• Aucun résultat trouvé

Fast calibration of robust biomass equations. From the conceptual framework to the application using the Carboafrica database on allometric equations

N/A
N/A
Protected

Academic year: 2021

Partager "Fast calibration of robust biomass equations. From the conceptual framework to the application using the Carboafrica database on allometric equations"

Copied!
20
0
0

Texte intégral

(1)

Identificación, compartición, creación y uso de

modelos alométricos de biomasa para México

Fast calibration of robust biomass equations. From the conceptual 

framework to the application using the Carboafrica database on 

allometric equations

Saint-André L.1, Henry M. 1,2, Genet A. 1,3, Trotta, C. 2, Picard N1

(2)

Context: How can we measure biomass of standing trees ?

Well……, do we

have a balance to

weight that tree ?

Identificación, compartición, creación y uso de

modelos alométricos de biomasa para México

(3)

Context: When there can be a lot of different trees in a given

forest….

I guess we are

lost…., and would

that balance be

enough for all these

trees ?

Identificación, compartición, creación y uso de

modelos alométricos de biomasa para México

(4)

The literature on biomass equations dangles

between two opposites sides:

A- The group of West, Brown and Enquist have been developing an appealing theory of biological allometry relying on the fractal properties of branching networks, referred as allometric biomass partitioning theory (APT) by McCarthy and Enquist (2007)

a accounting for the constraint of biomechanical stability ā accounting for the minimization of hydrodynamic

resistance through the vascular network. Two main parameters:

From West et al. 1997:

When taking a=1 to fit the hypothesis of volume filling and uniform biomechanical constraints,

the tree mass is predicted to be related to the tree diameter raised to a power s=8/3≈2.67

But rather stands for an average tree model to explore biomass variations among plant size orders than being predictive for single species

Identificación, compartición, creación y uso de

modelos alométricos de biomasa para México

(5)

The literature on biomass equations dangles

between two opposites sides:

B- The very large group of purely statistical equations, with little regard to the

understanding of the biological processes involved. Such models are only reliable within their domain of validity

Often calibrated on small number of trees, covering a little part of tree size variations for a given species

Equations of various forms

Catalogues and databases start to be available for all

continents (ex: Zianis for Europe; Navar for south America; Henry for Africa)

Too specialized and restricted models

Identificación, compartición, creación y uso de

modelos alométricos de biomasa para México

(6)

Objectives :

A good candidate set of biomass equations should be simultaneously:

(i)consistent

:

standardized biomass partition and additive of tree compartments

,

(ii) generic

:

common form of the models whatever the tree species or forest structure and have biological meanings of the parameters

,

(iii) robust

:

system operating correctly across a wide range of operational conditions with a low sensitivity to the sampling design and the working hypotheses

(iv) accurate

.

Identificación, compartición, creación y uso de

modelos alométricos de biomasa para México

(7)

Underlying conceptual framework:

D2H = surrogate of tree volume

(=treeVol * formFactor)

and biomass = volume * wood density

D2H is therefore well correlated to the tree biomass

Biom = b*(D

2

H)

c

+a

This parameter

encompasses the form factor and the wood density;

it gives the proportionality between the cumulative values of biomass and volume

This parameter gives the tree biomass just before it reaches 1m30 height

This parameter gives the proportionality between biomass increments and volume increments

Identificación, compartición, creación y uso de

modelos alométricos de biomasa para México

(8)

Underlying conceptual framework:

Stem wood d²h (m3/tree) B io m a ss ( k g /t re e)

Crown (leaves or branches)

Age d²h (m3/tree) B io m a ss ( k g /t re e ) Age Ontogenic effect

Social status effect

a) b)

From Saint-Andre et al. (2005), we drew the following patterns:

1- both internal (changes in wood properties with ontogeny) and external factors (e.g., growing conditions, social status of the tree) are of importance concerning tree biomass relationship

2- The observed pattern may vary strongly from one species to another, but our hypothesis is that

species of similar traits (e.g., crown architecture, wood structure) would exhibit similar to identical biomass models

Identificación, compartición, creación y uso de

modelos alométricos de biomasa para México

(9)

Test of these hypotheses on Fagus Sylvatica (268 trees):

Stem (wood+bark) 0 50 100 150 200 250 0 50 100 150 200 Age (years) P ar am et er b Branches 0 100 200 300 400 500 600 0 50 100 150 200 Age (years) P ar am et er b Leaves 0 5 10 15 20 25 30 35 40 0 25 50 75 100 125 150 Age (years) P ar am et er b Leaves 0 10 20 30 40 0 25 50 75 10 0 12 5 15 0 Age (years) P ar am et er b b measured b estimated Stem wood 0 50 100 150 200 250 0 50 100 150 200 Age (years) P ar am et er b Sounds good!

The slope of the relationship between tree biomass and d2h do follow an exponential decrease for crown compartments and an increase for stem wood

Identificación, compartición, creación y uso de

modelos alométricos de biomasa para México

(10)

Test of these hypotheses on Fagus Sylvatica:

0 50 100 150 200 250 0 50 100 150 200 Eucalyptus -Congo Beech -France Eucalyptus -Brasil 0 50 100 150 200 250 0 50 100 150 Age (years) b ( ad im ) 0 50 100 150 200 250 0 50 100 150 200 Age (years) b ( ad im ) 0 100 200 300 400 500 600 700 0 50 100 150 200 Age (years) b ( ad im

) Not only eucalyptus and fagus

have the same pattern, they do also follow the same line !

(especially for stem wood and branches)

Identificación, compartición, creación y uso de

modelos alométricos de biomasa para México

(11)

Biological explanation for these patterns ?

b' = f(age) 0 100 200 300 400 500 600 700 0 50 100 150 200 Age (years) b ' ( ad im ) b measured b estimated b = f(age) 0 50 100 150 200 250 300 350 0 50 100 150 200 Age (years) b ( ad im )

b = Form (= Volume / d²h) * b’

STEM WOOD

Av: 554 kg/m3 

b’=wood density

Residual variability = growth conditions

b variations in the young stages = mostly changes in stem form (moving from conical to cylindrical shape) b variations in the old stages = mostly changes in wood density (slight increase)

Identificación, compartición, creación y uso de

modelos alométricos de biomasa para México

(12)

Biological explanation for these patterns ?

CROWN COMPARTEMENTS

1- Decrease with growth height of the leaf to sapwood area ratio (Al/As) on most of coniferous and broadleaves species, in order to minimize size related constraints of the whole plant hydraulic conductance (McDowell et al. 2002).

2- sapwood area increments remain lower than diameter increments (Gebauer et al. 2008).

3- xylem vulnerability to embolisation increases with age

Identificación, compartición, creación y uso de

modelos alométricos de biomasa para México

(13)

Is this model robust ? (121 trees in fertilized plot, fertile sites in Germany and mixted stand in Belgium)

1

Aboveground Stem wood (d>7cm) Stem bark (d>7cm) Bole Living branches Foliage

B GC GF FF B GC GF FF B GC GF FF GC GF FF B GC GF FF FF Number of observations 12 40 37 30 9 41 39 28 9 41 39 28 41 39 30 9 41 38 30 14 Mean observed values (MOV) 842 776.6 1161.0 790.7 631.7 571.5 864.0 567.2 50.0 31.5 47.9 47.5 615.4 925.6 577.8 423.3 208.4 375.4 212.2 4.4 Mean simulated values (MSV) 808.4 773.1 1166.4 765.2 609.9 523.3 783.4 534.3 54.5 47.9 72.8 52.4 552.4 818.0 537.5 318.8 274.5 493.2 286.7 5.0 Mean errors (ME=MOV-MSV) 33.6 3.5 -5.4 25.5 21.8 48.2 80.6 32.9 -4.5 -16.4 -24.9 -4.9 63.0 107.6 40.3 104.5 -66.1 -117.8 -74.5 -0.6 Mean absolute errors (MAE) 50.6 55.1 60.9 64.8 40.0 82.3 81.2 46.7 9.1 16.8 25.4 7.7 95.3 109.7 57.5 104.9 88.8 144.6 93.5 1.2 Modelling efficiency 0.99 0.99 0.99 0.99 0.98 0.95 0.97 0.99 0.82 0.74 0.75 0.96 0.93 0.95 0.97 0.81 0.80 0.83 0.83 0.86 RMSE 73.8 95.6 125.3 101.9 47.6 156.8 139.0 88.0 12.2 32.3 41.5 12.3 185.3 195.1 107.2 126.4 201.8 274.4 179.2 1.6 Dispersion (MAE/MOV) (%) 6 7 5 8 6 14 9 8 18 53 53 16 15 12 10 24 43 39 44 27 Mean bias (ME/MOV) (%) 4 0 0 3 3 8 9 6 -9 -52 -52 -10 10 12 7 25 -32 -31 -35 -14 Linear regression r² 0.99 0.97 0.99 0.99 0.99 0.96 0.99 0.99 0.87 0.91 0.96 0.97 0.96 0.99 0.99 0.96 0.91 0.98 0.93 0.89 Slope 1.0ns 1.0ns 1.0ns 1.0ns 1.1ns 1.1* 1.1** 1.0ns 0.8ns 0.7** 0.7** 0.9** 1.1** 1.2** 1.1** 1.2ns 0.6** 0.7** 0.7** 1.0ns Intercept 8.2ns -6.1ns 11.7ns -0.3ns -16.3ns 10.4ns 2.8ns 9.5ns 3.5ns 0.0ns 0.4ns -0.2ns -10.6ns -20.9ns -10.9ns 47.7ns 34.7ns 39.8ns 18.7ns -0.6ns Bias 2.4ns 0.4ns 2.0ns 2.8ns 2.3ns 4.7* 48.0** 4.2* 1.4ns 58.5** 163.8** 7.6** 11.0** 71.6** 12.8** 13.5** 75.8** 33.8** 53.6** 0.8ns

Aboveground models are reliable, but carbon allocation is significantly modified by fertilisation

Identificación, compartición, creación y uso de

(14)

Can this model reconcile the apparent heterogeneity of

published biomass equations ?

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.5 1 1.5 2 γ γ ag e -100 -50 0 50 100 150 200 250 300 350 400 0 100 200 300 400 β β ag e 0 5 10 15 20 25 30 35 40 45 50 0 10 20 30 40 50 β β ag e -100 -50 0 50 100 150 200 250 300 350 400 0 200 400

β existing Beech equations

β = f( a g e ) Série1 Y=X Série7 Stem total Aboveground Stem wood Living branches 0 5 10 15 20 25 30 35 40 45 50 0 β existing Beech 20 40 equations β = f( a g e ) Série1 Y=X Série7 Leaves Stem bark -100 -50 0 50 100 150 200 250 300 350 400 0 200 400

β existing Beech equations

β = f( a g e ) Série1 Y=X Série7 Stem total Aboveground Stem wood Living branches 0 5 10 15 20 25 30 35 40 45 50 0 β existing Beech 20 40 equations β = f( a g e ) Série1 Y=X Série7 Leaves Stem bark -100 -50 0 50 100 150 200 250 300 350 400 0 200 400

β existing Beech equations

β = f( a g e ) Série1 Y=X Série7 Stem total Aboveground Stem wood Living branches 0 5 10 15 20 25 30 35 40 45 50 0 β existing Beech 20 40 equations β = f( a g e ) Série1 Y=X Série7 Leaves Stem bark -100 -50 0 50 100 150 200 250 300 350 400 0 200 400

β existing Beech equations

β = f( a g e ) Série1 Y=X Série7 Stem total Aboveground Stem wood Living branches 0 5 10 15 20 25 30 35 40 45 50 0 β existing Beech 20 40 equations β = f( a g e ) Série1 Y=X Série7 Leaves Stem bark -100 -50 0 50 100 150 200 250 300 350 400 0 200 400

β existing Beech equations

β = f( a g e ) Série1 Y=X Série7 Stem total Aboveground Stem wood Living branches 0 5 10 15 20 25 30 35 40 45 50 0 β existing Beech 20 40 equations β = f( a g e ) Série1 Y=X Série7 Leaves Stem bark -100 -50 0 50 100 150 200 250 300 350 400 0 200 400

β existing Beech equations

β = f( a g e ) Série1 Y=X Série7 Stem total Aboveground Stem wood Living branches 0 5 10 15 20 25 30 35 40 45 50 0 β existing Beech 20 40 equations β = f( a g e ) Série1 Y=X Série7 Leaves Stem bark

From Zianis et al. (2005) catalogue. 48 references equations. None

succeeded in simulating correctly our european data set

Using stand ages given in each paper and our model, we can estimate the parameter b which can be confronted to the published one

In most of the cases we were able to retrieve the published parameter, meaning that the main factor of “heterogenity” in the published biomass equations was stand age

Identificación, compartición, creación y uso de

modelos alométricos de biomasa para México

(15)

And now, what can we do with the CarboAfrica database on

allometric equations ?

0 10 20 30 40 50 60 1960-70 1970-80 1980-90 1990-2000 2000-2010 biomass volume 0 50 100 150 200 250 300 350 400 Tropical rainforest

Tropical moist deciduous forest Tropical dry forest Tropical shrubland Tropical desert Tropical mountain system Subtropical humid forest Subtropical dry forest Subtropical mountain system

biomass volume

Among the 816 equations that were collected, 495 allometric equations were georeferenced corresponding to 89 sites in sub-Saharan Africa

Identificación, compartición, creación y uso de

modelos alométricos de biomasa para México

(16)

And now, what can we do with the CarboAfrica database on

allometric equations ?

ABGB = 34 equations for total biomass (stricto sensu)

369 biomass equations could be transformed into an homogenized form

ABGB- = 19 equations for total biomass (without leaves)

ABGB-- = 14 equations for total biomass (without leaves and dead branches)

ABGB--- = 13 equations for total biomass (without twigs, leaves and/or dead branches) T = 184 equations for trunk biomass

Biom = a*D

b ABGB = 2.18 +-0.67 ABGB- = 2.39 +- 0.81 ABGB-- = 2.58 +- 0.25 ABGB--- = 1.96 +- 0.83 T = 2.10 +- 0.32

Average b value (to be compared to that of the WBE model = 2.69)

Observed values does not fit the theoretical model but it was already noticed by different authors

(Zianis for Europe = 2.37; Muller-Landau for Tropics (except Africa) = 2.45 (large trees), 2.65 (small

trees) 2.32 +-0.66

Identificación, compartición, creación y uso de

modelos alométricos de biomasa para México

(17)

And now, what can we do with the CarboAfrica database on

allometric equations ?

Biom = a*D

b

But this simple form of biomass equation

Making two hypotheses :

-a power relationship between height and diameter -invariance of parameters with age or tree maturity is a simplification of the appropriate (biological) one

Biom =

β

*(D

2

H)

χ

+

α

So….. How to retrieve the original equation from the simplified one ?

Identificación, compartición, creación y uso de

modelos alométricos de biomasa para México

(18)

And now, what can we do with the CarboAfrica database on

allometric equations ?

We need first a height-diameter relationship

0 10 20 30 40 50 60 0 100 200 300 400 500 600 Circunference (cm) T re e h ei g h t (m )

Sirlawé in Cameroon(Tropical dry forest) mafa kilda in Cameroon(Tropical dry forest) Vihiga in Kenya(Tropical mountain system) Boi Tano in Ghana(Tropical rainforest)

But for a single species, this relationship is also (age/maturity dependent)

0.00 5.00 10.00 15.00 20.00 25.00 30.00 0 10 20 30 40 50 60 70 Tree height (m)

Circumference at breast height (cm)

Congo - Eucalyptus - Slash Management treatments

SMT0 - 11 months SMT3 - 11 months SMT0 - 84 Months SMT3 - 84 months For mixed and un-even-aged forests, the

stability with time of the equations should be verified

Identificación, compartición, creación y uso de

modelos alométricos de biomasa para México

(19)

And now, what can we do with the CarboAfrica database on

allometric equations ?

For single species, we need secondly an index of tree development (accounting for age / maturity) because in most cases, age in itself is not known or even impossible to be measured

averageD/Dmax, averageH/Hmax, averageG/Gmax ?

For mixed un-even aged forests (such as tropical rain forest), there might be a compensation between small (young ?) trees and large (oldest) trees, leading perhaps in a stability of biomass equations for a given biome.

To be verified ! either from ground data, or by simulations..

Identificación, compartición, creación y uso de

modelos alométricos de biomasa para México

(20)

R

Réépub liquepub liqued ud u

Congo

Congo

Euc alyptus   Euc alyptus   Fib re Fibr e CongoCongo

Identificación, compartición, creación y uso de

modelos alométricos de biomasa para México

Références

Documents relatifs

than 95% of the variation in aboveground tropical forest C stocks, even in highly diverse regions (Brown 2002, Gibbs et al. 2007), However, the analyses of the

A well-known approach is to fit tree- level allometric equations for the main components of trees (foliage, branches, stem, and roots) that enable, in combina- tion with

( 2009 ) compiled a database of allometric equations for tree species or genera and equations at the level of ecosystems to estimate the biomass of the trees measured in the

This paper describes a procedure for generating analytical redundancy equations for process fault detection and isolation.. It is assumed in the following that C is a full

Starting form the Zakharov/Craig-Sulem formulation of the gravity water waves equa- tions, we prove that one can define a pressure term and hence obtain a solution of the

In this work, we have derived the incompressible Euler equations from the Boltz- mann equation in the case of the initial boundary value problem, for a class of boundary conditions

In the present study, our aims were (1) to describe and evaluate the performance of a simple TLS-based method for estimating the wood volume and biomass of large mangrove trees,

The objective of this paper is to present the online platform “GlobAllomeTree” and our efforts to facilitate the development of a global tree allometric