• Aucun résultat trouvé

A variety of radars designed to explore the hidden structures and properties of the Solar System's planets and bodies

N/A
N/A
Protected

Academic year: 2021

Partager "A variety of radars designed to explore the hidden structures and properties of the Solar System's planets and bodies"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: insu-01368065

https://hal-insu.archives-ouvertes.fr/insu-01368065

Submitted on 20 Sep 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0

International License

structures and properties of the Solar System’s planets

and bodies

Valérie Ciarletti

To cite this version:

Valérie Ciarletti. A variety of radars designed to explore the hidden structures and properties of

the Solar System’s planets and bodies. Comptes Rendus Physique, Centre Mersenne, 2016, 17 (9),

pp.966-975. �10.1016/j.crhy.2016.07.022�. �insu-01368065�

(2)

JID:COMREN AID:3334 /SSU [m3G; v1.186; Prn:15/09/2016; 15:29] P.1 (1-10) C. R. Physique•••(••••)•••–•••

Contents lists available atScienceDirect

Comptes

Rendus

Physique

www.sciencedirect.com

Probing matter with electromagnetic waves / Sonder la matière par les ondes électromagnétiques

A

variety

of

radars

designed

to

explore

the

hidden

structures

and

properties

of

the

Solar

System’s

planets

and

bodies

Une

diversité

de

radars

conçus

pour

révéler

et

caractériser

les

structures

cachées

des

petits

corps

et

planètes

du

système

solaire

Valérie Ciarletti

LATMOS/IPSL,UVSQUniversitéParis-Saclay,UPMCUniversitéParis-6,CNRS,78280Guyancourt,France

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Availableonlinexxxx Keywords: Radar Spacemissions

Electromagneticwavepropagation

Mots-clés :

Radar

Missionsspatiales

Propagationdesondesélectromagnetiques

Sincethe veryfirstobservationsoftheMoonfromtheEarthwithradarin1946, radars aremoreandmorefrequentlyselectedtobepartofthepayloadofexplorationmissionsin theSolarSystem.Theyare,infact,abletocollectinformationonthesurfacestructureof bodiesorplanetshiddenbyopaqueatmospheres,toprobetheplanetsubsurfaceoreven torevealtheinternalstructureofasmallbodycometnucleus.

AbriefreviewofradarsdesignedfortheSolarSystemplanetsandbodies’explorationis presentedinthepaper.Thisreviewdoesnotaimatbeingexhaustivebutwillfocusonthe majorresultsobtained.Thevarietyofradarsthathavebeenorarecurrentlydesignedin termsoffrequencyoroperationalmodeswillbehighlighted.

©2016Académiedessciences.PublishedbyElsevierMassonSAS.Thisisanopenaccess articleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

r

é

s

u

m

é

Depuis lespremières observationsradar de laLune depuisla Terreen 1946, lesradars fontdeplusenplusfréquemmentpartiedelachargeutiledesmissionsd’explorationdu systèmesolaire.Ils sont,eneffet,capablesderecueillirdesinformationsàlafoissurla structuresuperficielled’uncorpsoud’uneplanèteàtraversuneatmosphèreoptiquement opaque,desonderlesous-sold’uneplanète,ouencorederévélerlastructureinterned’un petitcorps.

Une revue non exhaustive des radars scientifiques développés pour l’exploration des planètes et autres corps du système solaire est présentée dans cet article. Quelques résultats majeurssont présentés. L’accentest mis sur lavariété des radarsqui ontété etsontactuellementconçusentermedefréquenceoudemodeopératoireenfonctiondes contraintesdelamissionetdesobjectifsvisés.

©2016Académiedessciences.PublishedbyElsevierMassonSAS.Thisisanopenaccess articleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mailaddress:Valerie.Ciarletti@latmos.ipsl.fr.

http://dx.doi.org/10.1016/j.crhy.2016.07.022

1631-0705/©2016Académiedessciences.PublishedbyElsevierMassonSAS.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(3)

1. Introduction

Radarshaveauniquecapacitytoprovideremoteinformationabouttargetsthatcannotbereachedbyotherkindsof in-struments.Inplanetaryscience,theyhavebeensuccessfullyusedtorevealthetopographyofthesurfaceofasolarsystem’s bodies hiddenbythick atmospheres(suchasimpactcraters andvolcanoesonVenus,lakesandpossiblecryovolcanoeson Titan), thestructuresandlayers buriedunderthesurface ofplanetsgivingthusaccesstotheirgeologicalhistory(internal layering ofthe polar caps of Mars, thickness oflava flows on the Moon) or even the internal structure of smallbodies (Churyumov–Gerasimenko).

The basicprincipleofradars issimple:it isbasedonthetransmission andeventually receptionofan electromagnetic wave that has propagated through andinteracted withthe sounded environment. Aftermore orless complicatedsignal processing, theradardetermines foreach detectedechoapropagationdelay andits associatedamplitude.Both quantities arethenprocessedtoretrieveinformationonthegeometricalanddielectricpropertiesofthetargetandofthepropagation environment betweenthetargetandtheantennas.Theinstrument’sfinalradiometric performancesdependontheradar’s parameters,onthegeometricalconfiguration,onthesoundedenvironmentpropertiesandontheoptimalusemadeonthe redundancywithinthemeasurements.

Section 2ofthispaperpresentsthemainkindsofradarsthathavebeendesignedtoexplore theSolarSystem’sbodies andplanets.Theemphasisisputontheplatformsthoseradars canbeaccommodated on(i.e.spacecraftinorbitorflyby, rovermobileatthesurface,andevenstationarylander onthesurface),andonthechoiceofacenterfrequencyaccording tothescientificandtechnicalobjectivestoreach.

Anoverviewofthemainradarexperimentsdesignedforplanetaryexplorationandsomeofthemostsignificantresults theyobtainedarepresentedinthesecondsection.

2. Radarsforplanetaryexplorationandscience

Radarswere originallydevelopedformilitarypurposes,whichhasrapidlycontributedtothedevelopmentofanumber ofcivilapplicationsforsafetravelandremotesensingoftheEarthenvironment.Fordecadesnow,thefamousradar equa-tion hasbeenthe basisto designradars [1],especiallyforplanetary exploration wheredistances tothetargetsare often extremelylargeandwhereverylittleinformationisavailableonthetarget’scharacteristics.

2.1. Choosingtheplatform

The firsthistoricobservations ofthe MoonweremadefromtheEarthin1946at138MHzby theCorps’EvansSignal Laboratory,NewJersey[2,3].Aftersome unsuccessfulattempts,in1961,VenusbecamethefirstplanetoftheSolarSystem tobeexplored byaradarfromtheEarth:the34-mdishoftheGoldstoneObservatoryinCalifornia[4,5] wasusedatfirst, followedlaterbythe300-mdiameterantennaatArecibo[6].

Sincethe1980s,thevastmajorityofradars usedinplanetary sciencehavebeenoperatedonmissionsthatofferedthe opportunity tomapawholeplanetfromorbit(the MarsExpress[7]andMarsReconnaissanceOrbiter [8]missions around Mars, theMagellan missionto Mercury [9]) or during a number oflimited flybys (the Cassini missionto Saturn andits moons[10]).Inaddition,radars dedicatedtoamoreaccuratebutlocalsubsurfacecharacterizationscanbeaccommodated onboardvehiclesmobileatthesurfaceofplanets.TherecentChang’e-3mission[11]landedontheMoonaroverequipped withaGroundPenetratingRadar(GPR)inordertosoundthelunarregolithfromthesurface.ThenextESAandNASArover missions to Mars, ExoMars [12] andMars2020 will alsooperateGPRs to soundtheMartian subsurfacealong the rover’s paths.

Less conventionalexperimentshavebeenspecifically designedtoretrieveinformationonthe subsurfacestructureand itsdielectricpropertiesinveryspecificcontexts.Amongthose,wecanmentiontwobi-staticradars:

the CONSERT experiment of the Rosetta mission, designed to perform the tomography of comet 67P/Churyumov– Gerasimenko nucleus, is composed oftwo separated units,the firstone beinglocated on the surfaceofthe nucleus whiletheotheroneison-boardtheorbiter[13];

the EISS(ElectromagneticInvestigationofthe Sub-Surface)bistaticradar wasselected onthenow canceledHumbold payloadoftheExoMarsmission.Theinstrumentisabletotakeadvantageofthesimultaneouspresenceofastationary lander andamobilerovertoperformdeepsoundingoftheMartiansubsurfacearoundthelandingsite.Inmonostatic mode, the35-m-longelectrical antennas locatedon thestationaryplatformof themissionare usedfor transmission andreception. Whilein bistaticmode, a 10-cm-long magneticreceiveraccommodated on themission’s roveris able to measure three orthogonal components of the magnetic field too. These measurements allow one to retrieve the direction of arrival of each reflected wave andthus to retrieve the 3D location ofthe buried reflectors for a better understandingofthegeologicalcontextofthesite[14–16].

Finally,onanumberofspacemissions,opportunitybi-staticexperiments(oftenreferredtoasradioscienceexperiments) takeadvantageofexistingcommunicationchannelsofthespacecraftwithEarthtoperformlimitedsoundingsoftheplanet’s

(4)

JID:COMREN AID:3334 /SSU [m3G; v1.186; Prn:15/09/2016; 15:29] P.3 (1-10)

V. Ciarletti / C. R. Physique•••(••••)•••••• 3

Fig. 1. Centerfrequencyofthemainradarsthathavebeendesignedforplanetaryexploration.Foreachinstrument,thetargetisindicatedbythecolor code.

subsurface atgrazing incidence angles (forexample, the Mars Radio Science experiment [17] on-board the MarsExpress spacecraft,theClementinebi-staticradarexperimentattheMoon[18],andtheVikingbistaticradaronMars[19]).

2.2. Designingtherightradar

Thespecificationsforeachinstrumentofamissionpayloadare basedonthescientificobjectivesofthemission.Fora radar,thecharacteristicsofthetarget (range,geoelectricalandgeometricalproperties)aswellasthefinalproduct(image, topography,estimatedroughnessanddielectric properties,subsurfacecharacterization) andresolutionaimed atwillguide theradardesign.

2.2.1. Avarietyofoperatingmodes

Mostofthetime,giventhelimitedresources(ofmass,volumeandpower) availableinspacemissions,radars designed anddevelopedfor planetarymissions are adaptableenough sothat they can be operatedindifferentmodesmaking the bestwayofthehardware.Theyveryoftencanbeusedasaltimeters,synthetic-apertureradars,subsurfacesounders, scat-terometersandradiometers,andoftenalsousedtocharacterizetheatmosphereandionospherewhenrelevant.

Aradaraltimeterisusuallyanadir-looking radar.Itmeasures thepowerreceivedafteran interactionwiththe surface asafunction ofthepropagationdelayandthusprovides anestimateofthedistancebetweentheradarandthereflecting surface.Itisusedtoinferthetopographyofthesurface.Theradaraltimeterechoprofileiscontrolledbytherangetothe surface andthe surfaceback-scatteringproperties,whichdepend onthesurface roughnessatscales largerthanthe wave lengthandonthedielectricpropertiesoftheshallowsubsurface.Highfrequenciesare usuallychosenforradaraltimeters, soastolimitpenetrationintothesubsurface.

On the contrary, soundings radars are low-frequency HF Ground-Penetrating Radars. They are used to perform deep soundings(upto severalhundreds ofmeters)ofplanetary sub-surfacestructures.Thefirst radarsounderflownwas ALSE (ApolloLunar SounderExperiment)[20] onboardApollo17in1972. Twoother soundershaveexploredtheMartian sub-surface(§3.1.1):MARSIS(MarsAdvancedRadarforSubSurfaceandIonosphereSounding)[21]onboardtheEuropeanSpace Agency’sMarsExpressprobe,andSHARAD(marsSHAllowRADarsounder)[22]ontheNASAMarsReconnaissanceOrbiter (MRO).AradarsounderhasalsobeenusedontheJapaneseMoonprobeSELENE[23],launchedin2007(§3.1.2).

Asynthetic-aperture radar (SAR)is used toobtain imagesof an area atwavelengthsthat are significantly lower than thoseusedbyopticalcameras.Itusesthemotionoftheantennaoveranarea toimprovethespatialresolution;therefore, SARsaretypicallymountedonmovingspacecraft,buttheymightalsobeusedonmoving/rotatingtargets.Syntheticaperture radarsarethemostsuitableinstrumentstoprovideimagesofplanetarysurfaceshiddenbyopaqueatmosphereslikeVenus and Titan. The two Soviet spacecrafts Venera 15 and Venera 16[24] provided images of the planet in 1983 using SAR andRadar altimeters. The SAR ofthe Magellan mission[25] later in1990 achievedan almost complete coverage ofthe surface ofVenus (§2.1.1).The SARof theCassini[26] spacecraft,in orbitaroundSaturn, hasprovided impressive images ofTitansurfaceduring flybys(§2.1.2).Whenpossible,enhancedprocessingofSARdataallowustoprovidetheSAR-based topographyofasurfacewithamuchbetterresolutionthantheoneobtainedbysimpleradaraltimeters.

2.2.2. Abroadfrequencyrange

Thechoiceofthefrequencyisoftheuppermostimportancesinceitwilldrivethepenetrationdepth.Moreover,because thebandwidthislimitedbythecentralfrequency,thischoicewillalsosettherangeresolution(i.e.itsabilitytodistinguish between two targets atdifferent distances of the instrument). In the context of planetary missions, radars operating at

(5)

Fig. 2. ImagesofVenusCredit:NASA/JPL/USGS.Left:UltravioletimagebythePioneerVenusOrbiterspacecraft.Thisimagerevealsstructuresoftheatmosphere thatarenotdetectedinthevisiblelightimagebutthesurfaceremainshidden[27].Center:TopographyofsurfacebasedontheMagellanradar’sdatawith additionalinformationfromVeneraandPioneerVenusmissionsandEarth-basedradarmeasurements.Thelowestelevationsareinblue(PIA00159).Right: imageofa1.5-km-highvolcanowitharesolutionof∼675 mobtainedbytheMagellanSAR[33].

extremelydifferentfrequencies havebeenused(seeFig. 1).ThelargestwavelengthhasbeenusedbytheMARSISsounder onboard the MarsExpress ESA mission: 230 m in the vacuumfor a radar designed forkilometric penetration depths to searchforpotentialwaterreservoirsintheMartiansubsurface.Theshortestis2.18cmfortheradaroftheCassini mission,

whoseprimaryobjectiveistocharacterizeTitan’ssurfacethroughitsthickatmosphere.

Asmentionedpreviously,thechoiceofthecenterfrequencyhasanimpactontherangeresolutionsincetheresolution improves whenthebandwidthincreases.Asaconsequence,radarsdesignedtoperformdeepsoundings ofthe subsurface must operateatlow centerfrequencies andconsequently havea poorverticalresolution.Comparison oftheMARSISand ShaRadsoundersoperatedonMarsisagoodillustrationofthematter(Fig. 3).Anotherexampleofthistrade-offisprovided bytheWISDOMradarofthefutureExoMarsmission’srover.Ithasbeendesignedtoprovidehighresolutionimagesofthe shallowMartiansub-surfaceinordertosupportdrillingoperations;asaconsequence,itwilloperateonanespeciallylarge frequencybandwidthfrom0.5to3GHz,whichwilllimititspenetrationtoafewmeters.

Inadditiontotheseconsiderations,inthespecificcontextofspacemissions,wherethesizeandmassofthepayload’s instrumentsarealwaysstronglylimited,thechoiceofthefrequencyisalsoconstrainedbythesizeoftheantennausedto transmitandreceivetheelectromagneticwaves.

3. AvarietyoftargetsintheSolarSystem

The radar investigations of the SolarSystemstarted logicallywith Earth-based observationsand aimed atthe closest target to Earth, namelythe Moon.Next came VenusandMercury, followedby Marsandthe moons ofSaturn. Soonthe moons ofJupiterwillalsobeexplored byradars.Thissectionillustrates theimpressiveknowledgethathasbeenacquired ontheSolarSystemthankstoradarinstruments.

3.1. Peeringthroughadenseandopaqueatmosphere

Radars havebeensuccessfullyusedtoreveal thesurfacetopography andgeologyofplanetary bodiescovered bythick andopticallyopaqueatmospheres.VenusandTitan’sexplorationbyradarsprovidethebestillustrationsofthiscapacity.

3.1.1. Venus

ThesurfaceofVenusishiddenbythickcloudsofsulfuricacidthatpreventopticalremotesensingtechnicstoaccessthe surface[27](seeFig. 2/right).Venerawasaseriesof16flyby,orbital,andlandedmissionstoVenusconductedbytheSoviet Union from1961to1983. Mostofthesemissionsfailedbecauseofthe harshVenusianenvironment.But sinceVenera7, successful landingsofmodules abletosurvive for30to120 minatthesurface provided thefirst opticalpictures ofthe Venusianground.

TheNASAPioneerVenusOrbiterwas launchedin1978[28].Oneofthemainexperimentsonitspayloadwastheradar (ORAD)operatingat1.757GHz.Thisradaraltimeterwasusedtogetinformationonthesurfacetopographywhichhasbeen reconstructed withaverticalaccuracybetterthan200manda150-km resolution.The surfaceelectricalconductivityand roughnessat1-mscalehavebeenestimatedtoo.ThePioneerVenusOrbiter wasthefirstspacecrafttouseradartoobtain aglobalimageoftheVenussurface[29].

In 1983, thetwinVenera15 and16spacecrafts carrieda radaraltimeteranda SAR operatingat3.75GHz that were usedtomapthetopographyofthesurfacewitha1-kmresolution(from30NlatitudetotheNorthPole)[30].Theachieved verticalaccuracywasaround230m.

Finally, the Magellan spacecraft [31] was launched by NASA in1989. The radar on-board[32] collected SAR images, combinedwithaltimetryandradiometrymeasurementsatafrequencyof2.3GHz,overthemajorityofVenus’surface.The resolutionoftheSAR imageswasbetterthan150movermorethanhalftheplanet.Theverticalaccuracyofthealtimeter was betterthan50m.Combiningalltheinformationavailable,amapoftheelevationwasbuiltforthewholeplanet(see Fig. 2,center). The SAR ofthe Magellanspacecraft alsoprovided very detailedimages [33] (see Fig. 2, right)of volcanic

(6)

JID:COMREN AID:3334 /SSU [m3G; v1.186; Prn:15/09/2016; 15:29] P.5 (1-10)

V. Ciarletti / C. R. Physique•••(••••)•••••• 5

Fig. 3. ImagesofTitan:Left:.ColorcompositeimageofTitantakenduringtheCassini spacecraft’sflybyin2005[PIA06230].Athickorangehazepreventsany viewofthesurface.Right:ColorizedmosaicofTitan’snorthernlandoflakesandseasobtainedbythemultimoderadar[34].Thedryareasaredisplayed inbrown,andtheareasinterpretedasliquidhydrocarbonbodiesinblue(PIA17655).

andtectonicstructuresthatrevealedthatVenus’geologyisdominatedbyvolcanism.Theimpactcratersthatweredetected tooappearedtobeevenlyspreadovertheVenusiansurface,whichimpliesthattheplanet’sentiresurfaceisthesameage. Cratercountingsuggestsanageof1billionyears.

3.1.2. Titan

TheCassini NASAmissionwas launchedin2005toexplore Saturn,itsringsandsatellites.Aspecialattentionwaspaid toTitan,whichistheonlymoonintheSolarSystemwithathickatmosphere(10timesthickerthantheEarth’sone)that preventsobservationofitssurfaceatopticalwavelengths(seeFig. 3,left).TheHuygensESAprobesuccessfullylandedonits surfacewhilethemainspacecraftremainedinorbitaroundSaturn.Impressivesetsofradardatahavebeencollectedduring morethanonehundredflybysofTitan.Theradaron-boardtheorbiter[25]isapowerfulmultimodesystemthatcanoperate asaSAR, radaraltimeter,scatterometerandradiometer.Its principalobjectiveisto characterizethesurface ofTitanona regionalscale.The obtainedSARimages,whoseresolutionis

>

350 m, haveshowntheexistence,mostly inthenorthern hemisphere, offlatandsmooth areas,whichhavebeen interpretedaslakes andseasofethaneandmethane(see Fig. 3, right)[34].OverlappingSARimageshavebeenusedlocallytobuildSARdigitalelevationmodelsbyradarstereogrammetry [35].Theachievedresolutionisofseveralkilometershorizontallyandaround100mvertically,whichissignificantlybetter thanthealtimeter’scapacity.

The radarobservations also revealedthe presenceof numerousimpact craters, ofdunes whosesize andpatternvary withaltitudeandlatitude[36],ofriverchannels[37],ofmountains[38],ofsedimentarybasins[39],andkarsticlandscapes [40].

3.2. Soundingbeneaththesurface

UnlikeTitan andVenus’ssurface, the surface ofMars, Mercuryandthe Moonare readilyaccessible tooptical remote sensingfromorbit,butradaroperatedatlow-enoughfrequencyhavetheuniquecapacitytosoundthroughthesurfaceand accesstheburiedstructures.

3.2.1. ThesubsurfaceofMars

So far Marshas been the objectof a number ofmissions that are more andmore interested in discovering what is beneathitssurface.TherarecloudspresentintheMartianatmospheredonotpreventopticalremotesensingofthesurface fromorbitandlargedatasets obtainedbyspectro-imagers andcontext andhigh-resolutionstereoscopic camerasarenow available.Till now, twoorbital radarshavebeendesignedandusedtoretrieveinformationabouttheMartiansubsurface. The MARSISorbital radar sounder, onboardESA’s MarsExpress spacecraftlaunched in 2003, was designedto investigate theMartianionosphereandthegeologicalandhydrologicalstructureofthesubsurface,withaparticularemphasisonthe detectionofdeepbodiesofsolidorliquidwater[41].MARSISoperatesatfrequenciesof

2–5 MHz;itshorizontalresolution isabout10kmwhiletherangeaccuracyis150minvacuum[42].Theparticularlylowfrequenciesusedbytheinstrument give it a theoretical ability to detect the presence of liquid water, under ideal sounding conditions, at depths of up to

3–5 km beneaththeMartiansurface[43].Inpractice,MARSIShasachievedthislevelofsoundingperformanceonlyina numberofspecificenvironments,whichincludetheice-rich(and,thus,lowdielectricloss)NorthandSouthPolarCaps(see Fig. 4[44]),whereitprovidedestimatesofthethicknessoficedeposits,aswellasseveralothersitesatlowerlatitudes.Of thelatter,themostnotableistheMedusaeFossaeFormation,whoseradarpropagationcharacteristicsareconsistent with acomposition rangingfromadry,highly porouspyroclastic depositatone extremetoanice-rich sedimentarydepositat theother,potentiallyformed bytheredistribution ofpolarvolatilesattimesofhighobliquity [45].Hints ofseveralother moderatelydeepreflectorshavealsobeenfoundinthevicinityofMa’adimVallis, wherethere isevidencethatthey may originatefromlithologicalinterfaces[46].

MARSISwas closelyfollowedby theflight ofanotherradar soundercalledtheSHallow RADar (SHARAD)ontheMars Reconnaissance Orbiter (MRO) [47]. SHARAD was designed to complementthe capabilities andperformance of MARSIS

(7)

Fig. 4. Top:MARSISradargramoftheSouthPolearea.Bottom:Thewhitelineontheimageshowsthecorrespondinggroundtrackshowsonatopographic mapoftheareabasedondatafromtheMOLAlaseraltimeteronboardNASA’sMarsGlobalSurveyor.

Fig. 5. Top:SHARADradargramoftheNorthPolarLayeredDeposits(NPLD)overtheBasalUnit(BU).Bottom:MOLAlasertopographyalongtheground track)[47].

by operating athigher frequencies around 20 MHz to better resolve variations in near-surface composition, stratigraphy andstructure –particularlywithregardto resolvingthe internallayers ofthepolarcaps (seeFig. 5 [48]). Thehorizontal resolution of the instrument is between0.3 and 3km and the vertical resolution is about15 m (10 times better than MARSIS). ComparisonofFigs. 4 and 5givesaclearunderstanding ofthebetterresolution thatcan beobtainedathigher frequenciesbecauseoftheassociatedincreaseinthefrequencybandwidth.

Outside thepolarcaps, ShaRad soundings performed inthe eastern Hellasregion revealed electromagneticproperties thatareconsistentwithmassivewaterice,supportingthehypothesisthatgroundiceispresentinthesubsurfaceatlower latitudes[49].

The futureESA/RoscomosExoMarsroverMission[12] toMars, whichiscurrentlyplannedfor2018, willhaveonboard a groundpenetrating radar designed to soundthe very shallowsubsurface (to a depth of

3 m) along the rover path. ThisradarcalledWISDOM[50](WaterIceSubsurfaceDepositsObservationonMars)hasbeendesignedtoprovidearange resolution better than10cm inthesubsurface andisthus operatingovera large-frequencybandwidth between0.5and 3GHz.Itwillprovideinformationaboutthegeological contextandhelptotheidentificationofpotentiallyhabitablesites. Thedrillofthemissionwillthencollect,atadepth

<

2 m,samplesthatwillbeanalyzedbyasuiteofinstrumentsonboard the rover. WISDOM is a step frequency radar, thus it transmits a number of continuous wave signals, each at a single frequency ratherthan asingle pulse. Acomplete setof measurementsis performedfortherange offrequencies covered by the instrument’sbandwidth.Performingan Inverse FourierTransformonthewhole setoffrequency responses allows the computation of theimpulse response, which wouldbe readilyobtained by a pulseGPR. Thisstep frequency technic allowsabetteruseofthelimitedpoweravailableontherover.Inaddition,theantennasystemhasbeendesignedtoallow polarimetric measurements, which will provide additionalinformation about the shape andorientation ofthe reflecting structures.Giventhemission’sconstrains,WISDOMwillbeaccommodatedontheroveratadistanceofabout30cmfrom thesurface,whichisunusualforaGPRwhoseantennasareusuallyincontactwiththeground.Thisspecificconfiguration is not the mostfavorable, butprovides the opportunity to make use of the surface echo to get an estimate of the top layer dielectricconstant.Aprototypeoftheinstrumentvery similartothefinalflight model(witha totalmassof1.7kg) is currentlytestedin variousenvironments. Fig. 6 illustrates theability ofthe instrumenttoresolve fine layeringthanks to its broad frequency bandwidth[51]. Aradargram obtained withonly 1 GHz offrequency bandwidth ispresented for comparison.

ThenextMars2020NASAmissionhasalsoselectedaGPRoperatingatslightlylowerfrequenciestobepartofitspayload [52].ThisGPRcalledRIMFAX(Radar Imager forMars’ SubsurfaceExploration)is currentlyunderdevelopment. RIMFAXis a gated FrequencyModulated ContinuousWave (FMCW)radar operatingover thefrequency band 150–1200MHz, which shouldallowittoprobetheMartiansubsurfacetodepths

>

10 m.

(8)

JID:COMREN AID:3334 /SSU [m3G; v1.186; Prn:15/09/2016; 15:29] P.7 (1-10)

V. Ciarletti / C. R. Physique•••(••••)•••••• 7

Fig. 6. ExamplesofradargramsobtainedbyWISDOMintheDachsteinicecave[51],Austria(withthewholefrequencybandwidthontheleftandwithonly 1GHzofbandwidthontheright).Thelayerediceisvisibleontheupperrightpartofthefigures.Theredlinehighlightsthetransitionwiththebedrock beneaththeice.

3.2.2. ThesubsurfaceoftheMoon

EveniftheMartianpolarcapsprovidedsofarthebestexamplesofplanetaryfeaturesexploredbyradar,theMoonwas alsosounded by radars. The NASA Explorer35 bistaticexperiment [53] was launched in1967; its purposewas to study theelectromagneticreflectivepropertiesofthelunar surface.Theexperimentusedthe136.10-Hzcommunicationchannel betweenthespacecraftandtheEarth,theelectromagneticwaveswerescatteredfromthelunarsurfaceandthenrecorded atStanfordonEarth.Statisticsofthelunarsurface’sslopewereobtainedintheequatorialregion.

Thefirstsuccessfulattempttosoundthelunarsubsurfacefromorbitwasperformedin1972during theApollo17 mis-sion(ALSEexperiment[54]).Themeasurementsperformedat5and150MHzallowedthedetectionofalayeratkilometric depthsintwosoundedlunarmariaandvalidatedthefeasibilityofsuch measurements[55].In2007,theLRS(LunarRadar Sounder) instrumenton-boardtheKaguya spacecraftoftheJAXA SELENE missioncompleted aglobalcoverage ofthe lu-nar surface andsubsurface at5 MHz [56].Subsurface features observed by both ALSEand LRSradars are interpreted as interfacesbetweenlavaflowsofdifferentages.

Twomini-SAR(ormini-RF)havebeendesignedandusedtoexploretheMoon[57,58].Thefirstinstrumentwaslaunched on the Indian Space Research Organization’s (ISRO’s)Chandrayaan-1 spacecraft,while the second one was on-board the NASA’sLunarReconnaissanceOrbiter(LRO).Theyhavemappedbothpolarregionsandanumberofdifferentgeologicunits on the lunar surface. MiniSAR instruments have been designedto map the permanently dark areas ofthe lunar polar regionstosearchforpotentialwatericedeposits.Thesearchforwatericeistheir primaryscienceobjective,butthey also characterized the surface roughnessand thicknessof the regolith. The Mini SAR transmits Right Circular Polarization at 2.5GHzandreceives bothLeftandRight,whichgivesaccesstothecircularpolarizationratio.The elevatedCPR (Circular PolarizationRatio)valuesobservedwithinpermanentlyshadowedcratersinthepolarareasareconsistentwiththepresence ofwatericeinthesecraters[59].

3.2.3. ThenucleusofcometChuryumov–Gerasimenko

Despite numerous observations of comets either fromEarth or during dedicated space missions among which ESA’s Giotto, NASA’sDeep Space, Stardust andDeep Impact [60], therehasbeen, priorto the Rosetta mission,nodirect access to the structure of cometary nuclei. The successful Rosetta mission [61] with the recent descent and landing of Philae

on the nucleusof 67P/Churyumov–Gerasimenkoat the end of 2014 has provided for the first time in-situ data of the upper mostimportance. With receivers andtransmitters onboard both Rosetta and Philae, the objectiveof the CONSERT (Comet Nucleus Sounding Experiment by Radiowave Transmission) radar is the characterization of the nucleus interms of internal structure anddielectric properties.CONSERT [62] isa bi-static radar that consists oftwo separate units: The LanderCONSERTunit(LCN)locatedonPhilae andtheOrbiterCONSERTunit(OCN)locatedontheorbiter.Aradio signalat 90 MHzistransmittedbytheOCNandpropagatesthroughthecometnucleustotheLCN.TheLCNworksasatransponder: thesignal received by thelander isanalyzed inrealtime to detectthe strongestecho(which isexpectedto be thefirst one)for synchronizationpurposes,andimmediately retransmittedback to theorbiter, wherethe final datais eventually recorded.The propagationdelay andamplitude ofthereceived echoesmeasuredare readilyobtainedfromthemeasured impulseresponse.Foreachsoundingconfiguration,themeasured propagationdelaycorresponding tothefirstechoallows onetoestimatetheaveragedielectricconstantofthenucleusalongthepropagationpath,andtoconstrainthecomposition andporosity ofthe nucleus. The widthof the received echoesis an indirect measurement ofthe internal heterogeneity at a scalelarger than the experiment wave length (

3 m), while the measured amplitude can be linked to attenuation

(9)

and/or diffusioninside the nucleus. Despitethe significant polarization mismatchbetween lander andorbiter’s antennas duetothefactthatPhilae isnotstandingonitsthreefeet,somegood-qualitydatahavebeenobtained.Theyshowthatthe waves didpropagatethroughthe smallerlobeofthenucleus. Themeasured delaysprovidedan estimateofthe averaged dielectric constantvalueofabout1.27,whichsuggestsaporositylargerthan78%[63].Theanalysisofthedataalsoshows that scatteringinsidethenucleusisverylimited[63],whichsuggeststhat thenucleusisratherhomogeneousatscales of theorderofmagnitudeofthewavelengthandthatthepermittivity atdepthisprobablylowerinsidethenucleusthanat the surface[64].CONSERTmeasurements haveevenbeenableto provideanestimate ofthePhilae locationinsideastrip of 350

×

30 m at the surface [65] but, to actually quantitatively characterizethe nucleus internal structure, an accurate knowledge of the experiment geometry (Orbiter and Lander location and attitude with respect to a 3D nucleus shape model) is needed. Whenever the actual location and position ofPhilae can be better constrained, the thorough analysis andinterpretationofthedatacollected byCONSERTthattakesintoaccountthe amplitudeofthereceivedsignalswillbe possible.

An updated version ofthis tomographicradar concept is currentlyconsidered for the futureAsteroid Impact Mission (AIM)aimingatasteroidDydimoscharacterization[66].

3.2.4. IcymoonsofJupiter

ThethreeJupitericymoons(Ganymede,EuropaandCallisto)arebelievedtohideliquid-wateroceansbeneatha several-km-thickcrustofice.Detectionandcharacterizationoftheseoceanswouldbeessentialtosupportthepotentialhabitability ofthesemoons andtomakesignificantprogressonourunderstandingofthelife.Sinceelectromagneticwavesexperience little attenuation in ice (see § 2.2.1. the deep soundings of the Martian polarcaps) and would be strongly reflected by large bodiesofliquidwater,radarsare particularlywellsuitedto thisobjective.Consequently,thefuturemissions aiming toJupiteranditsicymoonswillcarryonboardradarsdesignedtoperformdeepsoundingoftheicecrust.

Thefrequencyoftheelectromagneticwavesusedhastobecarefullychosen:ononeside,itshouldbeaslowaspossible tomaximizethepenetrationcapabilityandtominimizethescatteringatthesurfaceduetoroughness.Ontheotherside,the intensenaturalJovianradioemissionsatfrequenciesbelow40MHz[67]needtobetakenintoaccountwhenplanningthe radaroperationsandthesizeoftheantenna,whichiscommensuratewiththewavelength,mustbekeptwithinreasonable dimensions.

The Jupiter IcyMoon Explorer(JUICE)ESAmission [68] willbe launched in2022to studyJupiter andinvestigatethe potentialhabitabilityofitsicymoons.Amongthepayloadinstruments,theradarsoundercalledRIME(RadarforIcyMoon Exploration)[69]hasbeendesignedtostudythesubsurfacestructureofthemoonsuptodepthsabout9kminice.A center frequencyof9MHzhasbeenchosentoachievethisobjective.Thehigh-resolutionmodewitha3-MHzbandwidthwillallow theinstrumenttoachievea verticalresolutionof30mintheice.Alowerresolutionmode isalsoplannedwitha1-MHz bandwidthtoreducethedatavolume.Theuseofthe9-MHzcenterfrequencywillrestraintheradaroperationtotheside ofEuropawhichisawayfromJupiter.

Among Jupiter’s icy moons,Europa is currentlyconsidered to be the mostpromising location in the SolarSystem to searchforsignsofextantlife.ThefutureNASAEuropamission,formerlyknownasEuropaClipper,[70]shouldbelaunched inthemid-2020sandperform45flybysofEuropaataltitudesvaryingfrom2700to25kilometersabovethesurface.The Radar for EuropaAssessment andSounding: Ocean to Near-surface (REASON)[71] instrument has beenselected for the mission.Asmentionpreviously,thechoiceofthefrequencyiscrucial,REASONwillusetwofrequencies:ashorter60-MHz wave(whichisnotjammedbytheradioemissionofJupiter)andalonger9-MHzwave(whichwillensuredeeppenetration butwillbe operatedonlyontheanti-Jovianside ofEuropa). Thisdual-frequencyradarisdesignedtolookforapotential liquidwaterreservoir,butalsotocharacterizethestructuresoftheiceshell.Thepossibilitytocomplementtheorbiterwith alanderthatmighthaveastationaryradaron-boardiscurrentlyunderstudy.

4. Conclusion

ThisbriefoverviewdemonstratestheessentialcontributionofradarstotheexplorationoftheSolarSystem.

Radarscanbehighlyadaptedtodifferentscientificobjectivesandplatforms.Mostofthefuturespacemissionswillhave among theirpayload radarsthat havebeenspecifically designedto provideinformationessentialto theunderstanding of studiedbodies’formationandevolution.

From thesurface,eachofthenextrovermissionstoMars(ExoMarsandMars2020)willaccommodateaGround Pene-tratingRadartodiscoveralongtheroverpaththegeologicfeaturesburiedundertheMartiansubsurface.GPRsmightsoon become mandatoryinstrumentson aroverpayloadjustlikecamerasareatthemoment.Thesynergy betweenthesetwo context instruments isobvious [72],and will give the possibility to have a better understanding of the site’sgeological historiesand,forexample,toassesstheircapacitytohavebeenhabitableinthepast.

From orbit,someofthemostspectacularfeatures revealedbysoundingradarshavebeenobtainedbytheCassini radar

onTitanandtheMARSISandShaRad soundersontheMartianpolarcaps.Jupiter’sicymoons,withtheir potentialhidden oceans,arefuturechallengesintheexplorationoftheSolarSystem,andradarswillprovidedatathatwillallowustomake significantprogressinourunderstandingoftheSolarSystemformationandevolution.

Finally, some quite specific tomographic radars like the CONSERTradar of the Rosetta mission are designedto sound smallbodiesoftheSolarSystem(comets,asteroids).TheAIM(AsteroidImpactMission)ESAmission,currentlyunderphase

(10)

JID:COMREN AID:3334 /SSU [m3G; v1.186; Prn:15/09/2016; 15:29] P.9 (1-10)

V. Ciarletti / C. R. Physique•••(••••)•••••• 9

B study,isaiming atthe 65803Didymosbinary asteroid system. The scenariois to landon theasteroid’s moona small lander thatwouldallow anupdated version oftheCONSERTradarto beoperated inordertocharacterizethe interiorof themoon.

References

[1]D.Fink,Theradarequation,Electronics18(1945)92–94.

[2]J.Mofensen,Radarechoesfromthemoon,Electronics19(1946)92–98.

[3]Z.Bay,Reflectionofmicrowavesfromthemoon,Hung.ActaPhys.1(1946)1–22.

[4] D.O.Muhleman,D.B.Holdridge,N.Block,Determinationoftheastronomicalunitfromvelocity,range,andintegratedvelocitydata,andtheVenus– Earthephemeris,in:W.K.Victor,R.Stevens,S.W.Golomb(Eds.),RadarExplorationofVenus:Goldstone ObservatoryReportforMarch–May1961, pp. 83–92,Technicalreport32-132.

[5] M.A.Slade,L.A.M.Benner,A.Silva,GoldstoneSolarSystemradarobservatory:Earth-basedplanetarymissionsupportanduniquescienceresults,Proc. IEEE99 (5)(2011)757–769,http://dx.doi.org/10.1109/JPROC.2010.2081650.

[6] R.B.Dyce,G.H.Pettengill,I.I.Shapiro,RadardeterminationoftherotationsofVenusandMercury,Astron.J.72 (3)(1967)351–359,http://dx.doi.org/ 10.1086/110231.

[7] A.F.Chicarro,ScienceTeam,TheMarsExpressmissionanditsBeagle-2lander,in:SixthInternationalConferenceonMars,20–25July2003,Pasadena, CA,USA,abstractNo. 3049.

[8] M.D.D.Johnston,J.E.Graf,R.W.Zurek,H.J.Eisen,B.Jai,TheMarsReconnaissanceOrbitermission,in:2005IEEEAerospaceConference,5–12March 2005,pp. 447–464,http://dx.doi.org/10.1109/AERO.2005.1559336.

[9] R.S.Saunders,etal.,Magellanmissionsummary,J.Geophys.Res.97 (E8)(1992)13067–13090,http://dx.doi.org/10.1029/92JE01397.

[10] D.L. Matson, et al., The Cassini/Huygens mission to the Saturnian System, Space Sci. Rev. 104 (1–4) (2002) 1–58, http://dx.doi.org/10.1023/ A:1023609211620.

[11] Y.Su, et al.,Data processingand initialresults ofChang’e-3lunar penetrating radar,RAA 14 (12) (2014)1623–1632, http://dx.doi.org/10.1088/ 1674–4527/14/12/010.

[12]J.L.Vago,G.Kminek,Puttingtogetheranexobiologymission:theExoMarsexample,in:G.Horneck,P.Rettberg(Eds.),CompleteCourseinAstrobiology, Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim,Germany,2007.

[13]W.Kofman,etal.,Cometnucleussoundingexperimentbyradiowavetransmission,Adv.SpaceRes.21 (11)(1998)1589–1598.

[14] M.Biancheri-Astier,R.Hassen-Khodja,V.Ciarletti,C.Corbel,Y.Simon,C.Caudoux,J.Faroux,F.Dolon,EISS:anHFmonoandbistaticGPRforterrestrial anplanetarydeepsounding,Lecce,Italy,2010,GPR2010.

[15] A. Le Gall,V.Ciarletti, J.J. Berthelier, A. Reineix,C. Guiffaut, R. Ney,F. Dolon,S. Bonaimé, R. Clairquin,D. Nevejans, An imagingHF GPR us-ing stationary antennas: experimental validation over the Antarctic ice sheet, IEEE Trans. Geosci. Remote Sens. 46 (12) (2008) 3975–3986,

http://dx.doi.org/10.1109/TGRS.2008.2000718.

[16] V.Ciarletti,A.LeGall,S.M.Clifford,Ch.Corbel,F.Dolon,R.Ney,J.J.Berthelier,Bistaticsoundingofthedeepsubsurfacewithagroundpenetratingradar –experimentalvalidation,Planet.SpaceSci.117(2015)177–183,http://dx.doi.org/10.1016/j.pss.2015.06.008.

[17] R.A. Simpson, et al., Polarizationin bistatic radar probing of planetary surfaces: application to Mars express data, Proc. IEEE 99 (5) (2011),

http://dx.doi.org/10.1109/JPROC.2011.2106190.

[18]S.Nozette,etal.,TheClementinebistaticradarexperiment,Science274 (5292)(1996)1495–1498.

[19]R.A.Simpson,G.L.Tyler,J.P.Brenkle,M.Sue,VikingbistaticradarobservationsoftheHellasbasinonMars:preliminaryresults,Science203(1979) 45–46.

[20]L.J.Porcello,etal.,TheApolloLunarsounderradarsystem,Proc.IEEE62 (6)(1974)769–783.

[21]G.Picardi,etal.,RadarsoundingsofthesubsurfaceofMars’,Science310(23Dec.2005)1925–1929.

[22] Roger J. Phillips, et al., Mars north polar deposits: stratigraphy, age, and geodynamical response, Science 320 (2008) 1182, http://dx.doi.org/ 10.1126/science.1157546.

[23]TakayukiOno,HiroshiOya,Lunarradarsounder(LRS)experimenton-boardtheSELENEspacecraft,EarthPlanetsSpace52(2000)629–637.

[24]Yu.N.Aleksandrov,etal.,Aplanetrediscovered:resultsofVenusradarimagingfromtheVenera15andVenera16spacecraft,Sov.Sci.Rev.,E,Astrophys. SpacePhys.6 (1)(Aug.1988)61–101.

[25] W.T.K.Johnson,MagellanimagingradarmissiontoVenus,Proc.IEEE79 (6)(1991)777–790,http://dx.doi.org/10.1109/5.90157.

[26]C.Elachi,M.D.Allison,L.Borgarelli,P.Encrenaz,E.Im,M.A.Janssen,W.T.K.Johnson,R.L.Kirk,R.D.Lorenz,J.I.Lunine,D.O.Muhleman,S.J.Ostro,G. Picardi,F.Posa,C.G.Rapley,L.E.Roth,R.Seu,L.A.Soderblom,S.Vetrella,S.D.Wall,C.A.Wood,H.A.Zebker,RADAR:theCassini Titanradarmapper, SpaceSci.Rev.115(2004)71–110.

[27]W.B.Rossow,A.D.Del Genio,S.S.Limaye,L.D.Travis,CloudmorphologyandmotionsfromPioneerVenusimages,J.Geophys.Res.85(1980)8107–8128.

[28]G.H.Pettengill,etal.,PioneerVenusradarmapperexperiment,Science203 (4382)(1979)806–808.

[29] G.H.Pettengill,E.Eliason,P.G.Ford,G.B.Loriot,H.Masursky,G.E.McGill,PioneerVenusRadarresultsaltimetryandsurfaceproperties,J.Geophys.Res. 85 (A13)(1980)8261–8270,http://dx.doi.org/10.1029/JA085iA13p08261.

[30]V.L.Barsukov,etal.,ThegeologyandgeomorphologyoftheVenussurfaceasrevealedbytheradarimagesobtainedbyVeneras15and16,in:Proc. oftheSixteenthLunarandPlanetaryScienceConference,J.Geophys.Res.91 (B4)(1986)D378–D398,Part2.

[31]S.S.Dallas,N.L.Nickle,TheMagellanmissiontoVenus.Advancesinastronauticalsciences.Part1,Aerosp.Cent.21 (64)(1987),AAS86–331.

[32]J.P.Ford,R.G.Blom,J.A.Crisp,C.Elachi,T.G.Farr,R.S.Saunders,E.E.Theilig,S.D.Wall,S.B.Yewell,SpaceborneRadarObservations:AGuideforMagellan RadarImageAnalysis,JPLPub.,1989,89-41,126p.

[33]R.S.Saunders,G.H.Pettengill,R.E.Arvidson,B.Sjogren,W.T.K.Johnson,L.J.Pieri,TheMagellanVenusradarmappingmission,J.Geophys.Res.95 (B6) (1990)8339–8355.

[34] Stofan,etal.,ThelakesofTitan,Nature445(2007)61–64,http://dx.doi.org/10.1038/nature05438.

[35] M.C. Lopes, et al., Cryovolcanism on Titan: new results from Cassini RADAR and VIMS, J. Geophys. Res., Planets 118 (2013) 1–20,

http://dx.doi.org/10.1029/2012JE004239.

[36]A.LeGall,M.A.Janssen,L.C.Wye,A.G.Hayes,J.Radebaugh,C.Savage,H.Zebker,R.D.Lorenz,J.I.Lunine,R.L.Kirk,R.M.C.Lopes,S.Wall,P.Callahan,E.R. Stofan,T.Farr,TheCassiniRadarTeam,SAR,radiometry,scatterometryandaltimetryobservationsofTitan’sdunefields,Icarus213(2011)608–624.

[37] A.LeGall,M.A.Janssen,P.Paillou,R.D.Lorenz,S.D.Wall,Radar-brightchannelsonTitan,Icarus(ISSN 0019-1035) 207 (2)(2010)948–958,http:// dx.doi.org/10.1016/j.icarus.2009.12.027.

[38]J.Radebaugh,R.D.Lorenz,R.L.Kirk,J.I.Lunine,E.R.Stofan,R.M.C.Lopes,S.D.Wall,MountainsonTitanobservedbyCassini Radar,Icarus192 (1)(2007) 77–91.

[39]T.Cornet,O.Bourgeois,S.LeMouélic,S.Rodriguez,T.LopezGonzalez,C.Sotin,G.Tobie,C.Fleurant,J.W.Barnes,R.H.Brown,K.H.Baines,B.J.Buratti, R.N.Clark,P.D.Nicholson,GeomorphologicalsignificanceofOntarioLacusonTitan:integratedinterpretationofCassini VIMS,ISSandRADARdataand comparisonwiththeEtoshaPan(Namibia),Icarus218(2012)788–806.

(11)

[40] T.Cornet,D.Cordier,T.L.Bahers,O.Bourgeois,C.Fleurant,S.L.Mouélic,N.Altobelli,DissolutiononTitanandonEarth:towardtheageofTitan’skarstic landscapes,J.Geophys.Res.,Planets120(2015)1044–1074,http://dx.doi.org/10.1002/2014JE004738.

[41] GiovanniPicardi,etal.,RadarsoundingsofthesubsurfaceofMars,Science310 (5756)(2005)1925–1928,http://dx.doi.org/10.1126/science.1122165. [42]G.Picardi,etal.,PerformanceandsurfacescatteringmodelsfortheMarsadvancedradarforsubsurfaceandionospheresounding(MARSIS),Planet.

SpaceSci.52(2004)149–156.

[43] R.Orosei,etal.,Marsadvancedradarforsubsurfaceandionosphericsounding(MARSIS)afternineyearsofoperation:asummary,Planet.SpaceSci. 112(2014)378598–114,http://dx.doi.org/10.1016/j.pss.2014.07.010.

[44]J.J.Plaut,G.Picardi,etal.,SubsurfaceradarsoundingoftheSouthpolarlayereddepositsofMars,Science316 (5821)(2007)92–95.

[45] T.R.Watters,etal.,RadarsoundingoftheMedusaeFossaeFormationMars:equatorialiceordry,low-densitydeposits?,Science318 (5853)(2007) 1125,http://dx.doi.org/10.1126/science.1148112.

[46] O. White, et al., MARSIS radar sounderobservations inthe vicinityof Ma’adim Vallis, Mars, Icarus 201 (2009) 460,http://dx.doi.org/10.1016/ j.icarus.2009.01.015.

[47] R.Seu,etal.,SHARADsoundingradarontheMarsReconnaissanceOrbiter,J.Geophys.Res.112(2007)E05S05,http://dx.doi.org/10.1029/2006JE002745. [48]NathanielE.Putzig,RogerJ.Phillips,BruceA.Campbell,JohnW.Holt,JeffreyJ.Plaut,LynnM.Carter,AnthonyF.Egan,FabrizioBernardini,AliSafaeinili,

RobertoSeu,SubsurfacestructureofplanumBoreumfromMarsReconnaissanceOrbiterShallowRadarsoundings,Icarus204 (2)(2009)443–457.

[49] J.PlautJeffrey,A.Safaeinili,J.W.Holt,R.J.Phillips,J.W.HeadIII,R.Seu,N.E.Putzig,A.Frigeri,Radarevidenceforiceinlobatedebrisapronsinthe mid-northernlatitudesofMars,Geophys.Res.Lett.36(2009)L02203,http://dx.doi.org/10.1029/2008GL036379.

[50] V.Ciarletti,C.Corbel,D.Plettemeier,P.Cais,S.M.Clifford,S.E.Hamran,WISDOMaGPRdesignedforshallowandhighresolutionsoundingofthe Martiansubsurface,Proc.IEEE99 (5)(2011)824–836,http://dx.doi.org/10.1109/JPROC.2010.2100790.

[51]S.Dorizon,V.Ciarletti,D.Plettermeier,W.-S.Benedix,PerformancevalidationoftheExoMars2018WISDOMGPRinicecaves,Austria,Planet.Space Sci.120(2016)1–14.

[52] S.E.Hamran,H.E.F.Amundsen,L.M.Carter,R.R.Ghent,J.Kohler,M.T.Mellon,D.A.Paige,TheRIMFAXgroundpenetratingradarontheMars2020Rover, AmericanGeophysicalUnion,FallMeeting2014,abstract#P11A-3746.

[53] G.L.Tyler,R.A.Simpson,Bistaticradarmeasurementsoftopographicvariationsinlunarsurfaceslopeswithexplorer35,RadioSci.5 (2)(1970)263–271,

http://dx.doi.org/10.1029/RS005i002p00263.

[54]L.J.Porcello,R.L.Jordan,J.S.Zelenka,G.F.Adams,R.J.Phillips,W.E.BrownJr.,S.H.Ward,P.L.Jackson,TheApollolunarsounderradarsystem,Proc.IEEE 62(1974)769–783.

[55] W.J.Peeples,W.R.Sill,T.W.May,S.H.Ward,R.J.Phillips,R.L.Jordan,E.A.Abbott,T.J.Killpack,Orbitalradarevidenceforlunarsubsurfacelayeringin MariaSerenitatisandCrisium,J.Geophys.Res.83(1978),http://dx.doi.org/10.1029/JB083iB07p03459.

[56] A. Pommerol,W.Kofman, J. Audouard, C.Grima, P. Beck,J. Mouginot,A.Herique, A.Kumamoto, T.Kobayashi,T. Ono, Detectabilityof subsur-faceinterfacesinlunarmaria bytheLRS/SELENE soundingradar: influenceofmineralogicalcomposition,Geophys.Res.Lett. 37(2010)L03201,

http://dx.doi.org/10.1029/2009GL041681.

[57]P.D.Spudis,etal.,Mini-SAR:animagingradarexperimentfortheChandrayaan-1missiontotheMoon,Curr.Sci.96 (4)(2009).

[58]D.B.J.Bussey,P.D.Spudis,theMini-RFTeam,NewinsightsintolunarprocessesandhistoryfromglobalmappingbyMini-RFradar,LunarPlanet.Sci. 42(2011)2086.

[59] P.D.Spudis,etal.,Evidenceforwatericeonthemoon:resultsforanomalouspolarcratersfromtheLROMini-RFimagingradar,J.Geophys.Res., Planets118(2013),http://dx.doi.org/10.1002/jgre.20156.

[60]M.A.Barucci,E.Dotto,Anny ChantalLevasseur-Regourd,Spacemissionstosmallbodies:asteroidsandcometarynuclei,Astron.Astrophys.Rev.19 (1) (2011)48(29p).

[61]LuigiColangeli,ElenaMazottaEpifani,PasqualePalumbo,TheNewRosetta Targets:Observations,Simulations,andInstrumentPerformances, Springer-Verlag,NewYork,2004,315p.

[62]Kofman,et al.,Thecometnucleussoundingexperimentbyradiowavetransmission(CONSERT): ashortdescription ofthe instrumentandofthe commissioningstages,SpaceSci.Rev.128(2007)413–432.

[63]http://blogs.esa.int/rosetta/2014/11/21/homing-in-on-philaes-final-landing-site/.

[64]Kofman,etal.,PreliminaryresultsfromCONSERTexperimentonRosetta mission,AGU2014,P34B-01,SanFrancisco,CA,USA,2014.

[65] V.Ciarletti,A.C.Levasseur-Regourd,J.Lasue,C.Statz,D.Plettemeier,A.Hérique,Y.Rogez,W.Kofman,CONSERTsuggestsachangeinlocalproperties of67P/Churyumov–Gerasimenko’snucleusatdepth,Astron.Astrophys.583(2015)A40,http://dx.doi.org/10.1051/0004-6361/201526337.

[66] P.Michel,etal.,Sciencecasefortheasteroidimpactmission(AIM):acomponentoftheAsteroidImpact&DeflectionAssessment(AIDA)mission,Adv. SpaceRes.57 (12)(2016)2529–2547,http://dx.doi.org/10.1016/j.asr.2016.03.031.

[67]L.Buzzone,G.Alberti,C.Catallo,A.Ferro,W.Kofman,R.Orosei,SubsurfaceradarsoundingoftheJovianmoonGanymede,Proc.IEEE99 (5)(2011).

[68]O.Grasset,etal.,Jupitericymoonsexplorer(JUICE):ANESAmissiontoorbitGanymedeandtocharacterizetheJupitersystem,Planet.SpaceSci.78 (2013)1–21.

[69]L.Bruzzone,etal.,RIME:radarforicyMoonexploration,EPSCAbstr.8(2013),EPSC2013-744-1.

[70]C.B.Phillips,R.T.Pappalardo,Europaclippermissionconcept:exploringJupiter’soceanmoon,Eos95 (20)(2014).

[71]A.Moussessian,D.D.Blankenship,J.Plaut,G.W.Patterson,Y.Gim,D.M.Schroeder,K.M.Soderlund,D.Young,C.Grima,E.Chapin,REASONforEuropa, AGUFallMeeting,SanFrancisco,2015.

[72]G.Paar,G.Hesina,C.Traxler,V.Ciarletti,D.Plettemeier,C.Statz,K.Sander,B.Nauschnegg,EmbeddingsensorvisualizationinMartianterrain recon-structions,in:ProceedingsofASTRA,2015.

Figure

Fig. 1. Center frequency of the main radars that have been designed for planetary exploration
Fig. 2. Images of Venus Credit: NASA/JPL/USGS. Left: Ultraviolet image by the Pioneer Venus Orbiter spacecraft
Fig. 3. Images of Titan: Left:. Color composite image of Titan taken during the Cassini spacecraft’s flyby in 2005 [PIA06230]
Fig. 5. Top: SHARAD radargram of the North Polar Layered Deposits (NPLD) over the Basal Unit (BU)
+2

Références

Documents relatifs

The RNase Y targetome (i.e., 5 ′ and 3′ rny_ends) was compared to the PNPase, YhaM and RNase R targetomes (i.e., 3′-to-5′ exoRNase trimming start and stop positions), which

Clustering and switching processes in semantic verbal fluency in the course of Alzheimer’s disease subjects: Results from the PAQUID longitudinal study.: Verbal fluency in

I - Matter, antimatter and geometry II - The twin universe model : a solution to the problem of negative energy particles III - The twin universe model plus electric charges

Considering all epidemiological indicators together, BRD in clams can be considered in a phenological way, taking into account not only the changes in the clinical signs, but also the

The braking force information was passed to the processing unit with FlexRay interface using system message and the same is transmitted to the actuator nodes as data messages..

NGC 6440 is a globular cluster near the Galactic center, at a distance of 8.5 kpc (Ortolani et al. 1975 ), and the cluster was detected at a much lower flux level in 1980 (Hertz

In a first approximation, the size of the cavity defines the range of the resonance frequency; the electron density profile, up to the upper atmospheric boundary, controls the

Physical and chemical processes (photoproduction, electron impact ionization and charge exchange) modifying the concentration of these species are dynamically computed by the