• Aucun résultat trouvé

Summer extreme climatic event in the future: impact on net CO2 and water fluxes of an upland grassland and buffering impact of elevated atmospheric CO2.

N/A
N/A
Protected

Academic year: 2021

Partager "Summer extreme climatic event in the future: impact on net CO2 and water fluxes of an upland grassland and buffering impact of elevated atmospheric CO2."

Copied!
18
0
0

Texte intégral

(1)

HAL Id: hal-02806538

https://hal.inrae.fr/hal-02806538

Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Summer extreme climatic event in the future: impact on

net CO2 and water fluxes of an upland grassland and

buffering impact of elevated atmospheric CO2.

Jacques Roy, Damien Landais, Clément Piel, Marc Defossez, Christophe

Escape, Sebastien Devidal, Philippe Didier, Olovier Ravel, Michael Bahn,

Florence Volaire, et al.

To cite this version:

Jacques Roy, Damien Landais, Clément Piel, Marc Defossez, Christophe Escape, et al.. Summer extreme climatic event in the future: impact on net CO2 and water fluxes of an upland grassland and buffering impact of elevated atmospheric CO2.. , OpenScienceConference on Climate Extremes and Biogeochemical Cycles in the Terrestrial Biosphere: Impacts and Feedbacks Across Scales, Max-Planck-Institut. Jena, DEU., 2013, Seefeld, Austria. �hal-02806538�

(2)

Summer extreme climatic event in the future:

impact on net CO

2

and water fluxes of an upland grassland

and buffering impact of elevated atmospheric CO

2

Jacques Roy

and col. : European Ecotron of Montpellier CNRS France

Michael Bahn : Institute of Ecology University of Innsbruck Austria

Florence Volaire : CEFE CNRS, INRA Montpellier France

Angela Augusti

,

J-F Soussana, C. Picon-Cochard : UREP INRA Clermont-Ferrand France

(3)

3 platforms:

12 macrocosms

12 (300) microcosms

24 mesocosms

confinement

Environmental

control

Ecosystem process

measurements

Open to international consortia

Call in summer 2013

(4)

Intact soil monoliths

From a mid-altitude grassland

Inserted in the macrocosms

of the Ecotron

(5)

75 m

3

/ mn

(6)

Evapotranspiration: continuous

measured by weight loss (straingauges)

Net CO

2

Exchange: every 12 mn

NEE = [F x (C

out

– C

in

)] / S

Whole system calibration every night in

one macocosm by simulating known

additional respiration

(7)

2010: preconditioning

warmer and dryer scenario

reproducing the 2050 forecasted

climate for the sampled site

Annual

Precipitation

Annual Mean

Air

Temperature

1999

856 mm

8,6 °C

2050

770 mm

10,9 °C

Difference

2050/1999

- 10%

+ 2,3 °C

Control T°C:2050 Rain: 2050 Control T°C:2050 Rain: 2050

T°C: 2050 Rain: 2050

T°C: 2050 Rain: 2050

July -August

2011: full experiment

T°C and rainfall = 2050

6 macrocosms ambiant CO

2

: 390 ppm

6 macrocosms 2050 CO

2

: 520 ppm

Summer drought : - 50% rainfall

Drought (0 %) + heat wave + 3,5 °C

Gradual rewatering

(8)

mean stan error

mean stan error

mean stan error

mean stan error

CO2

391,0

1,6

392,3

1,1

520,9

1,6

518,9

2,5

T °C

15,46

0,03

16,03

0,09

15,48

0,05

16,09

0,04

VPD

0,71

0,03

0,91

0,02

0,76

0,03

0,90

0,01

Ctrl 520

Extr 520

Ctrl 390

Extr 390

(9)

0 5 10 15 20 25 30 35 40 45 2010 2011

C-380

E-380

C-520

E-520

Time (Year/month)

SWC

(%)

Soil moisture at 7cm depth

Control T°C:2050 Rain: 2050 Control T°C:2050

Rain: 2050

T°C: 2050 Rain: 2050

T°C: 2050 Rain: 2050

Control 2050: cold colors

Extreme 2050: warm colors

(10)

-4 -2 0 2 4 6 8 10 2010 2011

C-380

E-380

C-520

E-520

Time (Year/month)

NEE

(g

CO

2

.m².

day

-1

)

Net Ecosystem Exchange (24h)

Control T°C:2050 Rain: 2050 Control T°C:2050 Rain: 2050

T°C: 2050 Rain: 2050

T°C: 2050 Rain: 2050

CO

2

: + 29% p=0,020

Climate: - 181 % p=0,000

(11)

-4 -2 0 2 4 6 8 10 2010 2011

C-380

E-380

C-520

E-520

Time (Year/month)

NEE

(g

CO

2

.m².

day

-1

)

Net Ecosystem Exchange (24h)

Control T°C:2050 Rain: 2050 Control T°C:2050

Rain: 2050

T°C: 2050 Rain: 2050

T°C: 2050 Rain: 2050

Period Post Stress

Effet CO2 : F(1, 8)=14,00 p=,006 Vertical Bars IC = 0,95

Effect Climate: F(1,8)=14,89 p=,005 Vertical Bars IC à,95

Crl Stress Climate -40 -20 0 20 40 60 80 100 120 140 160 NE E s u m ( m g CO 2 / m ²) CO2 ACO2 CO2 ECO2

CO

2

: + 29% p=0,020

Climate: - 181 % p=0,000

Climate: + 152 % p=0,005

CO

2

: + 143 % p= 0,006

(12)

0 5 10 15 20 25 2010 2011

C-380

E-380

C-520

E-520

ETR

(kg.

day

-1

/4m²

)

Time (Year/month)

Evapotranspiration (24h)

Control T°C:2050 Rain: 2050 Control T°C:2050 Rain: 2050

T°C: 2050 Rain: 2050

T°C: 2050 Rain: 2050

CO

2

: - 3 % p=0,021

Climate: - 49 % p=0,000

(13)

0 5 10 15 20 25 2010 2011

C-380

E-380

C-520

E-520

ETR

(kg.

day

-1

/4m²

)

Time (Year/month)

Evapotranspiration (24h)

Control T°C:2050 Rain: 2050 Control T°C:2050 Rain: 2050

T°C: 2050 Rain: 2050

T°C: 2050 Rain: 2050

CO

2

: - 3 % p=0,021

Climate: - 49 % p=0,000

CO

2

*Climate: p= 0,006

Period Post Stress

CO2 * Climate : F(1, 8)=8,3402, p=,020 Crl Stress Climate 335 340 345 350 355 360 365 370 375 380 E v a p o tr a n s p ir a ti o n S u m ( k g / 4 m ²) CO2 ACO2 CO2 ECO2

(14)

-2 -1 0 1 2 3 4 5 6 7 8 2010 2011

C-380

E-380

C-520

E-520

Time (Year/month

)

Ec

o

system

W

UE

(

mg

CO

2

.g

-1

H

2

O)

Control T°C:2050 Rain: 2050

Ecosystem Water Use Efficiency (diurnal)

Control T°C:2050 Rain: 2050 Control T°C:2050 Rain: 2050

T°C: 2050 Rain: 2050

T°C: 2050 Rain: 2050

CO

2

: + 31 % p=0,007

Climate: - 150 % p=0,000

(15)

-2 -1 0 1 2 3 4 5 6 7 8 2010 2011

C-380

E-380

C-520

E-520

Time (Year/month

)

Ec

o

system

W

UE

(

mg

CO

2

.g

-1

H

2

O)

Control T°C:2050 Rain: 2050

Ecosystem Water Use Efficiency (diurnal)

Control T°C:2050 Rain: 2050 Control T°C:2050 Rain: 2050

T°C: 2050 Rain: 2050

T°C: 2050 Rain: 2050

CO

2

: + 31 % p=0,007

Climate: - 150 % p=0,000

CO

2

: + 44 % p= 0,011

Climate: + 51 % p= 0,012

Period Post Stress

Effect CO2 : F(1, 8)=10,87 p=,011 Effect Climate: F(1,8)=10,51 p=,012 Crl Stress Climate 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 WUE ( m g CO 2 / g H 2 O) CO2 ACO2 CO2 ECO2

(16)

0 500 1000 1500 2000 2500

Ctrl 390

Extr 390

Ctrl 520

Extr 520

ETR 11 months

0 100 200 300 400 500 600 700

Ctrl 390

Extr 390

Ctrl 520

Extr 520

NEE 11 months

0,00 0,50 1,00 1,50 2,00 2,50 3,00 R o o t D W, g /m 2 d

Root Growth Rate

380 ppm Control380 ppm Extremes 520 ppm Control 520 ppm Extremes

a

Ctrl 390

Extr 390

Ctrl 520

Extr 520

Extr 520

Sum all cuts

(17)

Conclusions:

Significant impact of extreme drought-Temperature on NEE

Significant positive impact of CO2, overcompensate the negative effect of extremes

More impact on roots and soil than on above ground biomass

(18)

ExpeER funds Transnational Acess to more than 30 European experimental sites

Références

Documents relatifs

In this contribution, we will explore an effect of the land plants on the Earth climate evo- lution neglected up to now: its physical impact on the global water cycle, on the albedo

Results obtained at ecosystem scale by these methods will be compared to gas exchanges measured at the level of the different comparbnents (canopy, trunk, root

The elevated [CO 2 ]-induced responses of clone I-214 included increased investment in branch and leaf biomass, and enhanced stem volume.. The elevated [CO 2 ]-induced

In Chapter 1, it was shown that e1evated C0 2 modified N returns by grazing animais by altering the partitioning of N between faeces and urine creating a potential

Average C/N ratio for the shoot (A) and the root (B) depends on the developmental stage (Fp, Pf, see text) and the condition of inoculation (Inoculated or not with

and the target variables were randomly permuted while instantaneous relationships between predictive and target variables were kept; LSTM msc = LSTM model but the Landsat time

Crop Systems and Global Change Laboratory, USDA/ARS, Beltsville, USA 23 Department of Soil, Water, & Climate, University of Minnesota, Minnesota, USA 24 CSIRO, Land and

6 Time evolution of the velocity magnitude, v, measured on the idealized sidewall aneurysm model with multi-time-lag PIV method for the pulsatile inlet flow shown in Fig..