillaryanalyses(pupil datafromoneparticipantwerediscardedduetotechnicalissues duringtherecording).

2.9. Study2:Functionalnearinfraredspectroscopy measurements

Toilluminatetheforehead,aCWfNIRS16-channelheadband model100fNIRSsystem(fNIRSDevicesLLC,PhotomacMD;http:// www.fnirdevices.com)wasusedtoobtainrawlightintensityby specificdualwavelengthsof730nmand850nm(Fig.3).Datawere acquiredatafrequencyof2Hzforall16channels.

Atthebeginningoftheexperiment,participantswereequipped withthefNIRSheadband.The10sbaselinewastakenatrestwith eyesclosed.fNIRS-PFC activitywasrecordedthroughtheentire experiment. COBIStudiosoftware(Drexel University)wasused fordataacquisitionandvisualizationofthe16channelsthenthe version 4.0 of fnirSoft software package was usedfor filtering, convertingandanalyzingdata(Ayaz,2010).First,therawoptical densitysignalswereconvertedtoconcentrationchangesof oxy-genatedhemoglobin(HbO2)anddeoxygenatedhemoglobin(HHb)

usingthemodifiedBeer-lambertlaw.fNIRSdatawerethen band-passfilteredusingaFIRfilteroforder20andcutofffrequenciesof 0.01and0.1Hz.Nodetrendingwasapplied.Then,availableoptodes wereaveragedin3regionsofinterestforeachparticipant;left pre-frontalcortex(optodes1–6),frontopolarprefrontalcortex(optodes 7–10),rightprefrontalcortex(optodes11–16).Eightparticipants hadmissingfNIRSdataina fewmedialoptodesforatleastone experimentalconditionduetopoorcontactwiththeforehead(i.e.

(7)

optodes5,7–9,and10).Atmost,3optodesweremissingfor1 par-ticipant,thusameasureofthefrontopolarprefrontalcortexactivity waspossibleforthese8participants.TodissociateeffectsofTNT difficulty(0-backvs.1-backvs.2-back)andthreat(safevs.threat), weextractedthefNIRSresponsefromeachblock.Signalswere nor-malizedtowardszerobysubtractingthecurrentsignalwiththe firstdatapoint.Then,signalswereaveragedonalltrialsforeach condition.

Wecalculatedtheblood-oxygenationresponsedeterminedas thedifferencebetweenHbO2andHHbsignals.ForfNIRSdata

analy-sis,wecomparedtheblood-oxygenationresponsewiththeanalysis oftheresponseamplitude(thedifferencebetweenthemeanvalue ofthefirstandthelast10sofeachblock)(Mandricketal.,2013a, 2013b).SeventeenparticipantswereincludedinthefNIRS anal-yses(fNIRSdataofthreeparticipantswereexcluded,onedueto excessivelynoisysignalandtwoduetorecordingproblems).

2.10. Cardiovascularactivity

Cardiovascular activity (by 1-lead ECG) was continuously recorded in both studies. Signals were sampled at 500Hz in a synchronousmannerusingaBiopacMP150HardwareandBiopac AcqKnowledge4.1.1Software(BiopacSystemsInc.,CA,USA).Signal wasderivedintoRRintervalstoassesstheHR.Datasetswere visu-allycontrolledforoutliersandartifacts.Analyseswereconducted withKubiosHRVsoftware2.2(UniversityofEasternFinland,http:// kubios.uef.fi).WeinvestigatedtotalHRVviatherootmeansquare of successivedifferences (RMSSD) (Task Force of the European SocietyofCardiologytheNorthAmericanSocietyofPacing,1996). Thirty-three participants were included for the analysis of the cardiovascularactivity(HRandHRVdataofoneparticipantwas excludedduetoexcessivelynoisysignal).

Dataanalysis

Results were analyzed using Statistica software (StatSoft). Normality and homoscedasticity of data were assessed using Kolmogorov-SmirnovandLillieforstests,respectively.Pre−post comparisonsofSTAIscoresandprefrontaloxygenationresponses were carried out using Student paired t-test. Other data were analyzedusingrepeated-measuresanalysesofvariance(ANOVA) for normally distributed variables (i.e. pupillometry, HR/HRV, and fNIRSmeasurements)and Friedman’sANOVA testfor non-normally distributed variables (i.e. DP15, d-prime, and% no response). In the case of significant main effect or interaction, significantdifferencesbetweenconditionswereidentifiedusing Tukey’s HSDposthoc testsfor normal distribution orWilcoxon comparisons test for non-normal distribution. p-values were adjustedformultiplecomparisonswiththeHolm-Bonferroni cor-rection(Holm,1979).Asignificancelevelofp<0.05wasusedforall

comparisons.Effectsizeswerereportedusingpartialeta-squared (p2).

3. Results

3.1. Subjectivedifficultyratings

There wasno significant differencebetween Study 1 and 2 (p>0.05)(Mann-WhitneyUtestforeachvariable;p>0.05) regard-ing the perceived difficulty during the familiarization session. Therefore, perceived difficulty data were pooled across studies andstatisticswerealsocalculatedfor34participants.DP15 rat-ingssignificantlyincreasedwithTNTdifficulty(nlevel)(Friedman’s chi-squareANOVA=65.5;p<0.001),withratingsbeinghigherfor 1-backvs.0-back(Z=5.03;p<0.001),for2-backvs.0-back(Z=5.08; p<0.001),andfor2-backvs.1-back(Z=5.01;p<0.001).The0-back taskwasratedas“veryeasy”(averageDP15=4.5±2),the1-back taskas“somewhatdifficult”(averageDP15=7.8±1.9),andthe 2-backtaskas“verydifficult”(averageDP15=11.9±1.6).

3.2. Subjectiveanxietyratings

Subjectiveratings ofinducedstress forthe34 aversive loud soundsaregiveninSupplementarymaterial.Based onthis sub-jectivereport,ameanratingof5.4±2.4wasobserved,confirming thatsoundsweremildlystressful.

TherewasnosignificantdifferencebetweenStudy1and2 (t-testforeachvariable;p>0.05),therefore,anxietyratingsdatawere pooled acrossstudiesandstatistics werecalculated for 34 par-ticipants.Participants’anxietyscoremeasuredbySTAIY-Awere significantlyhigherattheendoftheprotocol,relativetothe begin-ning(29.1±5.9versus33.3±7.1,respectively;t=3.85;p<0.001). Thisoutcomeshowsthattheexperimentproducedanincreased anxiety.

3.3. Behavioraldata

There wasno significant differencebetween Study 1 and 2 regardingthebehavioralperformance(Mann-WhitneyUtestfor eachvariable;p>0.05).Therefore,behavioraldatawerealsopooled acrossstudiesandstatisticswerecalculatedfor 34participants. Cognitivescoresforeachn-backconditionwereassessedusing d-primeandpercentageofmiss(“noresponse”)(Fig.4).Participants showedlowerd-primescoreswithincreasedtaskdifficulty (Fried-man’schi-squareANOVA=115.7;p<0.001).Post-hoccomparison revealedsignificantdifferences(p<0.001)foralln-backlevelas summarizedinFig.4.Similarresultswereobservedforthe per-centageofomittedresponses,whichmonotonicallyincreasedwith

Fig.4. Behavioralperformance.TNTscoresforeachlevelofdifficulty(0-,1-,and2-back)andthreatcondition(safeandthreat).ErrorbarsareS.D.Left-d-primecalculated asz(hitrate)−z(falsealarmrate).Right-thepercentageof“noresponse”.n=34.

(8)

Fig.5.Cardiovascularactivity.Cardiovascularactivityforeachlevelofdifficulty(0-,1-,and2-back)andthreatcondition(safeandthreat).ErrorbarsareS.E.Left-Heartrate. Right-Heartratevariability.n=33.

Fig.6. Tonicpupildiameter.Barheightshowsmeantonicpupildiameterforeach levelofdifficulty(rest,0-,1-,and2-back)andthreatcondition(safeandthreat). ErrorbarsrepresentS.E.n=13.

taskdifficulty(Friedman’schi-squareANOVA=57.9;p<0.001).The threatofunpredictableauditorystressorsdidnotimpact behav-ioralperformance(p>0.05).

3.4. Cardiovascularactivity

Therewas no significant differencebetween study 1 and 2 (p>0.05)regardingcardiovascularactivity.Therefore,HRdatawere alsopooled acrossstudiesand statistics werecalculated for 33 participants. There was a significant elevation of the HR with increasedTNT difficulty(F2,62=20.5; p<0.001;p2=0.40),with

a monotonical increased across each level of difficulty (small-est p-value=0.019). HR was also impacted by stress, it was higher under the threat of the unpredictable aversive sounds (F1,32=4.35;p<0.05;p2=0.12)(Fig.5).Therewasalsoa

signif-icantdecreaseinHRV(RMSSD) withtaskdifficulty(F2,62=12.1;

p<0.001;p2=0.28),HRVwassmallerin0-backvs.1-and2-back

(smallestp-value<0.001)(Fig.5).Finally,HRVwasnotimpacted bystress(p>0.05).

3.5. Pupillometry

3.5.1. Tonicpupildiameter

Tonicpupildiametersignificantlyincreasedwithtaskdifficulty (F3,36=26.27;p<0.001;p2=0.69)(Fig.6).Post-hoctestsshowed

thatpupildiameterwassignificantlyhigherduring1-and2-back vs.restingperiod(p<0.01andp<0.001respectively)and

signifi-Fig.7. Phasicpupilresponse.Grand-averageofphasicpupilresponsealignedto thestimulusonsetforeachlevelofdifficulty(rest,0-,1-,and2-back)andthreat condition(safeandthreat).Verticallinesindicatethetimeintervalusedforpeak computation.n=13.

cantlyhigherduring2-backcomparedto0-and1-back(p<0.001 inbothcomparisons).Therewasnoeffectofthreatontonicpupil diameter(F1,12=0.75;p2=0.06), neitheranydifficultyxthreat

interaction(F3,36=1.27;p2=0.10).

3.5.2. Phasicpupilresponse

Phasicpupilresponseamplitudes(Fig.7)significantlydecreased with n-back task difficulty (F3,36=12.05; p<0.001; p2=0.50).

Moreprecisely,asignificantlyhigherdilationwasobservedin0-, 1-,and2-backtaskscomparedtorest(p<0.001,p<0.01andp<0.05 respectively)anddilationwasgreaterin0-backvs.2-back(p<0.05) conditions.Smalleramplitudeswereobservedinthreatconditions (F1,12=6.38;p<0.05;p2=0.35).Therewasnothreatxdifficulty

interaction (F3,36=0.33; p>0.05; p2=0.03). We conducted an

additionalanalysis in ordertoassess thepotentialinfluence of thepre-stimulusbaseline(medianofpre-stimulus500ms,used tocomputethephasicresponse)ontheresults.Therewasaneffect ofn-backtaskdifficulty(F3,36=25.38;p<0.001;p2=0.68),butno

anyeffectofthreat(F1,12=0.15;p2=0.01)orthreatxdifficulty

interaction(F3,36=0.56;p2=0.04)onpupildiameterduringthe

(9)

Fig.8.Braintopographymaps.AnteriorviewofthefrontalcortexshowingregionswherePFCbloodoxygenation(HbO2−HHb)increasedwithn-backtaskdifficulty(0-,1-,

and2-back)andthreatcondition(safeandthreat).n=17.

3.6. Prefrontalcortexoxygenationchanges

Brain topography of PFC blood oxygenation is illustrated in

Fig.8.PFCbloodoxygenationwasdependentonn-backtask dif-ficulty (F2,34=4.14; p<0.05; p2=0.20). More precisely, it was

significantlyhigherin1-backvs.0-backcondition(p<0.05)and marginallyhigher in 2-backvs. 0-backcondition(p=0.06).PFC bloodoxygenationwasnotdifferentin1-backvs.2-back condi-tion(p=0.96).Thetaskdifficultyxregionofinterestinteraction wassignificant(F4,68=3.02;p<0.05;p2=0.15).HSDrevealedthat

difficultyhadnosignificanteffectonthefrontopolarregionofthe prefrontalcortex(p>0.05);onthecontrary,oxygenationwas sig-nificantlyhigherintheleftandrightprefrontalcortexin1-back vs.0-backandin2-backvs.0-back(smallestp-value=0.001).As showedFig.8,PFCbloodoxygenationwasalsosignificantlyhigher inthreatvs.safeconditions(F1,17=4.81;p<0.05;p2=0.22).The

taskdifficultyxstress interactionwasnot significant(p>0.05), however,thevisualinspectionofFig.8highlightsalargereffectof threatontheprefrontalactivityinthe0-backconditionin com-parisontothe 1-backand 2-backconditions. Coherently,effect sizes(independentlyoftheregionsofinterest)showedthatthe strengthoftheimpactofthethreatconditionwasclearlylargerin 0-backcondition(p2=0.39)comparedto1-back(p2=0.04)and

2-backconditions(p2=0.04).Itsuggeststhatincreasingsample

sizemightrevealamitigationoftheeffectofstresswithincreasing workingmemoryload.HRwasnotcorrelatedwithprefrontal activ-ityinnoneoftheexperimentalconditions(smallestp-value>0.05), increasedprefrontaloxygenationcannotbeassociatedwitha gen-eralincreaseofthesystemiccardiovascularactivity.

4. Discussion

Usinganovelmentalarithmeticn-backtask(i.e.Toulouse N-backTask),weexaminedintwoseparatestudieshowmentaleffort andstressimpactedtaskperformance,pupilresponse(study1), cardiovascularactivity(study1and2),andprefrontalcortex oxy-genation(study2).Highertaskdifficulty(highernlevel)increased perceiveddifficulty,degradedtheperformanceandprovokedan increasedtonic pupildiameter,HR and oxygenationin the lat-eralprefrontalcortex,andadecreasedphasicpupilresponseand

HRV.Importantly,theconditionofstressdidnotimpactthe per-formance, but at the expense of a psychophysiological cost as demonstratedbylowerphasicpupilresponse,increasedHRand greaterprefrontaloxygenation.Thesefindingsconfirmedthe psy-chophysiologicalcostofbothmentaleffortandstressandsupport thecommonideaoftheprocessingefficiencytheory(Eysenckand Calvo,1992)andthecognitive-energeticalframework(Robertand Hockey,1997),namely,thefactthatstresscanreducehuman cog-nitiveefficiency,evenintheabsenceofavisibleimpactonthetask performance.Stresslikelytriggeredincreasedmotivationandthe recruitmentofadditionalcognitiveresourcesthatminimizedits aversiveeffectsontaskperformance,butthiswasassociatedwith alossofcognitiveefficiency.

4.1. Thepsychophysiologicalcostofmentaleffort

The increase of subjective perceived difficulty, thedecrease ofperformance(d-primescore)andtheincreaseinthe percent-ageofmissedresponsesacrossthethreen-backlevelsconfirmed thatmentaleffortwasefficientlymodulated.Thishigherdifficulty causedanincreasedtonicpupildiameterandHRandadecreased phasicpupilresponseandHRV.Classically,highertonicpupil diam-eter(Beatty,1982;Causse,Sénard,Démonet,&Pastor,2010;Reiner &Gelfeld,2014;Peysakhovich,Causse,Scannella,&Dehais,2015), increasedHR,anddecreasedHRV(Riese,1999;Causseetal.,2011a) arefoundunderconditionsofhighload.Interestingly,thephasic pupilresponsediminishedwithincreaseddifficulty,ina similar fashionthanthecommonlyobservedreducedamplitudeof elec-troencephalographyevent-relatedpotentialswhenresourcesare consumedbyahighmentalworkload(VanDillen&Derks,2012;

Giraudet,St-Louis,Scannella,&Causse,2015;Causseetal.,2016). Contrary totonicpupildiameterthat is usedtomeasure men-taleffortthroughoutthedurationofatask,event-relatedphasic changesinpupildiameterrelatetoacutetaskdemands(Brunyé etal.,2016).Astonicloadonmemoryincreasedwiththenlevel, itislikelythatfewerresourceswereavailabletoprocessthe arith-meticoperationswhichinturnprovokedareducedphasicpupil responsetotheseoperations.

TheTNTincreaseddifficultyalsoyieldedgreaterPFC oxygena-tion.ThisisconsistentwithpreviousstudiesshowingthatfNIRS

(10)

issensitivetoWMload(Fishburnetal.,2014;Gateauetal.,2015; Herffetal.,2014;Pecketal.,2014;Yukseletal.,2015),ormental workload,forexampleduringanarithmetictask(Mandricketal., 2013a).Asinpreviousworks(Fishburnetal.,2014;Owenetal., 2005;Satoetal.,2013),thisincreasedoxygenationwasrather local-izedinleft/rightlateralregions,whichconfirmsthecrucialroleof thelateralregionsoftheprefrontalcortexinworkingmemory pro-cesses(Curtis&D’Esposito,2003;Owen,Evans,&Petrides,1996;

DePisapia,Slomski,&Braver,2007)andmentalarithmetic(Gruber, Indefrey,Steinmetz,&Kleinschmidt,2001).

4.2. Thepsychophysiologicalcostofstress

AssuggestedbyDavisetal.(2010)theexpectancyofan unpre-dictableanduncontrollablestressorshouldbesufficienttocreate athreateningcontextandtodegradetaskperformance(Barrett& Armony,2006),atleastwhenthependingstimulusissufficiently aversive(Grillonetal.,2004).Ithasbeenpreviouslyshownthat even quitemild stresscancause a rapidloss of cognitive abil-ities (Arnsten, 2009, 2015). However,in the present study, we didnot observea significanteffectoftheauditorystressorson taskperformance.Yet,thesurveysconductedpriortothe exper-iment,theratingsof theparticipantsin thepresentstudy, and theresultfromthespectralfrequency–temporalmodulation anal-ysissuggest that ourauditory stimuli should beconsidered as mildlystressful.Importantly,inthelight oftheprocessing effi-ciencytheory(Eysenck&Calvo,1992)andthecognitive-energetical framework (Robert and Hockey,1997), ourpsychophysiological resultsmightbeinterpretedasareducedcognitiveefficiencyas participantsmighthaveemployedcognitivestrategiesand com-pensatoryeffortduringthestressconditioninordertomaintain theirperformance (Eysenck &Calvo,1992; Eysenck,Derakshan, Santos,&Calvo,2007).Wearguethatthecognitiveperformance effectiveness(qualityofperformance)inthetaskwasnotimpaired bythestressorsthankstotheenhancedeffortanduseofauxiliary processingresourcesandstrategies,butinturn,theprocessing effi-ciency(performanceeffectivenessdividedbyeffort)wasmarkedly reduced.Thisreducedprocessingefficiencywasreflectedbythe decreasedphasicpupilresponse,whichlikelyindexedthedecline oftheavailableresourcestocomputethearithmeticoperations. TheincreasedHRfoundinthethreatconditionconfirmedthatthe threatofunpredictableaversiveloudsoundsprovokedasignificant elevationofthelevelofstress/anxiety.TheamplitudeoftheHR elevationwasconsistentwithresultsfromBrosschotandThayer (2003)studythatrevealedanincreaseofHRofapproximatively1 beatperminuteafternegativeevents.

PFCoxygenationwasalsomoreimportantduringthreat condi-tion.Thissupportstheideathatcompensatoryeffortwasengaged tocopewiththethreat.Previousneuroimagingstudiesshowed thatPFC is sensitivetoemotion (Doi etal., 2013;Tupak et al., 2014),andthatthisbrainregioncontributestoregulationof cog-nitiveprocesseswithemotion(Beer,Knight,&D’Esposito,2006;

Hänsel&Känel, 2008;Seo and Sinha,2011(ch9)).Interestingly, dorsolateralPFCseemstohaveapivotalroleinthecognitive con-trolofemotion(Cerqueiraetal.,2008;Miller andCohen,2001; Robinsonetal.,2013;SeoandSinha,2011(ch9))andrecent liter-aturealsosupportsthehypothesisthatdorsolateralPFCregions subservescrucialfunction,suchasexecutivecontrolandworking memory,thatcontributetotheregulationofemotion(Okon-Singer, Pessoa,&Shackman,2015).Theexecutivecontrolwouldactasa shieldtoprotectcognitionfromtheinfluenceofemotional dis-tractors(Clarke&Johnstone,2013;Robinson etal.,2013).Also, someauthorshavepostulatedthatPFCexertsacontrolondeep brainlimbic regions, suchas the amygdala, in order to modu-latetheeffectsofthreat.Forexample,Vytal,Overstreet,Charney, Robinson and Grillon(2014) showed that PFC(particularly the

bilateraldorsomedialportion)sustains defensivereadiness dur-inganxietybymaintainingsynchronizedandcoupledinteraction withthebilateralamygdala.Authorsstatedthattheconnectivity betweenPFCandamygdala“mayservetokeeptheamygdalain aprimedstateduringuncertainthreatandthendriveoramplify amygdalareactivity whenanexplicitthreatisencountered”.As fNIRSdeviceusedinthisstudycouldnotmeasuredeepregions ofthebrain,theassumptionthatdorsolateralPFCpossibly partici-pateincognitivestrategiestocopewiththeaversiveeffectofstress, throughmodulationofsubcorticalandlimbicregions(forexample, hypothalamus,hippocampus,andamygdala),shouldbeconfirmed byafuturefMRIstudy.

Contrarytostudiesshowingthattheimpactofstressis miti-gatedbytaskdifficulty(Clarke&Johnstone,2013;Pateletal.,2015; Robinsonetal.,2013), andotherworkshowingthat distracting effectsarereducedwhenattentionisstronglyengagedinatask(Hu etal.,2012;Pessoaetal.,2002;VanDillenetal.,2009),orauthors thatputforwardtheideaofadynamicbalancebetweenemotion andcognitioninthebrain(Drevets&Raichle,1998),theimpactof thethreatonbehaviorandpsychophysiologywasnotsignificantly modulatedbytaskdifficultyinourstudy.Yet,visualinspectionof theprefrontalcortexactivationsuggestsalargereffectofthreaton theprefrontalactivityinthe0-backconditionincomparisonto 1-backand2-backconditions.Coherently,effectsizes(irrespectively oftheregionsofinterest)showedthatthestrengthoftheimpactof thethreatconditionwereclearlylargerin0-backcondition com-paredto1-backand2-backconditions.Anincreasedsamplesize mighthaverevealedasignificantmitigationoftheimpactofstress onprefrontalactivitybytaskdifficulty.

5. Conclusion

Toourknowledge,thisisthefirststudytoinvestigatethe reg-ulationof humanperformance under stressand highworkload using pupil diameter, cardiovascular and prefrontal oxygena-tionmeasurements.ParticipantsperformedtheToulouseN-back Task, which mimics the multidimensional high mental work-loadexistinginmanysafety-criticaloccupations.Duringthetask, weinducedsustainedanxietyusingthethreatofunpredictable loudsounds,proventobemildlystressfulbysurveysconducted priorand duringtheexperimentand byresultsfroma spectral frequency–temporalmodulationanalysis.Weconfirmedthathigh mentaleffort(generatedbyanincreasedlevelofworkingmemory load)provoked increasedsubjective perceiveddifficulty, lower-ingoftheperformance,increasedtonicpupildiameterandheart rate,decreasedphasicpupilresponseandheartratevariability,and finallyincreasedprefrontaloxygenation,particularlyinthe dor-solateralPFCregions. Thethreatof unpredictableaversive loud soundsdidnotimpact taskperformance. We suggest that cog-nitiveperformance maybeprotectedfromstress thankstothe triggeringofcognitivestrategiesandcompensatoryeffortinorder toperformthetaskadequately, but mostlikely attheexpense ofapsychophysiologicalcostassuggestedbylowerphasicpupil response,andincreasedheartrateandprefrontaloxygenation.In fine,mildstressmightreducehumancognitiveefficiency(because ofthecompensatoryeffort),evenintheabsenceofavisibleimpact ontaskperformance(effectiveness).ThePFCseemstobeacentral regionformitigatingtheinfluenceofstresssinceitsubserves cru-cialfunctionsthatsustaincopingstrategies(Arnsten,2009),such asexecutivecontrolandworkingmemory(Schmeicheletal.,2008; Okon-Singeretal.,2015).Finally,wemightpostulatethatamore intensestress,whichwouldhavecausedastrongelevationofthe HR,mayhavefinallyprovokedadeclineofperformanceinthetask. Thus,thepresentpaperalsocallsintoquestionthepossibilityto

(11)

studyvisiblealterationoftheperformanceunderstresswiththe useofthethreatofaversiveloudsounds.

Authorcontributions

MK,VP,LE,RF,andCMdesignedtheresearch,andMKandVP performedtheexperiments.MKandVPanalyzedthedata.MK,CM, VPpreparedthefiguresandwrotethemanuscript.LE,RF,andCM reviewedthemanuscript.

Conflictofintereststatement

Theauthors declarethat theresearchwasconducted inthe absenceofanycommercialorfinancialrelationshipsthatcouldbe construedasapotentialconflictofinterest.

Acknowledgements

This work was supported by the French Research National Agency and the French Defence Procurement Agency via the Accompagnement Spécifique des travaux de Recherches et d’InnovationDéfense(ASTRID).

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.biopsycho.2016. 10.002.

References

Andreassi,J.L.(2000).Pupillaryresponseandbehavior.psychophysiology:Human behavior&physiologicalresponse.pp.218–233.Mahwah,NJ:Lawrence ErlbaumAssociates.

Arnsten,A.F.T.(2009).Stresssignallingpathwaysthatimpairprefrontalcortex structureandfunction.NatureReviewNeuroscience,10(6),410–422.http://dx. doi.org/10.1038/nrn2648

Arnsten,A.F.T.(2015).Stressweakensprefrontalnetworks:Molecularinsultsto highercognition.NatureNeuroscience,18(10),1376–1385.http://dx.doi.org/10. 1038/nn.4087

Ayaz,H.(2010).Functionalnearinfraredspectroscopybasedbraincomputerinterface PhDthesis.Philadelphia,PA:DrexelUniversity.

Barrett,J.,&Armony,J.L.(2006).Theinfluenceoftraitanxietyonautonomic responseandcognitiveperformanceduringananticipatoryanxietytask. DepressionandAnxiety,23(4),210–219.http://dx.doi.org/10.1002/da.20143

Beatty,J.(1982).Task-evokedpupillaryresponses,processingload,andthe structureofprocessingresources.PsychologicalBulletin,91(2),276–292.http:// dx.doi.org/10.1037/0033-2909.91.2.276

Beer,J.S.,Knight,R.T.,&D’Esposito,M.(2006).Controllingtheintegrationof emotionandcognitiontheroleoffrontalcortexindistinguishinghelpfulfrom hurtfulemotionalinformation.PsychologicalScience,17(5),448–453.http://dx. doi.org/10.1111/j.1467-9280.2006.01726.x

Berggren,N.,Richards,A.,Taylor,J.,&Derakshan,N.(2013).Affectiveattention undercognitiveload:Reducedemotionalbiasesbutemergentanxiety-related coststoinhibitorycontrol.[OriginalResearch].FrontiersinHuman

Neuroscience,7(188)http://dx.doi.org/10.3389/fnhum.2013.00188

Bitsios,P.,Szabadi,E.,&Bradshaw,C.M.(1998).Sensitivityofthefear-inhibited lightreflextodiazepam.Psychopharmacology,135(1),93–98.

Borghini,G.,Astolfi,L.,Vecchiato,G.,Mattia,D.,&Babiloni,F.(2014).Measuring neurophysiologicalsignalsinaircraftpilotsandcardriversfortheassessment ofmentalworkload,fatigueanddrowsiness.Neuroscience&Biobehavioral Reviews,44,58–75.http://dx.doi.org/10.1016/j.neubiorev.2012.10.003

Bradley,M.M.,Miccoli,L.,Escrig,M.A.,&Lang,P.J.(2008).Thepupilasameasure ofemotionalarousalandautonomicactivation.Psychophysiology,45(4), 602–607.

Breier,A.,Albus,M.,Pickar,D.,Zahn,T.P.,Wolkowitz,O.M.,&Paul,S.M.(1987).

Controllableanduncontrollablestressinhumans:Alterationsinmoodand neuroendocrineandpsychophysiologicalfunction.TheAmericanJournalof Psychiatry,144(11),1419–1425.

Brosschot,J.F.,&Thayer,J.F.(2003).Heartrateresponseislongerafternegative emotionsthanafterpositiveemotions.InternationalJournalof

Psychophysiology,50(3),181–187. http://dx.doi.org/10.1016/S0167-8760(03)00146-6

Brunyé,T.T.,Eddy,M.D.,Mercan,E.,Allison,K.H.,Weaver,D.L.,&Elmore,J.G. (2016).Pupildiameterchangesreflectdifficultyanddiagnosticaccuracy

duringmedicalimageinterpretation.BMCMedicalInformaticsandDecision Making,16(1),77.http://dx.doi.org/10.1186/s12911-016-0322-3

Cacioppo,J.T.,&Tassinary,L.G.(1990).Inferringpsychologicalsignificancefrom physiologicalsignals.AmericanPsychologist,45(1),16.http://dx.doi.org/10. 1037/0003-066X.45.1.16

Causse,M.,Sénard,J.-M.,Démonet,J.F.,&Pastor,J.(2010).Monitoringcognitive andemotionalprocessesthroughpupilandcardiacresponseduringdynamic versuslogicaltask.AppliedPsychophysiologyandBiofeedback,35(2),115–123.

http://dx.doi.org/10.1007/s10484-009-9115-0

Causse,M.,Baracat,B.,Pastor,J.,&Dehais,F.(2011).Rewardanduncertaintyfavor riskydecision-makinginpilots:Evidencefromcardiovascularandoculometric measurements.AppliedPsychophysiologyandBiofeedback,36(4),231–242.

http://dx.doi.org/10.1007/s10484-011-9163-0

Causse,M.,Dehais,F.,&Pastor,J.(2011).Executivefunctionsandpilot

characteristicspredictflightsimulatorperformanceingeneralaviationpilots. TheInternationalJournalofAviationPsychology,21(3),217–234.http://dx.doi. org/10.1080/10508414.2011.582441

Causse,M.,Péran,P.,Dehais,F.,Caravasso,C.F.,Zeffiro,T.,Sabatini,U.,&Pastor,J. (2013).Affectivedecisionmakingunderuncertaintyduringaplausible aviationtask:AnfMRIstudy.Neuroimage,71,19–29.http://dx.doi.org/10. 1016/j.neuroimage.2012.12.060

Causse,M.,Peysakhovich,V.,&Fabre,E.F.(2016).Highworkingmemoryload impairslanguageprocessingduringasimulatedpilotingtask:AnERPand pupillometrystudy.FrontiersinHumanNeuroscience,10http://dx.doi.org/10. 3389/fnhum.2016.00240

Cerqueira,J.J.,Almeida,O.F.X.,&Sousa,N.(2008).Thestressedprefrontalcortex. left?right!.Brain,Behavior,andImmunity,22(5),630–638.http://dx.doi.org/10. 1016/j.bbi.2008.01.005

Clarke,R.J.,&Johnstone,T.(2013).Prefrontalinhibitionofthreatprocessing reducesworkingmemoryinterference.FrontiersinHumanNeuroscience,7,228.

http://dx.doi.org/10.3389/fnhum.2013.00228

Cohen,N.,Moyal,N.,&Henik,A.(2015).Executivecontrolsuppressespupillary responsestoaversivestimuli.BiologicalPsychology,112,1–11.http://dx.doi. org/10.1016/j.biopsycho.2015.09.006

Curtis,C.E.,&D’Esposito,M.(2003).Persistentactivityintheprefrontalcortex duringworkingmemory.TrendsinCognitiveSciences,7(9),415–423.http://dx. doi.org/10.1016/S1364-6613(03)00197-9

Davis,M.,Walker,D.L.,Miles,L.,&Grillon,C.(2010).Phasicvssustainedfearin ratsandhumans:Roleoftheextendedamygdalainfearvsanxiety. Neuropsychopharmacology,35(1),105–135.http://dx.doi.org/10.1038/npp. 2009.109

DePisapia,N.,Slomski,J.A.,&Braver,T.S.(2007).Functionalspecializationsin lateralprefrontalcortexassociatedwiththeintegrationandsegregationof informationinworkingmemory.CerebralCortex,17(5),993–1006.http://dx. doi.org/10.1093/cercor/bhl010

Delignières,D.,Famose,J.P.,&Genty,J.(1994).Validationofascaleforthe assessmentofperceivedtaskdifficulty.Staps,34,77–88.

Doi,H.,Nishitani,S.,&Shinohara,K.(2013).NIRSasatoolforassayingemotional functionintheprefrontalcortex.FrontiersinHumanNeuroscience,7,770.

http://dx.doi.org/10.3389/fnhum.2013.00770

Drevets,W.C.,&Raichle,M.E.(1998).Suppressionofregionalcerebralblood duringemotionalversushighercognitiveimplicationsforinteractions betweenemotionandcognition.CognitionandEmotion,12(3),353–385.http:// dx.doi.org/10.1080/026999398379646

Durantin,G.,Gagnon,J.-F.,Tremblay,S.,&Dehais,F.(2014).Usingnearinfrared spectroscopyandheartratevariabilitytodetectmentaloverload.Behavioural BrainResearch,259,16–23.http://dx.doi.org/10.1016/j.bbr.2013.10.042

Eysenck,M.W.,&Calvo,M.G.(1992).Anxietyandperformance:Theprocessing efficiencytheory.Cognition&Emotion,6(6),409–434.http://dx.doi.org/10. 1080/02699939208409696

Eysenck,M.W.,Derakshan,N.,Santos,R.,&Calvo,M.G.(2007).Anxietyand cognitiveperformance:Attentionalcontroltheory.Emotion,7(2),336.http:// dx.doi.org/10.1037/1528-3542.7.2.336

Fishburn,F.A.,Norr,M.E.,Medvedev,A.V.,&Vaidya,C.J.(2014).Sensitivityof fNIRStocognitivestateandload.FrontiersinHumanNeuroscience,8,76.http:// dx.doi.org/10.3389/fnhum.2014.00076

Gateau,T.,Durantin,G.,Lancelot,F.,Scannella,S.,&Dehais,F.(2015).Real-Time stateestimationinaflightsimulatorusingfNIRS.PLoSOne,10(3)http://dx.doi. org/10.1371/journal.pone.0121279

Gauthier,J.,&Bouchard,S.(1993).Adaptationcanadienne-franc¸aisedelaforme réviséeduState–TraitAnxietyInventorydeSpielberger.CanadianJournalof BehaviouralScience/RevueCanadienneDesSciencesDuComportement,25(4), 559.

Giraudet,L.,St-Louis,M.-E.,Scannella,S.,&Causse,M.(2015).P300event-related potentialasanindicatorofinattentionaldeafness?PLoSOne,10(2),e0118556.

http://dx.doi.org/10.1371/journal.pone.0118556

Grillon,C.,Baas,J.P.,Lissek,S.,Smith,K.,&Milstein,J.(2004).Anxiousresponsesto predictableandunpredictableaversiveevents.BehavioralNeuroscience,118(5), 916–924.http://dx.doi.org/10.1037/0735-7044.118.5.916

Grillon,C.,Pine,D.S.,Lissek,S.,Rabin,S.,&Vythilingam,M.(2009).Increased anxietyduringanticipationofunpredictableaversivestimuliinposttraumatic stressdisorderbutnotingeneralizedanxietydisorder.BiologicalPsychiatry, 66(1),47–53.http://dx.doi.org/10.1016/j.biopsych.2008.12.028

Gruber,O.,Indefrey,P.,Steinmetz,H.,&Kleinschmidt,A.(2001).Dissociating neuralcorrelatesofcognitivecomponentsinmentalcalculation.Cerebral Cortex,11(4),350–359.http://dx.doi.org/10.1093/cercor/11.4.350

(12)

Hänsel,A.,&Känel,R.(2008).Theventro-medialprefrontalcortex:Amajorlink betweentheautonomicnervoussystem,regulationofemotion,andstress reactivity?BioPsychoSocialMedicine,2(1),21. http://dx.doi.org/10.1186/1751-0759-2-21

Herff,C.,Heger,D.,Fortmann,O.,Hennrich,J.,Putze,F.,&Schultz,T.(2014).Mental workloadduringn-backtask—quantifiedintheprefrontalcortexusingfNIRS. FrontiersinHumanNeuroscience,7,935.http://dx.doi.org/10.3389/fnhum.2013. 00935

Hirano,Y.,Fujita,M.,Watanabe,K.,Niwa,M.,Takahashi,T.,Kanematsu,M.,...& Onozuka,M.(2006).Effectofunpleasantloudnoiseonhippocampalactivities duringpictureencoding:AnfMRIstudy.BrainandCognition,61(3),280–285.

http://dx.doi.org/10.1016/j.bandc.2006.02.003

Holm,S.(1979).Asimplesequentiallyrejectivemultipletestprocedure. ScandinavianJournalofStatistics,6(2),65–70.

Hu,K.,Bauer,A.,Padmala,S.,&Pessoa,L.(2012).Threatofbodilyharmhas opposingeffectsoncognition.Emotion,12(1),28–32.http://dx.doi.org/10. 1037/a0024345[Washington,D.C.]

Kahneman,D.,&Beatty,J.(1966).Pupildiameterandloadonmemory.Science, 154(3756),1583–1585.

Kahneman,D.(1973).Attentionandeffort.Prentice-Hall.

Kleiner,M.,Brainard,D.,&Pelli.(2007).What’snewinpsychtoolbox-3? Perception,36.ECVPAbstractSupplement.

Kumar,S.,Forster,H.M.,Bailey,P.,&Griffiths,T.D.(2008).Mapping

unpleasantnessofsoundstotheirauditoryrepresentation.TheJournalofthe AcousticalSocietyofAmerica,124(6),3810–3817.http://dx.doi.org/10.1121/1. 3006380

Laeng,B.,Sirois,S.,&Gredebäck,G.(2012).Pupillometryawindowtothe preconscious?PerspectivesonPsychologicalScience,7(1),18–27.

Lane,R.D.,McRae,K.,Reiman,E.M.,Chen,K.,Ahern,G.L.,&Thayer,J.F.(2009). Neuralcorrelatesofheartratevariabilityduringemotion.Neuroimage,44(1), 213–222.http://dx.doi.org/10.1016/j.neuroimage.2008.07.056

Levy,R.,&Goldman-Rakic,P.S.(2000).Segregationofworkingmemoryfunctions withinthedorsolateralprefrontalcortexExecutivecontrolandthefrontallobe: Currentissues.pp.23–32.Springer.

Lupien,S.J.,Maheu,F.,Tu,M.,Fiocco,A.,&Schramek,T.E.(2007).Theeffectsof stressandstresshormonesonhumancognition:Implicationsforthefieldof brainandcognition.BrainandCognition,65(3),209–237.http://dx.doi.org/10. 1016/j.bandc.2007.02.007

Mandrick,K.,Derosiere,G.,Dray,G.,Coulon,D.,Micallef,J.-P.,&Perrey,S.(2013a). Prefrontalcortexactivityduringmotortaskswithadditionalmentalload requiringattentionaldemand:Anear-infraredspectroscopystudy. NeuroscienceResearch,76(3),156–162.http://dx.doi.org/10.1016/j.neures. 2013.04.006

Mandrick,K.,Derosiere,G.,Dray,G.,Coulon,D.,Micallef,J.-P.,&Perrey,S.(2013b). Utilizingslopemethodasanalternativedataanalysisforfunctional near-infraredspectroscopy-derivedcerebralhemodynamicresponses. InternationalJournalofIndustrialErgonomics,43(4),335–341.http://dx.doi.org/ 10.1016/j.ergon.2013.05.003

McCraty,R.,Atkinson,M.,Tiller,W.A.,Rein,G.,&Watkins,A.D.(1995).Theeffects ofemotionsonshort-termpowerspectrumanalysisofheartratevariability. TheAmericanJournalofCardiology,76(14),1089–1093.http://dx.doi.org/10. 1016/S0002-9149(99)80309-9

Miller,E.K.,&Cohen,J.D.(2001).Anintegrativetheoryofprefrontalcortex function.AnnualReviewofNeuroscience,24(1),167–202.http://dx.doi.org/10. 1146/annurev.neuro.24.1.167

Morinaga,K.,Akiyoshi,J.,Matsushita,H.,Ichioka,S.,Tanaka,Y.,Tsuru,J.,&Hanada, H.(2007).Anticipatoryanxiety-inducedchangesinhumanlateralprefrontal cortexactivity.BiologicalPsychology,74(1),34–38.http://dx.doi.org/10.1016/j. biopsycho.2006.06.005

Okon-Singer,H.,Hendler,T.,Pessoa,L.,&Shackman,A.J.(2015).Theneurobiology ofemotion-cognitioninteractions:Fundamentalquestionsandstrategiesfor futureresearch.FrontiersinHumanNeuroscience,9(58)http://dx.doi.org/10. 3389/fnhum.2015.00058

Owen,A.M.,Evans,A.C.,&Petrides,M.(1996).Evidenceforatwo-Stagemodelof spatialworkingmemoryprocessingwithinthelateralfrontalcortex:A positronemissiontomographystudy.CerebralCortex,6(1),31–38.

Owen,A.M.,McMillan,K.M.,Laird,A.R.,&Bullmore,E.(2005).N-backworking memoryparadigm:Ameta-analysisofnormativefunctionalneuroimaging studies.HumanBrainMapping,25(1),46–59.http://dx.doi.org/10.1002/hbm. 20131

Partala,T.,&Surakka,V.(2003).Pupilsizevariationasanindicationofaffective processing.InternationalJournalofHuman-computerStudies,59(1),185–198.

Patel,N.,Vytal,K.,Pavletic,N.,Stoodley,C.,Pine,D.S.,Grillon,C.,&Ernst,M. (2015).Interactionofthreatandverbalworkingmemoryinadolescents. Psychophysiology,http://dx.doi.org/10.1111/psyp.12582

Peck,E.M.,Afergan,D.,Yuksel,B.F.,Lalooses,F.,&Jacob,R.J.K.(2014).UsingfNIRS tomeasurementalworkloadintherealworld.InS.H.Fairclough,&K.Gilleade (Eds.),Advancesinphysiologicalcomputing(pp.117–139).London:Springer [Consultéàl’adresse]. http://link.springer.com/chapter/10.1007/978-1-4471-6392-36

Pessoa,L.,McKenna,M.,Gutierrez,E.,&Ungerleider,L.G.(2002).Neural processingofemotionalfacesrequiresattention.ProceedingsoftheNational AcademyofSciencesoftheUnitedStatesofAmerica,99(17),11458–11463.

http://dx.doi.org/10.1073/pnas.172403899

Peysakhovich,V.,Causse,M.,Scannella,S.,&Dehais,F.(2015).Frequencyanalysis ofatask-evokedpupillaryresponse:Luminance-independentmeasureof

mentaleffort.InternationalJournalofPsychophysiology,97(1),30–37.http://dx. doi.org/10.1016/j.ijpsycho.2015.04.019

Qin,S.,Hermans,E.J.,vanMarle,H.J.F.,Luo,J.,&Fernández,G.(2009).Acute psychologicalstressreducesworkingmemory-relatedactivityinthe dorsolateralprefrontalcortex.BiologicalPsychiatry,66(1),25–32.http://dx.doi. org/10.1016/j.biopsych.2009.03.006

Quintana,D.S.,Guastella,A.J.,Outhred,T.,Hickie,I.B.,&Kemp,A.H.(2012).Heart ratevariabilityisassociatedwithemotionrecognition:Directevidencefora relationshipbetweentheautonomicnervoussystemandsocialcognition. InternationalJournalofPsychophysiology,86(2),168–172.http://dx.doi.org/10. 1016/j.ijpsycho.2012.08.012

Reiner,M.,&Gelfeld,T.M.(2014).Estimatingmentalworkloadthrough event-relatedfluctuationsofpupilareaduringataskinavirtualworld. InternationalJournalofPsychophysiology,93(1),38–44.http://dx.doi.org/10. 1016/j.ijpsycho.2013.11.002

Riese,H.(1999).Mentalfatigueafterverysevereclosedheadinjury:Sustained performance,mentaleffort,anddistressattwolevelsofworkloadinadriving simulator.NeuropsychologicalRehabilitation,9(2),189–205.http://dx.doi.org/ 10.1080/713755600

Robert,G.,&Hockey,J.(1997).Compensatorycontrolintheregulationofhuman performanceunderstressandhighworkload:Acognitive-energetical framework.BiologicalPsychology,45(1),73–93.http://dx.doi.org/10.1016/ S0301-0511(96)05223-4

Robinson,O.J.,Vytal,K.,Cornwell,B.R.,&Grillon,C.(2013).Theimpactofanxiety uponcognition:Perspectivesfromhumanthreatofshockstudies.Frontiersin HumanNeuroscience,7,203.http://dx.doi.org/10.3389/fnhum.2013.00203

Ryu,K.,&Myung,R.(2005).Evaluationofmentalworkloadwithacombined measurebasedonphysiologicalindicesduringadualtaskoftrackingand mentalarithmetic.InternationalJournalofIndustrialErgonomics,35(11), 991–1009.http://dx.doi.org/10.1016/j.ergon.2005.04.005

Salzman,C.D.,&Fusi,S.(2010a).Emotion,cognition,andmentalstate representationinamygdalaandprefrontalcortex.AnnualReviewof Neuroscience,33,173.http://dx.doi.org/10.1146/annurev.neuro.051508. 135256

Salzman,C.D.,&Fusi,S.(2010b).Emotion,cognition,andmentalstate representationinamygdalaandprefrontalcortex.AnnualReviewof Neuroscience,33,173–202.http://dx.doi.org/10.1146/annurev.neuro.051508. 135256

Sato,H.,Yahata,N.,Funane,T.,Takizawa,R.,Katura,T.,Atsumori,H.,...&Kasai,K. (2013).ANIRS?fMRIinvestigationofprefrontalcortexactivityduringa workingmemorytask.Neuroimage,http://dx.doi.org/10.1016/j.neuroimage. 2013.06.043

Schmeichel,B.J.,Volokhov,R.N.,&Demaree,H.A.(2008).Workingmemory capacityandtheself-regulationofemotionalexpressionandexperience. JournalofPersonalityandSocialPsychology,95(6),1526.http://dx.doi.org/10. 1037/a0013345

Schoofs,D.,Wolf,O.,&Smeets,T.(2009).Coldpressorstressimpairsperformance onworkingmemorytasksrequiringexecutivefunctionsinhealthyyoungmen. BehavioralNeuroscience,123(5),1066–1075.

Seo,D.,&Sinha,R.(2011).Neuralmechanismsofstressandaddiction.InB.Adinoff, &E.A.Stein(Eds.),Neuroimaginginaddiction(pp.209–233).Chichester,UK: JohnWiley&Sons,Ltd.http://dx.doi.org/10.1002/9781119998938

Spielberger,C.D.,Gorsuch,R.L.,&Lushene,R.E.(1970).State-Traitanxiety inventory.CA:ConsultingPsychologistsPress.

Starcke,K.,Wiesen,C.,Trotzke,P.,&Brand,M.(2016).Effectsofacutelaboratory stressonexecutivefunctions.[Originalresearch].FrontiersinPsychology, 7(461)http://dx.doi.org/10.3389/fpsyg.2016.00461

Tanida,M.,Katsuyama,M.,&Sakatani,K.(2007).Relationbetweenmental stress-inducedprefrontalcortexactivityandskinconditions:Anear-infrared spectroscopystudy.BrainResearch,1184,210–216.http://dx.doi.org/10.1016/j. brainres.2007.09.058

TaskForceoftheEuropeanSocietyofCardiologytheNorthAmericanSocietyof Pacing.(1996).Heartratevariabilitystandardsofmeasurement,physiological interpretation,andclinicaluse.Circulation,5,1043.http://dx.doi.org/10.1161/ 01.CIR.93.5.1043

Tupak,S.V.,Dresler,T.,Guhn,A.,Ehlis,A.-C.,Fallgatter,A.J.,Pauli,P.,&Herrmann, M.J.(2014).Implicitemotionregulationinthepresenceofthreat:Neuraland autonomiccorrelates.Neuroimage,85(Part1),372–379.http://dx.doi.org/10. 1016/j.neuroimage.2013.09.066

VanDillen,L.F.,Heslenfeld,D.J.,&Koole,S.L.(2009).Tuningdowntheemotional brain:AnfMRIstudyoftheeffectsofcognitiveloadontheprocessingof affectiveimages.Neuroimage,45(4),1212–1219.http://dx.doi.org/10.1016/j. neuroimage.2009.01.016

Vytal,K.E.,Overstreet,C.,Charney,D.R.,Robinson,O.J.,&Grillon,C.(2014).

Sustainedanxietyincreasesamygdala-dorsomedialprefrontalcoupling:A mechanismformaintainingananxiousstateinhealthyadults.Journalof Psychiatry&Neuroscience:JPN,39(5),321–329.

Yuksel,B.F.,Peck,E.M.,Afergan,D.,Hincks,S.W.,Shibata,T.,Kainerstorfer,J.,...& Jacob,R.J.K.(2015).Functionalnear-infraredspectroscopyforadaptive human-computerinterfaces(Vol.9319,p.93190R-93190R-9).http://dx.doi.org/ 10.1117/12.2075929

Zald,D.H.,&Pardo,J.V.(2002).Theneuralcorrelatesofaversiveauditory stimulation.NeuroImage,16(3,PartA),746–753.http://dx.doi.org/10.1006/ nimg.2002.1115

(13)

Zhou,F.,Qu,X.,Helander,M.G.,&Jiao,J.R.(2011).Affectpredictionfrom physiologicalmeasuresviavisualstimuli.InternationalJournalof

Human-ComputerStudies,69(12),801–819.http://dx.doi.org/10.1016/j.ijhcs. 2011.07.005

Furtherreading

Chi,T.,Ru,P.,&Shamma,S.A.,2005.Multiresolution spectrotem-poral analysis of complex sounds. The Journalof the Acoustical SocietyofAmerica.118(2)887–906.doi:10.1121/1.1945807.

Kumar,S.,Kriegstein,K.,Friston,Von,&Griffiths,K.2012. Fea-turesversusfeelings:Dissociablerepresentationsoftheacoustic featuresandvalenceofaversivesounds,TheJournalofNeuroscience, 32(41)14184–14192.doi:10.1523/jneurosci.1759-12.2012.

Shamma,S.2003.Encodingsoundtimbreintheauditorysystem IETE,JournalofResearch,49(2-3)145-156

Figure

Fig. 1. Toulouse N-back Task. An example of trials for the TNT, in which participants combined mental calculations with n-back task
Fig. 2. Experimental timeline. TNT experimental block design sessions with two runs for threat condition and one run for the safe condition
Fig. 4. Behavioral performance. TNT scores for each level of difficulty (0-, 1-, and 2-back) and threat condition (safe and threat)
Fig. 5. Cardiovascular activity. Cardiovascular activity for each level of difficulty (0-, 1-, and 2-back) and threat condition (safe and threat)
+2

Références

Documents relatifs

Repeated measures analyses of variance (ANOVAs) were used to test the effects of session (i.e., experimental versus baseline), temporal window (i.e., 30 s versus 5 min following the

In this study, reproductive performance of red-backed shrikes breeding in grasslands in a 75-km 2 farmland landscape and clear-cuts in a 75-km 2 forest landscape were

The analysis of the number of attempts necessary to reach immersion depth for each manoeuvre showed a significant effect of the control-display configuration upon the number

Our first result [ 13 ], which deals with the model case of a strictly convex domain, highlights a loss in dispersion for the solution to the linear wave equation that we

activity of silver in nanowire transparent conductive films (AgNW TCFs), with or without 511. coating (polysiloxane varnish AE12 ®), and the possible release of

The main purpose of the present work was to add substantial data regarding the psychophysiological correlates of action with respective mental representation. A

We examined the association between perceived lifetime work- place stress and prostate cancer (PCa) risk in a large case–control study.. Methods: Cases were 1,933 men, aged ≤