• Aucun résultat trouvé

Search for the Standard Model Higgs boson in the decay channel H->ZZ(*)->4l with 4.8 fb-1 of pp collisions at sqrt(s)=7 TeV with ATLAS

N/A
N/A
Protected

Academic year: 2021

Partager "Search for the Standard Model Higgs boson in the decay channel H->ZZ(*)->4l with 4.8 fb-1 of pp collisions at sqrt(s)=7 TeV with ATLAS"

Copied!
26
0
0

Texte intégral

(1)

arXiv:1202.1415v4 [hep-ex] 23 Mar 2012

CERN-PH-EP-2012-014

Search for the Standard Model Higgs boson in the decay channel

H

→ ZZ

(∗)

→ 4ℓ with 4.8 fb

−1

of pp collision data

at

s

= 7 TeV with ATLAS

The ATLAS Collaboration

Abstract

This Letter presents a search for the Standard Model Higgs boson in the decay channel H → ZZ(∗)

ℓ+′+′−, where ℓ, ℓ= e or µ, using proton-proton collisions ats = 7 TeV recorded with the ATLAS

detector and corresponding to an integrated luminosity of 4.8 fb−1. The four-lepton invariant mass

dis-tribution is compared with Standard Model background expectations to derive upper limits on the cross section of a Standard Model Higgs boson with a mass between 110 GeV and 600 GeV. The mass ranges 134 − 156 GeV, 182 − 233 GeV, 256 − 265 GeV and 268 − 415 GeV are excluded at the 95% confidence level. The largest upward deviations from the background-only hypothesis are observed for Higgs boson masses of 125 GeV, 244 GeV and 500 GeV with local significances of 2.1, 2.2 and 2.1 standard deviations, respectively. Once the look-elsewhere effect is considered, none of these excesses are significant.

Keywords: LHC, ATLAS, Higgs, leptons

1. Introduction

The search for the Standard Model (SM) Higgs boson [1–3] is one of the most important aspects of the CERN Large Hadron Collider (LHC) physics programme. Direct searches performed at the CERN Large Electron-Positron Collider (LEP) ex-cluded at 95% confidence level (CL) the produc-tion of a SM Higgs boson with mass, mH, less than

114.4 GeV [4]. The searches at the Fermilab Teva-tron p¯p collider have excluded at 95% CL the region 156 < mH < 177 GeV [5]. At the LHC, results from

data collected in 2010 extended the search in the re-gion 200 < mH < 600 GeV by excluding a Higgs

boson with cross section larger than 5 − 20 times the SM prediction [6, 7]. In ATLAS these results were extended further using the first 1.04−2.28 fb−1

of data recorded in 2011 [8–13]. In particular, the H → W W(∗) → ℓ+νℓν search [13] excluded at¯

95% CL the region 145 < mH < 206 GeV.

The search for the SM Higgs boson through the decay H → ZZ(∗) → ℓ+′+′−, where

ℓ, ℓ′ = e or µ, provides good sensitivity over a wide mass range. Previous results from ATLAS in this channel [9] excluded three mass regions

be-tween 191 GeV and 224 GeV at 95% CL with a 2.1 fb−1 data sample. This Letter presents an

up-date of this search in the mass range from 110 GeV to 600 GeV, superseding Ref. [9]. Three distinct final states, µ+µµ+µ(4µ), e+eµ+µ(2e2µ),

and e+ee+e(4e), are selected. The largest

background to this search comes from contin-uum (Z(∗))(Z(∗)) production, referred to as

ZZ(∗) hereafter. For mH < 180 GeV, there

are also important background contributions from Z + jets and t¯t production, where the additional charged lepton candidates arise either from de-cays of hadrons with b- or c-quark content or from misidentification of jets.

The√s = 7 TeV pp collision data were recorded during 2011 with the ATLAS detector at the LHC and correspond to an integrated luminosity of 4.8 fb−1 [14, 15]. This analysis is using more

than twice the integrated luminosity of Ref. [9], including the data therein. The electron identifi-cation efficiency has been improved; furthermore the electron tracks have been refitted using a Gaussian-sum filter [16], which corrects for energy losses due to bremsstrahlung. The analysis also

(2)

benefits from recent significant improvements in the alignment of the inner detector and the muon spectrometer.

2. The ATLAS Detector

The ATLAS detector [17] is a multi-purpose par-ticle physics detector with forward-backward sym-metric cylindrical geometry1. The inner

track-ing detector (ID) [18] covers |η| < 2.5 and con-sists of a silicon pixel detector, a silicon mi-crostrip detector, and a transition radiation tracker. The ID is surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field. A high-granularity lead/liquid-argon (LAr) sampling calorimeter [19] measures the energy and the po-sition of electromagnetic showers with |η| < 3.2. LAr sampling calorimeters are also used to mea-sure hadronic showers in the end-cap (1.5 < |η| < 3.2) and forward (3.1 < |η| < 4.9) regions, while an iron/scintillator tile calorimeter [20] measures hadronic showers in the central region (|η| < 1.7). The muon spectrometer (MS) [21] surrounds the calorimeters and consists of three large supercon-ducting air-core toroids, each with eight coils, a sys-tem of precision tracking chambers (|η| < 2.7), and fast tracking chambers for triggering. A three-level trigger system [22] selects events to be recorded for offline analysis.

3. Data and Simulation Samples

The data are subjected to quality requirements: events recorded during periods when the relevant detector components were not operating normally are rejected. The resulting integrated luminosity is 4.8 fb−1, 4.8 fb−1and 4.9 fb−1for the 4µ, 2e2µ and

4e final states, respectively.

The H → ZZ(∗) → 4ℓ signal is modelled

us-ing the powheg Monte Carlo (MC) event genera-tor [23, 24], which calculates separately the gluon-gluon and vector-boson fusion production mecha-nisms with matrix elements up to next-to-leading

1ATLAS uses a right-handed coordinate system with its

origin at the nominal interaction point. The z-axis is along the beam pipe, the x-axis points to the centre of the LHC ring and the y-axis points upward. Cylindrical coordinates (r,φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity η is defined as η = − ln[tan(θ/2)] where θ is the polar angle.

order (NLO). The Higgs boson transverse momen-tum (pT) spectrum in the gluon fusion process is

reweighted to match the calculation of Ref. [25], which includes quantum chromodynamics (QCD) corrections up to NLO and QCD soft-gluon resum-mations up to next-to-next-to-leading logarithm (NNLL). powheg is interfaced to pythia [26] for showering and hadronization, which in turn is inter-faced to photos [27] for quantum electrodynamics (QED) radiative corrections in the final state and to tauola [28, 29] for the simulation of τ lepton decays. pythia is used to simulate the production of a Higgs boson in association with a W or a Z bo-son.

The Higgs boson production cross sections and decay branching ratios [30–33], as well as their uncertainties, are taken from Refs. [34, 35]. The cross sections for the gluon fusion process have been calculated at next-to-leading order (NLO) in QCD [36–38], and then at next-to-next-to-leading order (NNLO) [39–41]. In addition, QCD soft-gluon resummations up to NNLL are applied for the gluon fusion process [42]. The NLO electroweak (EW) corrections are applied [43, 44]. These results are compiled in Refs. [45–47] assuming factorisation between QCD and EW corrections. The cross sec-tions for the vector-boson fusion process are calcu-lated with full NLO QCD and EW corrections [48– 50], and approximate NNLO QCD corrections are available [51]. The associated productions with a W or Z boson are calculated at NLO [52] and at NNLO [53] in QCD, and NLO EW radiative cor-rections [54] are applied. The uncertainty in the production cross section due to the choice of QCD scale is+12−8 % for the gluon fusion process, and ±1% for the vector-boson fusion, associated W H produc-tion, and associated ZH production processes [34]. The uncertainty in the production cross section due to the parton distribution function (PDF) and αsis

±8% for gluon-initiated process and ±4% for quark-initiated processes [55–59]. The Higgs boson de-cay branching ratio to the four-lepton final state is predicted by prophecy4f [31, 32], which includes the complete NLO QCD+EW corrections, interfer-ence effects between identical final-state fermions, and leading two-loop heavy Higgs boson correc-tions to the four-fermion width. Table 1 gives the production cross sections and branching ratios for H → ZZ(∗)→ 4ℓ for several Higgs boson masses.

The cross section calculations do not take into account the width of the Higgs boson, which is im-plemented through a relativistic Breit-Wigner line

(3)

shape applied at the event-generator level. It has been suggested [35, 60–62] that effects related to off-shell Higgs boson production and interference with other SM processes may become sizeable for the highest masses (mH > 400 GeV) considered in this

search. In the absence of a full calculation, a con-servative estimate of the possible size of such effects is included as a signal normalization systematic un-certainty following a parameterization as a function of mH: 150% × m3H[TeV], for mH ≥ 300 GeV [35].

The ZZ(∗)continuum background is modelled

us-ing pythia. The mcfm [63, 64] prediction, includ-ing both quark-antiquark annihilation and gluon fusion at QCD NLO, is used for the inclusive to-tal cross section and the shape of the invariant mass of the ZZ(∗) system (m

ZZ(∗)). The QCD scale uncertainty has a ±5% effect on the expected ZZ(∗) background, and the effect due to the PDF

and αs uncertainties is ±4% (±8%) for

quark-initiated (gluon-quark-initiated) processes. An additional theoretical uncertainty of ±10% on the inclusive ZZ(∗) cross section is conservatively included due

to the missing higher-order QCD corrections for the gluon-initiated process, and a correlated uncer-tainty on the predicted mZZ(∗) spectrum is esti-mated by varying the gluon-initiated contribution by 100% [65].

The Z + jets production is modelled using alp-gen [66] and is divided into two sources: Z + light jets — which includes Zc¯c in the massless c-quark approximation and Zb¯b from parton show-ers — and Zb¯b using matrix element calculations that take into account the b-quark mass. The MLM [67] matching scheme is used to remove any double counting of identical jets produced via the matrix element calculation and the parton shower, but this scheme is not implemented for b-jets. Therefore, b¯b pairs with separation ∆R = q

(∆φ)2+ (∆η)2 > 0.4 between the b-quarks are taken from the matrix-element calculation, whereas for ∆R < 0.4 the parton-shower b¯b pairs are used. In this search the Z +jets background is normalized using control samples from data. For comparisons with simulation, the QCD NNLO fewz [68, 69] and mcfmcross section calculations are used for inclu-sive Z boson and Zb¯b production, respectively. The t¯t background is modelled using mc@nlo [70] and is normalized to the approximate NNLO cross sec-tion calculated using hathor [71]. The effect of the QCD scale uncertainty on the cross section is

+4

−9%, while the effect of PDF and αsuncertainties is

±7%. Both alpgen and mc@nlo are interfaced to herwig [72] for parton shower hadronization and to jimmy [73] for the underlying event simulation.

Generated events are fully simulated using the ATLAS detector simulation [74] within the GEANT4 framework [75]. Additional pp interac-tions in the same and nearby bunch crossings (pile-up) are included in the simulation. The MC sam-ples are reweighted to reproduce the observed dis-tribution of the mean number of interactions per bunch crossing in the data.

4. Lepton Identification and Event Selection

The data considered in this analysis are selected using single-lepton or di-lepton triggers. For the single-muon trigger the pT threshold is 18 GeV,

while for the single-electron trigger the transverse energy, ET, threshold is 20 − 22 GeV depending

on the LHC instantaneous luminosity. For the di-muon and di-electron triggers the thresholds are pT = 10 GeV for each of the muons, and ET =

12 GeV for each of the electrons, respectively. Electron candidates consist of clusters of energy deposited in the electromagnetic calorimeter that are associated to ID tracks. Electron tracks have been refitted using a Gaussian-sum filter. The electron candidates must satisfy a set of identifi-cation criteria [76] that require the shower profiles to be consistent with those expected for electro-magnetic showers and a well-reconstructed ID track pointing to the corresponding cluster. The electron transverse momentum is computed from the clus-ter energy and the track direction at the inclus-teraction point.

Muon candidates are reconstructed by matching ID tracks with either complete or partial tracks re-constructed in the MS [77]. If a complete track is present, the two independent momentum mea-surements are combined; otherwise the momentum is measured using the ID information only. To re-ject cosmic rays, muon tracks are required to have a transverse impact parameter, defined as the impact parameter in the transverse plane with respect to the primary vertex, of less than 1mm. The primary vertex is defined as the reconstructed vertex with the highestP p2

Tof associated tracks among the

re-constructed vertices with at least three associated tracks.

This analysis searches for Higgs boson candidates by selecting two same-flavour, opposite-sign lep-ton pairs in an event. The impact parameter of

(4)

Table 1: Higgs boson production cross sections for gluon fusion, vector-boson fusion and associated production with a W or Z boson in pp collisions at√s = 7 TeV [34]. The quoted uncertainties correspond to the total theoretical systematic uncertainty. The production cross section for associated production with a W or Z boson is negligibly small for mH> 300 GeV. The decay

branching ratio for H → 4ℓ, with ℓ = e or µ, is reported in the last column [34].

mH σ (gg → H) σ (qq′→ Hqq′) σ (q ¯q → W H) σ (q ¯q → ZH) BR H → ZZ(∗)→ 4ℓ  [GeV] [pb] [pb] [pb] [pb] [10−3] 130 14.1+2.7−2.1 1.154+0.032−0.027 0.501 ± 0.020 0.278 ± 0.014 0.19 150 10.5+2.0−1.6 0.962+0.028−0.021 0.300 ± 0.012 0.171 ± 0.009 0.38 200 5.2+0.9−0.8 0.637+0.022−0.015 0.103 ± 0.005 0.061 ± 0.004 1.15 400 2.0 ± 0.3 0.162+0.010−0.005 − − 1.21 600 0.33 ± 0.06 0.058+0.005−0.002 − − 1.23

Table 2: Lower thresholds applied to m34 for reference values of m4ℓ. For m4ℓ values between these reference values the

selection requirement is obtained via linear interpolation.

m4ℓ (GeV) ≤120 130 140 150 160 165 180 190 ≥200 m34 threshold (GeV) 15 20 25 30 30 35 40 50 60 [GeV] µ µ µ µ m 80 90 100 110 120 130 140 150

arbitrary units / 0.5 GeV

0 0.02 0.04 0.06 0.08 0.1 ATLAS Simulation µ 4 → (*) ZZ → H 0.03 GeV ± = 1.98 σ : 15% σ 2 ± fraction outside = 130 GeV H m Gaussian fit (a) [GeV] eeee m 80 90 100 110 120 130 140 150

arbitrary units / 0.5 GeV

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 ATLAS Simulation 4e → (*) ZZ → H 0.06 GeV ± = 2.53 σ : 18% σ 2 ± fraction outside = 130 GeV H m Gaussian fit (b)

Figure 1: Invariant mass distributions for simulated (a) H → ZZ(∗)→ 4µ and (b) H → ZZ(∗)→ 4e events for mH= 130 GeV.

The fitted range for the Gaussian is chosen to be : −2 σ to 2 σ (−1.5 σ to 2.5 σ) for the 4µ (4e) channel. The reduced mean value of the reconstructed invariant mass in the 4e channel arises from energy losses due to bremsstrahlung [76]. The fraction of events outside the ±2σ region is found to be 15% for 4µ and 18% for 4e.

the leptons along the beam axis is required to be within 10 mm of the primary vertex. Each lep-ton must satisfy pT > 7 GeV and be measured

in the pseudorapidity range |η| < 2.47 for elec-trons and |η| < 2.7 for muons. At least two lep-tons in the quadruplet must have pT > 20 GeV.

The leptons are required to be separated from each

other by ∆R > 0.1. The invariant mass of the same-flavour and opposite-sign lepton pair closest to the Z boson mass (mZ) is denoted by m12 and

|mZ− m12| < 15 GeV is required. The invariant

mass of the remaining same-flavour and opposite-sign lepton pair, m34, is required to be in the range

(5)

the reconstructed four-lepton invariant mass, m4ℓ,

as shown in Table 2.

The Z + jets and t¯t background contributions are further reduced by applying track- and calorimeter-based isolation and impact parameter requirements on the leptons. For a lepton to be isolated, the sum of the pT of tracks within ∆R < 0.2 of the

lep-ton divided by the leplep-ton pTis required to be less

than 0.15, while the sum of the ETof the

calorime-ter cells with ∆R < 0.2 around the lepton divided by the lepton pT is required to be less than 0.3.

The lepton track and the energies of calorimeter cells associated to it are excluded from the sum. Any contributions arising from other leptons of the quadruplet are subtracted. To reduce the impact of event pile-up, the tracks included in the pTsum

for track isolation must be associated with the pri-mary vertex, and the transverse energy included in the ET sum for calorimeter isolation is corrected

by subtracting a small amount of energy that de-pends on the number of reconstructed vertices in the event. In events with four-lepton invariant mass (m4ℓ) below 190 GeV, the transverse impact

pa-rameter significance, defined as the transverse im-pact parameter divided by the corresponding uncer-tainty, for the two lowest pTleptons in the

quadru-plet is required to be less than 3.5 (6) for muons (electrons).

The combined signal reconstruction and selection efficiencies for mH = 130 GeV (mH = 360 GeV)

are 27% (60%) for the 4µ channel, 18% (52%) for the 2e2µ channel and 14% (45%) for the 4e channel. The final discriminating variable is m4ℓ, for which

Higgs boson production would appear as a cluster-ing of events. In Fig. 1, the invariant mass distri-butions for the 4µ and 4e channels are presented for a simulated signal sample with mH = 130 GeV.

The width of the reconstructed Higgs boson mass distribution is dominated by experimental resolu-tion for mH < 350 GeV, while for higher mH

the reconstructed width is dominated by the nat-ural width of the Higgs boson; the predicted full-width at half-maximum is approximately 35 GeV at mH = 400 GeV.

5. Background Estimation

The expected background yield and its composi-tion is estimated using MC simulacomposi-tion normalized to the theoretical cross section for ZZ(∗)

produc-tion and by data-driven methods for the Z + jets and t¯t processes.

A control sample consisting of Z → ℓ+

candi-dates with an additional loosely selected — no iso-lation or impact parameter requirements — same-flavour lepton pair is used to study the contribu-tions of Zb¯b and Z +light jets. The Zb¯b background dominates the Z +µµ sample, and the Z +light jets background dominates in the Z + ee sample. The heavy flavour contribution in the Z + µµ control sample is estimated by subtracting from the data the light jet component. The latter is obtained in a data-driven manner by using measurements of the rate at which other particles are misidentified as muons. The Z + light jets contribution in the Z + ee final state is estimated by extrapolation, us-ing MC simulation, from a background-dominated region defined by inverting the electron identifica-tion requirement on the transverse shower shape of the electromagnetic energy deposit. These data-driven backgrounds are extrapolated to the signal region by applying the efficiencies found in MC sim-ulation, and verified using data, for the isolation and impact parameter significance requirements.

The normalization of the t¯t background, which also contributes substantially in the Z + µµ final state, is verified using a control region of events containing an opposite-sign electron-muon pair con-sistent with the Z boson mass and two additional same-flavour leptons.

Figure 2 displays the invariant masses of lepton pairs in events with a Z boson candidate and an additional same-flavour lepton pair, selected by fol-lowing the kinematic requirements of the analysis, and by applying isolation requirements to the first lepton pair only. The events are divided accord-ing to the flavour of the additional lepton pair into Z+µµ and Z+ee samples, where Z → µ+µ/e+e.

In Figs. 2(a) and 2(c) the m12and m34distributions

are presented for Z + µµ events, while in Figs. 2(b) and 2(d) the corresponding distributions are pre-sented for Z + ee events. The shapes and normal-izations of the backgrounds discussed earlier are in good agreement with data; this is observed both for large values of m34, where the ZZ(∗) background

dominates, and for low m34 values.

6. Systematic Uncertainties

Uncertainties in lepton reconstruction and identi-fication efficiency, and on the momentum resolution and scale, are determined using samples of W , Z and J/ψ decays. The muon efficiency uncertainty results in a relative acceptance uncertainty in the

(6)

[GeV] 12 m 75 80 85 90 95 100 105 110 Events/2.5 GeV 0 5 10 15 20 25 30 35 40 45 50 DATA ZZ Z+light jets b Zb t t WZ Syst.Unc. ATLAS -1 Ldt = 4.8 fb

= 7 TeV s µ µ + -e + /e -µ + µ → Z (a) [GeV] 12 m 75 80 85 90 95 100 105 110 Events/2.5 GeV 0 5 10 15 20 25 30 35 40 45 50 DATA ZZ Z+light jets b Zb t t WZ Syst.Unc. ATLAS -1 Ldt = 4.8 fb

= 7 TeV s + ee -e + /e -µ + µ → Z (b) [GeV] 34 m 20 30 40 50 60 70 80 90 100 110 Events/10 GeV 0 10 20 30 40 50 DATAZZ Z+light jets b Zb t t WZ Syst.Unc. ATLAS -1 Ldt = 4.8 fb

= 7 TeV s µ µ + -e + /e -µ + µ → Z (c) [GeV] 34 m 20 30 40 50 60 70 80 90 100 110 Events/10 GeV 0 5 10 15 20 25 30 35 40 DATA ZZ Z+light jets b Zb t t WZ Syst.Unc. ATLAS -1 Ldt = 4.8 fb

= 7 TeV s + ee -e + /e -µ + µ → Z (d)

Figure 2: Invariant mass distributions of the lepton pairs in the control sample defined by a Z boson candidate and an additional same-flavour lepton pair. The sample is divided according to the flavour of the additional lepton pair. In (a) the m12 and in

(c) the m34 distributions are presented for Z(→ µ+µ−/e+e−) + µµ events. In (b) the m12 and in (d) the m34distributions

are presented for Z(→ µ+µ/e+e) + ee events. The kinematic selections of the analysis are applied. Isolation requirements

are applied to the first lepton pair only.

signal and the ZZ(∗) background which is uniform

over the mass range of interest, and amounts to 0.22% (0.16%) for the 4µ (2e2µ) channel. The un-certainty in the electron efficiency results in a rela-tive acceptance uncertainty of 2.3% (1.6%) for the 4e (2e2µ) channel at m4ℓ = 600 GeV and reaches

8.0% (4.1%) at m4ℓ = 110 GeV. The effects of

muon momentum resolution and scale

uncertain-ties are found to be negligible. The energy resolu-tion uncertainty for electrons is negligible, while the electron energy scale uncertainty results in an un-certainty of less than 0.6% (0.3%) on the mass scale of the m4ℓ distribution for the 4e(2e2µ) channel.

The selection efficiencies of the isolation and im-pact parameter requirements are studied using data for both isolated and non-isolated leptons. Isolated

(7)

Table 3: The expected numbers of background events, with their systematic uncertainty, separated into “Low-m4ℓ” (m4ℓ<

180 GeV) and “High-m4ℓ” (m4ℓ≥ 180 GeV) regions, compared to the observed numbers of events. The expectations for a

Higgs boson signal for five different mH values are also given.

µ+µµ+µe+eµ+µe+ee+e

Low-m4ℓ High-m4ℓ Low-m4ℓ High-m4ℓ Low-m4ℓ High-m4ℓ

Int. Luminosity 4.8 fb−1 4.8 fb−1 4.9 fb−1 ZZ(∗) 2.1 ± 0.3 16.3 ± 2.4 2.8 ± 0.6 25.2 ± 3.8 1.2 ± 0.3 10.4 ± 1.5 Z + jets and t¯t 0.16 ± 0.06 0.02 ± 0.01 1.4 ± 0.5 0.17 ± 0.08 1.6 ± 0.7 0.18 ± 0.08 Total Background 2.2 ± 0.3 16.3 ± 2.4 4.3 ± 0.8 25.4 ± 3.8 2.8 ± 0.8 10.6 ± 1.5 Data 3 21 3 27 2 15 mH= 130 GeV 1.00 ± 0.17 1.22 ± 0.21 0.43 ± 0.08 mH= 150 GeV 2.1 ± 0.4 2.9 ± 0.4 1.12 ± 0.18 mH= 200 GeV 4.9 ± 0.7 7.7 ± 1.0 3.1 ± 0.4 mH= 400 GeV 2.0 ± 0.3 3.3 ± 0.5 1.49 ± 0.21 mH= 600 GeV 0.34 ± 0.04 0.62 ± 0.10 0.30 ± 0.06 [GeV] 12 m 70 80 90 100 110 Events/2.5 GeV 0 5 10 15 20 25 30 35 40 -1 Ldt = 4.8 fb

= 7 TeV s 4l → (*) ZZ → H DATA (*) ZZ t Z+jets,t Syst.Unc. ATLAS (a) [GeV] 34 m 20 40 60 80 100 120 Events/10 GeV 0 5 10 15 20 25 30 -1 Ldt = 4.8 fb

= 7 TeV s 4l → (*) ZZ → H DATA (*) ZZ t Z+jets,t Syst.Unc. ATLAS (b)

Figure 3: Invariant mass distributions (a) m12 and (b) m34for the selected candidates. The data (dots) are compared to the

background expectations from the dominant ZZ(∗) process and the sum of t¯t, Zb¯b and Z + light jets processes. Error bars

represent 68.3% central confidence intervals.

leptons are obtained from Z → ℓℓ decays, while ad-ditional leptons reconstructed in events with Z → ℓℓ decays constitute the sample of non-isolated lep-tons. Additional checks are performed with non-isolated leptons from semi-leptonic b- and c-quark decays in a heavy-flavour enriched di-jet sample. Good agreement is observed between data and sim-ulation and the systematic uncertainty is, in gen-eral, estimated to be small with respect to the other systematic uncertainties. An exception is found in

the case of isolated electrons with ET < 15 GeV,

where due to the small number of Z → e+e

events and the substantial QCD backgrounds an additional uncertainty of 5% is added.

An additional uncertainty in the signal selection efficiency is added due to the modelling of the signal kinematics. This is evaluated by varying the Higgs boson pT spectrum in the gluon fusion process

ac-cording to the PDF and QCD scale uncertainties. The Z + light jets and Zb¯b backgrounds are

(8)

[GeV] 4l m 100 150 200 250 Events/5 GeV 0 2 4 6 8 10 -1 Ldt = 4.8 fb

= 7 TeV s 4l → (*) ZZ → H DATA Background =125 GeV) H Signal (m =150 GeV) H Signal (m =190 GeV) H Signal (m Syst.Unc. ATLAS (a) [GeV] 4l m 200 400 600 Events/10 GeV 0 2 4 6 8 10 12 -1 Ldt = 4.8 fb

= 7 TeV s 4l → (*) ZZ → H DATA Background =190 GeV) H Signal (m =360 GeV) H Signal (m =520 GeV) H Signal (m Syst.Unc. ATLAS (b)

Figure 4: m4ℓ distribution of the selected candidates, compared to the background expectation for (a) the 100 − 250 GeV

mass range and (b) the full mass range of the analysis. Error bars represent 68.3% central confidence intervals. The signal expectation for several mH hypotheses is also shown. The resolution of the reconstructed Higgs mass is dominated by detector

resolution at low mH values and by the Higgs boson width at high mH.

uated using data. Systematic uncertainties of 45% and 40%, respectively, are assigned to their nor-malization to account for the statistical uncertainty in the yield of the control sample, the uncertainty in the composition of the control sample, and the uncertainty in the MC-based extrapolation to the signal region.

The overall uncertainty in the integrated lumi-nosity for the complete 2011 dataset is 3.9%, based on the calibration described in Refs. [14, 15] includ-ing an additional uncertainty for the extrapolation to the later data-taking period with higher instan-taneous luminosity.

7. Results

In total, 71 candidate events are selected by the analysis: 24 4µ, 30 2e2µ, and 17 4e events. From the background processes, 62 ± 9 events are expected: 18.6 ± 2.8 4µ, 29.7 ± 4.5 2e2µ and 13.4 ± 2.0 4e. In Table 3, the number of events observed in each final state is summarized and com-pared to the expected backgrounds, separately for m4ℓ < 180 GeV and m4ℓ ≥ 180 GeV, and to the

expected signal for various mH hypotheses. The

m12and m34mass spectra are shown in Fig. 3. The

expected m4ℓdistributions for the total background

and several signal hypotheses are compared to the data in Fig. 4.

Upper limits are set on the Higgs boson produc-tion cross secproduc-tion at 95% CL, using the CLs

modi-fied frequentist formalism [78] with the profile like-lihood ratio test statistic [79]. The test statistic is evaluated with a binned maximum-likelihood fit of signal and background models to the observed m4ℓ distribution. Figure 5 shows the observed

and expected 95% CL cross section upper limits, calculated using ensembles of simulated pseudo-experiments, as a function of mH. The SM Higgs

boson is excluded at 95% CL in the mass ranges 134 − 156 GeV, 182 − 233 GeV, 256 − 265 GeV and 268 − 415 GeV. The expected exclusion ranges are 136 − 157 GeV and 184 − 400 GeV.

The significance of an excess is given by the probability, p0, that a background-only

experi-ment is more signal-like than that observed. In Fig. 6 the p0-values, calculated using an

ensem-ble of simulated pseudo-experiments, are given as a function of mH for the full mass range of

the analysis. The most significant upward devia-tions from the background-only hypothesis are ob-served for mH = 125 GeV with a local p0 of 1.6%

(2.1 standard deviations), mH = 244 GeV with

(9)

mH = 500 GeV with a local p0 of 1.8% (2.1

stan-dard deviations). The median expected local p0

in the presence of a SM Higgs boson are 10.6% (1.3 standard deviations), 0.14% (3.0 standard de-viations) and 7.1% (1.5 standard dede-viations) for mH = 125 GeV, 244 GeV and 500 GeV,

respec-tively. An alternative calculation, using the asymp-totic approximation of Ref. [79], yielded compatible results — within 0.2 standard deviations — in the entire mass range.

The quoted values do not account for the so-called look-elsewhere effect, which takes into ac-count that such an excess (or a larger one) can ap-pear anywhere in the search range as a result of an upward fluctuation of the background. When considering the complete mass range of this search, using the method of Ref. [80], the global p0-value

for each of the three excesses becomes of O(50%). Thus, once the look-elsewhere effect is considered, none of the observed local excesses are significant. 8. Summary

A search for the SM Higgs boson in the decay channel H → ZZ(∗)→ 4ℓ based on 4.8 fb−1 of data

recorded by the ATLAS detector at √s = 7 TeV during the 2011 run has been presented. The SM Higgs boson is excluded at 95% CL in the mass ranges 134−156 GeV, 182−233 GeV, 256−265 GeV and 268 − 415 GeV. The largest upward deviations from the background-only hypothesis are observed for mH = 125 GeV, 244 GeV and 500 GeV with

lo-cal significances of 2.1, 2.2 and 2.1 standard devi-ations, respectively. Once the look-elsewhere effect is considered, none of these excesses are significant. 9. Acknowledgements

We thank CERN for the very successful opera-tion of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Be-larus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colom-bia; MSMT CR, MPO CR and VSC CR, Czech Re-public; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS and ERC, European Union;

[GeV] H m 200 300 400 500 600 SM σ / σ 9 5 % C L l im it o n -1 10 1 10 2 10 s CL Observed s CL Expected σ 1 ± σ 2 ± ATLAS 4l → (*) ZZ → H -1 Ldt = 4.8 fb

=7 TeV s s CL Observed s CL Expected σ 1 ± σ 2 ± s CL Observed s CL Expected σ 1 ± σ 2 ± 110

Figure 5: The expected (dashed) and observed (full line) 95% CL upper limits on the Standard Model Higgs boson production cross section as a function of mH, divided by the

expected SM Higgs boson cross section. The dark (green) and light (yellow) bands indicate the expected limits with ±1σ and ±2σ fluctuations, respectively.

[GeV] H m 200 300 400 500 600 0 Local p -5 10 -4 10 -3 10 -2 10 -1 10 1 Observed Expected ATLAS 4l → (*) ZZ → H -1 Ldt = 4.8 fb

=7 TeV s σ 2 σ 3 110

Figure 6: The observed local p0, the probability that the

background fluctuates to the observed number of events or higher, is shown as the solid line. The dashed curve shows the expected median local p0for the signal hypothesis when

tested at mH. The two horizontal dashed lines indicate the

p0values corresponding to local significances of 2σ and 3σ.

IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH

(10)

Foun-dation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slove-nia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzer-land; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United King-dom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Ger-many), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

[1] F. Englert, R. Brout, Phys. Rev. Lett. 13 (1964) 321– 323.

[2] P. W. Higgs, Phys. Rev. Lett. 13 (1964) 508–509. [3] G. S. Guralnik, C. R. Hagen, T. W. B. Kibble, Phys.

Rev. Lett. 13 (1964) 585–587.

[4] LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3 and OPAL Collaborations, Phys. Lett. B 565 (2003) 61–75. arXiv:hep-ex/0306033.

[5] The Tevatron New Physics and Higgs Working Group (2011). arXiv:1107.5518.

[6] ATLAS Collaboration, Eur. Phys. J. C 71 (2011) 1728. arXiv:1106.2748.

[7] CMS Collaboration, Phys. Lett. B 699 (2011) 25–47. arXiv:1102.5429.

[8] ATLAS Collaboration, Phys. Lett. B 705 (2011) 452– 470. arXiv:1108.5895.

[9] ATLAS Collaboration, Phys. Lett. B 705 (2011) 435– 451. arXiv:1109.5945.

[10] ATLAS Collaboration, Phys. Rev. Lett. 107 (2011) 221802. arXiv:1109.3357.

[11] ATLAS Collaboration, Phys. Lett. B 707 (2012) 27–45. arXiv:1108.5064.

[12] ATLAS Collaboration, Phys. Rev. Lett. 107 (2011) 231801. arXiv:1109.3615.

[13] ATLAS Collaboration, submitted to Phys. Rev. Lett. (2011). arXiv:1112.2577.

[14] ATLAS Collaboration, Eur. Phys. J. C 71 (2011) 1630. arXiv:1101.2185.

[15] ATLAS Collaboration, ATLAS-CONF-2011-116 http://cdsweb.cern.ch/record/1376384.

[16] R. Fr¨uhwirth, Comput. Phys. Commun. 100 (1-2) (1997) 1 – 16.

[17] ATLAS Collaboration, JINST 3 (2008) S08003.

[18] ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 787– 821. arXiv:1004.5293.

[19] ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 723– 753. arXiv:0912.2642.

[20] ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 1193– 1236. arXiv:1007.5423.

[21] ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 875– 916. arXiv:1006.4384.

[22] ATLAS Collaboration, submitted to Eur. Phys. J. C. arXiv:1110.1530.

[23] S. Alioli, P. Nason, C. Oleari, E. Re, JHEP 04 (2009) 002. arXiv:0812.0578.

[24] P. Nason, C. Oleari, JHEP 02 (2010) 037. arXiv:0911.5299.

[25] D. de Florian, G. Ferrera, M. Grazzini, D. Tommasini, JHEP 11 (2011) 064. arXiv:1109.2109.

[26] T. Sjostrand, S. Mrenna, P. Z. Skands, JHEP 05 (2006) 026. arXiv:hep-ph/0603175.

[27] P. Golonka, Z. Was, Eur. Phys. J. C 45 (2006) 97–107. arXiv:hep-ph/0506026.

[28] S. Jadach, Z. Was, R. Decker, J. H. Kuhn, Comput. Phys. Commun. 76 (1993) 361–380.

[29] P. Golonka, et al., Comput. Phys. Commun. 174 (2006) 818–835.

[30] A. Djouadi, J. Kalinowski, M. Spira, Comput. Phys. Commun. 108 (1998) 56–74. arXiv:hep-ph/9704448. [31] A. Bredenstein, A. Denner, S. Dittmaier, M. M. Weber,

Phys. Rev. D 74 (2006) 013004. arXiv:hep-ph/0604011. [32] A. Bredenstein, A. Denner, S. Dittmaier, M. M. Weber,

JHEP 02 (2007) 080. arXiv:hep-ph/0611234. [33] S. Actis, G. Passarino, C. Sturm, S. Uccirati, Nucl.

Phys. B 811 (2009) 182–273. arXiv:0809.3667. [34] LHC Higgs Cross Section Working Group, S. Dittmaier,

C. Mariotti, G. Passarino, R. Tanaka (Eds.), CERN-2011-002 (2011). arXiv:1101.0593.

[35] LHC Higgs Cross Section Working Group, S. Dittmaier, C. Mariotti, G. Passarino, R. Tanaka (Eds.) (2012). arXiv:1201.3084.

[36] A. Djouadi, M. Spira, P. M. Zerwas, Phys. Lett. B 264 (1991) 440–446.

[37] S. Dawson, Nucl. Phys. B 359 (1991) 283–300. [38] M. Spira, A. Djouadi, D. Graudenz, P. M. Zerwas, Nucl.

Phys. B 453 (1995) 17–82. arXiv:hep-ph/9504378. [39] R. V. Harlander, W. B. Kilgore, Phys. Rev. Lett. 88

(2002) 201801. arXiv:hep-ph/0201206.

[40] C. Anastasiou, K. Melnikov, Nucl. Phys. B 646 (2002) 220–256. arXiv:hep-ph/0207004.

[41] V. Ravindran, J. Smith, W. L. van Neerven, Nucl. Phys. B 665 (2003) 325–366. arXiv:hep-ph/0302135. [42] S. Catani, D. de Florian, M. Grazzini, P. Nason, JHEP

07 (2003) 028. arXiv:hep-ph/0306211.

[43] U. Aglietti, R. Bonciani, G. Degrassi, A. Vicini, Phys. Lett. B 595 (2004) 432–441. arXiv:hep-ph/0404071.

[44] S. Actis, G. Passarino, C. Sturm, S. Uccirati, Phys. Lett. B 670 (2008) 12–17. arXiv:0809.1301. [45] C. Anastasiou, R. Boughezal, F. Petriello, JHEP 04

(2009) 003. arXiv:0811.3458.

[46] D. de Florian, M. Grazzini, Phys. Lett. B 674 (2009) 291–294. arXiv:0901.2427.

[47] J. Baglio, A. Djouadi, JHEP 03 (2011) 055.

[48] M. Ciccolini, A. Denner, S. Dittmaier, Phys. Rev. Lett. 99 (2007) 161803. arXiv:0707.0381.

[49] M. Ciccolini, A. Denner, S. Dittmaier, Phys. Rev. D 77 (2008) 013002. arXiv:0710.4749.

(11)

[50] K. Arnold, et al., Comput. Phys. Commun. 180 (2009) 1661–1670. arXiv:0811.4559.

[51] P. Bolzoni, F. Maltoni, S.-O. Moch, M. Zaro, Phys. Rev. Lett. 105 (2010) 011801. arXiv:1003.4451.

[52] T. Han, S. Willenbrock, Phys. Lett. B 273 (1991) 167– 172.

[53] O. Brein, A. Djouadi, R. Harlander, Phys. Lett. B 579 (2004) 149–156. arXiv:hep-ph/0307206.

[54] M. L. Ciccolini, S. Dittmaier, M. Kramer, Phys. Rev. D 68 (2003) 073003. arXiv:hep-ph/0306234.

[55] M. Botje, et al. (2011). arXiv:1101.0538.

[56] S. Alekhin, S. Alioli, R. D. Ball, V. Bertone, J. Blum-lein, et al. (2011). arXiv:1101.0536.

[57] H.-L. Lai, et al., Phys. Rev. D 82 (2010) 074024. arXiv:1007.2241.

[58] A. D. Martin, W. J. Stirling, R. S. Thorne, G. Watt, Eur. Phys. J. C 63 (2009) 189–285. arXiv:0901.0002. [59] R. D. Ball, et al., Nucl. Phys. B 849 (2011) 296–363.

arXiv:1101.1300.

[60] M. H. Seymour, Phys. Lett. B 354 (1995) 409–414. arXiv:hep-ph/9505211.

[61] G. Passarino, C. Sturm, S. Uccirati, Nucl. Phys. B 834 (2010) 77–115. arXiv:1001.3360.

[62] C. Anastasiou, S. Buehler, F. Herzog, A. Lazopoulos, JHEP 12 (2011) 058. arXiv:1107.0683.

[63] J. M. Campbell, R. K. Ellis, Phys. Rev. D 60 (1999) 113006. arXiv:hep-ph/9905386.

[64] J. M. Campbell, R. K. Ellis, C. Williams, JHEP 07 (2011) 018. arXiv:1105.0020.

[65] J. M. Campbell, et al., Phys. Rev. D 80 (2009) 054023. arXiv:0906.2500.

[66] M. L. Mangano, et al., JHEP 07 (2003) 001. arXiv:hep-ph/0206293.

[67] M. L. Mangano, M. Moretti, F. Piccinini, M. Treccani, JHEP 01 (2007) 013. arXiv:hep-ph/0611129. [68] K. Melnikov, F. Petriello, Phys. Rev. D 74 (2006)

114017. arXiv:hep-ph/0609070.

[69] C. Anastasiou, L. J. Dixon, K. Melnikov, F. Petriello, Phys. Rev. D 69 (2004) 094008. arXiv:hep-ph/0312266. [70] S. Frixione, P. Nason, B. R. Webber, JHEP 08 (2003)

007. arXiv:hep-ph/0305252.

[71] M. Aliev, et al., Comput. Phys. Commun. 182 (2011) 1034. arXiv:1007.1327.

[72] G. Corcella, et al., JHEP 01 (2001) 010.

[73] J. M. Butterworth, J. R. Forshaw, M. H. Seymour, Z. Phys. C 72 (1996) 637–646. arXiv:hep-ph/9601371. [74] ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 823–

874. arXiv:1005.4568.

[75] S. Agostinelli, et al., Nucl. Instrum. Meth. A 506 (2003) 250–303.

[76] ATLAS Collaboration, submitted to Eur. Phys. J. C. arXiv:1110.3174.

[77] ATLAS Collaboration, JHEP 12 (2010) 060. arXiv:1010.2130.

[78] A. L. Read, J. Phys. G 28 (2002) 2693–2704.

[79] G. Cowan, K. Cranmer, E. Gross, O. Vitells, Eur. Phys. J. C 71 (2011) 1554. arXiv:1007.1727. [80] E. Gross, O. Vitells, Eur. Phys. J. C 70 (2010) 525–530.

(12)

The ATLAS Collaboration

G. Aad48, B. Abbott110, J. Abdallah11, S. Abdel Khalek114, A.A. Abdelalim49, A. Abdesselam117,

O. Abdinov10, B. Abi111, M. Abolins87, O.S. AbouZeid157, H. Abramowicz152, H. Abreu114,

E. Acerbi88a,88b, B.S. Acharya163a,163b, L. Adamczyk37, D.L. Adams24, T.N. Addy56, J. Adelman174,

M. Aderholz98, S. Adomeit97, P. Adragna74, T. Adye128, S. Aefsky22, J.A. Aguilar-Saavedra123b,a,

M. Aharrouche80, S.P. Ahlen21, F. Ahles48, A. Ahmad147, M. Ahsan40, G. Aielli132a,132b, T. Akdogan18a,

T.P.A. ˚Akesson78, G. Akimoto154, A.V. Akimov93, A. Akiyama66, M.S. Alam1, M.A. Alam75,

J. Albert168, S. Albrand55, M. Aleksa29, I.N. Aleksandrov64, F. Alessandria88a, C. Alexa25a,

G. Alexander152, G. Alexandre49, T. Alexopoulos9, M. Alhroob20, M. Aliev15, G. Alimonti88a, J. Alison119,

M. Aliyev10, B.M.M. Allbrooke17, P.P. Allport72, S.E. Allwood-Spiers53, J. Almond81, A. Aloisio101a,101b,

R. Alon170, A. Alonso78, B. Alvarez Gonzalez87, M.G. Alviggi101a,101b, K. Amako65, P. Amaral29,

C. Amelung22, V.V. Ammosov127, A. Amorim123a,b, G. Amor´os166, N. Amram152, C. Anastopoulos29,

L.S. Ancu16, N. Andari114, T. Andeen34, C.F. Anders20, G. Anders58a, K.J. Anderson30,

A. Andreazza88a,88b, V. Andrei58a, M-L. Andrieux55, X.S. Anduaga69, A. Angerami34, F. Anghinolfi29,

A. Anisenkov106, N. Anjos123a, A. Annovi47, A. Antonaki8, M. Antonelli47, A. Antonov95, J. Antos143b,

F. Anulli131a, S. Aoun82, L. Aperio Bella4, R. Apolle117,c, G. Arabidze87, I. Aracena142, Y. Arai65,

A.T.H. Arce44, S. Arfaoui147, J-F. Arguin14, E. Arik18a,∗, M. Arik18a, A.J. Armbruster86, O. Arnaez80,

V. Arnal79, C. Arnault114, A. Artamonov94, G. Artoni131a,131b, D. Arutinov20, S. Asai154,

R. Asfandiyarov171, S. Ask27, B. ˚Asman145a,145b, L. Asquith5, K. Assamagan24, A. Astbury168,

A. Astvatsatourov52, B. Aubert4, E. Auge114, K. Augsten126, M. Aurousseau144a, G. Avolio162,

R. Avramidou9, D. Axen167, C. Ay54, G. Azuelos92,d, Y. Azuma154, M.A. Baak29, G. Baccaglioni88a,

C. Bacci133a,133b, A.M. Bach14, H. Bachacou135, K. Bachas29, M. Backes49, M. Backhaus20, E. Badescu25a,

P. Bagnaia131a,131b, S. Bahinipati2, Y. Bai32a, D.C. Bailey157, T. Bain157, J.T. Baines128, O.K. Baker174,

M.D. Baker24, S. Baker76, E. Banas38, P. Banerjee92, Sw. Banerjee171, D. Banfi29, A. Bangert149,

V. Bansal168, H.S. Bansil17, L. Barak170, S.P. Baranov93, A. Barashkou64, A. Barbaro Galtieri14,

T. Barber48, E.L. Barberio85, D. Barberis50a,50b, M. Barbero20, D.Y. Bardin64, T. Barillari98,

M. Barisonzi173, T. Barklow142, N. Barlow27, B.M. Barnett128, R.M. Barnett14, A. Baroncelli133a,

G. Barone49, A.J. Barr117, F. Barreiro79, J. Barreiro Guimar˜aes da Costa57, P. Barrillon114,

R. Bartoldus142, A.E. Barton70, V. Bartsch148, R.L. Bates53, L. Batkova143a, J.R. Batley27, A. Battaglia16,

M. Battistin29, F. Bauer135, H.S. Bawa142,e, S. Beale97, T. Beau77, P.H. Beauchemin160, R. Beccherle50a,

P. Bechtle20, H.P. Beck16, S. Becker97, M. Beckingham137, K.H. Becks173, A.J. Beddall18c, A. Beddall18c,

S. Bedikian174, V.A. Bednyakov64, C.P. Bee82, M. Begel24, S. Behar Harpaz151, P.K. Behera62,

M. Beimforde98, C. Belanger-Champagne84, P.J. Bell49, W.H. Bell49, G. Bella152, L. Bellagamba19a,

F. Bellina29, M. Bellomo29, A. Belloni57, O. Beloborodova106,f, K. Belotskiy95, O. Beltramello29,

O. Benary152, D. Benchekroun134a, C. Benchouk82, M. Bendel80, N. Benekos164, Y. Benhammou152,

E. Benhar Noccioli49, J.A. Benitez Garcia158b, D.P. Benjamin44, M. Benoit114, J.R. Bensinger22,

K. Benslama129, S. Bentvelsen104, D. Berge29, E. Bergeaas Kuutmann41, N. Berger4, F. Berghaus168,

E. Berglund104, J. Beringer14, P. Bernat76, R. Bernhard48, C. Bernius24, T. Berry75, C. Bertella82,

A. Bertin19a,19b, F. Bertinelli29, F. Bertolucci121a,121b, M.I. Besana88a,88b, N. Besson135, S. Bethke98,

W. Bhimji45, R.M. Bianchi29, M. Bianco71a,71b, O. Biebel97, S.P. Bieniek76, K. Bierwagen54, J. Biesiada14,

M. Biglietti133a, H. Bilokon47, M. Bindi19a,19b, S. Binet114, A. Bingul18c, C. Bini131a,131b, C. Biscarat176,

U. Bitenc48, K.M. Black21, R.E. Blair5, J.-B. Blanchard135, G. Blanchot29, T. Blazek143a, C. Blocker22,

J. Blocki38, A. Blondel49, W. Blum80, U. Blumenschein54, G.J. Bobbink104, V.B. Bobrovnikov106,

S.S. Bocchetta78, A. Bocci44, C.R. Boddy117, M. Boehler41, J. Boek173, N. Boelaert35, J.A. Bogaerts29, A. Bogdanchikov106, A. Bogouch89,∗, C. Bohm145a, J. Bohm124, V. Boisvert75, T. Bold37, V. Boldea25a, N.M. Bolnet135, M. Bomben77, M. Bona74, V.G. Bondarenko95, M. Bondioli162, M. Boonekamp135, C.N. Booth138, S. Bordoni77, C. Borer16, A. Borisov127, G. Borissov70, I. Borjanovic12a, M. Borri81,

S. Borroni86, V. Bortolotto133a,133b, K. Bos104, D. Boscherini19a, M. Bosman11, H. Boterenbrood104,

D. Botterill128, J. Bouchami92, J. Boudreau122, E.V. Bouhova-Thacker70, D. Boumediene33,

C. Bourdarios114, N. Bousson82, A. Boveia30, J. Boyd29, I.R. Boyko64, N.I. Bozhko127,

(13)

G. Brandt117, O. Brandt54, U. Bratzler155, B. Brau83, J.E. Brau113, H.M. Braun173, B. Brelier157,

J. Bremer29, K. Brendlinger119, R. Brenner165, S. Bressler170, D. Britton53, F.M. Brochu27, I. Brock20, R. Brock87, T.J. Brodbeck70, E. Brodet152, F. Broggi88a, C. Bromberg87, J. Bronner98, G. Brooijmans34,

W.K. Brooks31b, G. Brown81, H. Brown7, P.A. Bruckman de Renstrom38, D. Bruncko143b, R. Bruneliere48,

S. Brunet60, A. Bruni19a, G. Bruni19a, M. Bruschi19a, T. Buanes13, Q. Buat55, F. Bucci49, J. Buchanan117,

N.J. Buchanan2, P. Buchholz140, R.M. Buckingham117, A.G. Buckley45, S.I. Buda25a, I.A. Budagov64,

B. Budick107, V. B¨uscher80, L. Bugge116, O. Bulekov95, M. Bunse42, T. Buran116, H. Burckhart29,

S. Burdin72, T. Burgess13, S. Burke128, E. Busato33, P. Bussey53, C.P. Buszello165, F. Butin29,

B. Butler142, J.M. Butler21, C.M. Buttar53, J.M. Butterworth76, W. Buttinger27, S. Cabrera Urb´an166,

D. Caforio19a,19b, O. Cakir3a, P. Calafiura14, G. Calderini77, P. Calfayan97, R. Calkins105, L.P. Caloba23a,

R. Caloi131a,131b, D. Calvet33, S. Calvet33, R. Camacho Toro33, P. Camarri132a,132b, M. Cambiaghi118a,118b,

D. Cameron116, L.M. Caminada14, S. Campana29, M. Campanelli76, V. Canale101a,101b, F. Canelli30,g,

A. Canepa158a, J. Cantero79, L. Capasso101a,101b, M.D.M. Capeans Garrido29, I. Caprini25a, M. Caprini25a,

D. Capriotti98, M. Capua36a,36b, R. Caputo80, R. Cardarelli132a, T. Carli29, G. Carlino101a,

L. Carminati88a,88b, B. Caron84, S. Caron103, E. Carquin31b, G.D. Carrillo Montoya171, A.A. Carter74,

J.R. Carter27, J. Carvalho123a,h, D. Casadei107, M.P. Casado11, M. Cascella121a,121b, C. Caso50a,50b,∗,

A.M. Castaneda Hernandez171, E. Castaneda-Miranda171, V. Castillo Gimenez166, N.F. Castro123a,

G. Cataldi71a, F. Cataneo29, A. Catinaccio29, J.R. Catmore29, A. Cattai29, G. Cattani132a,132b,

S. Caughron87, D. Cauz163a,163c, P. Cavalleri77, D. Cavalli88a, M. Cavalli-Sforza11, V. Cavasinni121a,121b,

F. Ceradini133a,133b, A.S. Cerqueira23b, A. Cerri29, L. Cerrito74, F. Cerutti47, S.A. Cetin18b,

F. Cevenini101a,101b, A. Chafaq134a, D. Chakraborty105, K. Chan2, B. Chapleau84, J.D. Chapman27,

J.W. Chapman86, E. Chareyre77, D.G. Charlton17, V. Chavda81, C.A. Chavez Barajas29, S. Cheatham84,

S. Chekanov5, S.V. Chekulaev158a, G.A. Chelkov64, M.A. Chelstowska103, C. Chen63, H. Chen24,

S. Chen32c, T. Chen32c, X. Chen171, S. Cheng32a, A. Cheplakov64, V.F. Chepurnov64,

R. Cherkaoui El Moursli134e, V. Chernyatin24, E. Cheu6, S.L. Cheung157, L. Chevalier135,

G. Chiefari101a,101b, L. Chikovani51a, J.T. Childers29, A. Chilingarov70, G. Chiodini71a, A.S. Chisholm17,

R.T. Chislett76, M.V. Chizhov64, G. Choudalakis30, S. Chouridou136, I.A. Christidi76, A. Christov48,

D. Chromek-Burckhart29, M.L. Chu150, J. Chudoba124, G. Ciapetti131a,131b, A.K. Ciftci3a, R. Ciftci3a,

D. Cinca33, V. Cindro73, M.D. Ciobotaru162, C. Ciocca19a, A. Ciocio14, M. Cirilli86, M. Citterio88a,

M. Ciubancan25a, A. Clark49, P.J. Clark45, W. Cleland122, J.C. Clemens82, B. Clement55,

C. Clement145a,145b, R.W. Clifft128, Y. Coadou82, M. Cobal163a,163c, A. Coccaro171, J. Cochran63,

P. Coe117, J.G. Cogan142, J. Coggeshall164, E. Cogneras176, J. Colas4, A.P. Colijn104, N.J. Collins17,

C. Collins-Tooth53, J. Collot55, G. Colon83, P. Conde Mui˜no123a, E. Coniavitis117, M.C. Conidi11,

M. Consonni103, S.M. Consonni88a,88b, V. Consorti48, S. Constantinescu25a, C. Conta118a,118b, G. Conti57,

F. Conventi101a,i, J. Cook29, M. Cooke14, B.D. Cooper76, A.M. Cooper-Sarkar117, K. Copic14,

T. Cornelissen173, M. Corradi19a, F. Corriveau84,j, A. Cortes-Gonzalez164, G. Cortiana98, G. Costa88a,

M.J. Costa166, D. Costanzo138, T. Costin30, D. Cˆot´e29, R. Coura Torres23a, L. Courneyea168, G. Cowan75,

C. Cowden27, B.E. Cox81, K. Cranmer107, F. Crescioli121a,121b, M. Cristinziani20, G. Crosetti36a,36b,

R. Crupi71a,71b, S. Cr´ep´e-Renaudin55, C.-M. Cuciuc25a, C. Cuenca Almenar174,

T. Cuhadar Donszelmann138, M. Curatolo47, C.J. Curtis17, C. Cuthbert149, P. Cwetanski60, H. Czirr140,

P. Czodrowski43, Z. Czyczula174, S. D’Auria53, M. D’Onofrio72, A. D’Orazio131a,131b, P.V.M. Da Silva23a,

C. Da Via81, W. Dabrowski37, A. Dafinca117, T. Dai86, C. Dallapiccola83, M. Dam35, M. Dameri50a,50b,

D.S. Damiani136, H.O. Danielsson29, D. Dannheim98, V. Dao49, G. Darbo50a, G.L. Darlea25b, W. Davey20,

T. Davidek125, N. Davidson85, R. Davidson70, E. Davies117,c, M. Davies92, A.R. Davison76,

Y. Davygora58a, E. Dawe141, I. Dawson138, J.W. Dawson5,∗, R.K. Daya-Ishmukhametova22, K. De7, R. de Asmundis101a, S. De Castro19a,19b, P.E. De Castro Faria Salgado24, S. De Cecco77, J. de Graat97, N. De Groot103, P. de Jong104, C. De La Taille114, H. De la Torre79, B. De Lotto163a,163c, L. de Mora70, L. De Nooij104, D. De Pedis131a, A. De Salvo131a, U. De Sanctis163a,163c, A. De Santo148,

J.B. De Vivie De Regie114, G. De Zorzi131a,131b, S. Dean76, W.J. Dearnaley70, R. Debbe24,

C. Debenedetti45, B. Dechenaux55, D.V. Dedovich64, J. Degenhardt119, M. Dehchar117,

C. Del Papa163a,163c, J. Del Peso79, T. Del Prete121a,121b, T. Delemontex55, M. Deliyergiyev73,

(14)

N. Delruelle29, P.A. Delsart55, C. Deluca147, S. Demers174, M. Demichev64, B. Demirkoz11,k, J. Deng162,

S.P. Denisov127, D. Derendarz38, J.E. Derkaoui134d, F. Derue77, P. Dervan72, K. Desch20, E. Devetak147, P.O. Deviveiros104, A. Dewhurst128, B. DeWilde147, S. Dhaliwal157, R. Dhullipudi24,l,

A. Di Ciaccio132a,132b, L. Di Ciaccio4, A. Di Girolamo29, B. Di Girolamo29, S. Di Luise133a,133b,

A. Di Mattia171, B. Di Micco29, R. Di Nardo47, A. Di Simone132a,132b, R. Di Sipio19a,19b, M.A. Diaz31a,

F. Diblen18c, E.B. Diehl86, J. Dietrich41, T.A. Dietzsch58a, S. Diglio85, K. Dindar Yagci39, J. Dingfelder20,

C. Dionisi131a,131b, P. Dita25a, S. Dita25a, F. Dittus29, F. Djama82, T. Djobava51b, M.A.B. do Vale23c,

A. Do Valle Wemans123a, T.K.O. Doan4, M. Dobbs84, R. Dobinson29,∗, D. Dobos29, E. Dobson29,m,

J. Dodd34, C. Doglioni49, T. Doherty53, Y. Doi65,∗, J. Dolejsi125, I. Dolenc73, Z. Dolezal125,

B.A. Dolgoshein95,∗, T. Dohmae154, M. Donadelli23d, M. Donega119, J. Donini33, J. Dopke29, A. Doria101a,

A. Dos Anjos171, M. Dosil11, A. Dotti121a,121b, M.T. Dova69, J.D. Dowell17, A.D. Doxiadis104,

A.T. Doyle53, Z. Drasal125, J. Drees173, N. Dressnandt119, H. Drevermann29, C. Driouichi35, M. Dris9,

J. Dubbert98, S. Dube14, E. Duchovni170, G. Duckeck97, A. Dudarev29, F. Dudziak63, M. D¨uhrssen29,

I.P. Duerdoth81, L. Duflot114, M-A. Dufour84, M. Dunford29, H. Duran Yildiz3a, R. Duxfield138,

M. Dwuznik37, F. Dydak29, M. D¨uren52, W.L. Ebenstein44, J. Ebke97, S. Eckweiler80, K. Edmonds80,

C.A. Edwards75, N.C. Edwards53, W. Ehrenfeld41, T. Ehrich98, T. Eifert142, G. Eigen13, K. Einsweiler14,

E. Eisenhandler74, T. Ekelof165, M. El Kacimi134c, M. Ellert165, S. Elles4, F. Ellinghaus80, K. Ellis74,

N. Ellis29, J. Elmsheuser97, M. Elsing29, D. Emeliyanov128, R. Engelmann147, A. Engl97, B. Epp61,

A. Eppig86, J. Erdmann54, A. Ereditato16, D. Eriksson145a, J. Ernst1, M. Ernst24, J. Ernwein135,

D. Errede164, S. Errede164, E. Ertel80, M. Escalier114, C. Escobar122, X. Espinal Curull11, B. Esposito47,

F. Etienne82, A.I. Etienvre135, E. Etzion152, D. Evangelakou54, H. Evans60, L. Fabbri19a,19b, C. Fabre29,

R.M. Fakhrutdinov127, S. Falciano131a, Y. Fang171, M. Fanti88a,88b, A. Farbin7, A. Farilla133a, J. Farley147,

T. Farooque157, S. Farrell162, S.M. Farrington117, P. Farthouat29, P. Fassnacht29, D. Fassouliotis8,

B. Fatholahzadeh157, A. Favareto88a,88b, L. Fayard114, S. Fazio36a,36b, R. Febbraro33, P. Federic143a,

O.L. Fedin120, W. Fedorko87, M. Fehling-Kaschek48, L. Feligioni82, D. Fellmann5, C. Feng32d, E.J. Feng30,

A.B. Fenyuk127, J. Ferencei143b, J. Ferland92, W. Fernando108, S. Ferrag53, J. Ferrando53, V. Ferrara41,

A. Ferrari165, P. Ferrari104, R. Ferrari118a, D.E. Ferreira de Lima53, A. Ferrer166, M.L. Ferrer47,

D. Ferrere49, C. Ferretti86, A. Ferretto Parodi50a,50b, M. Fiascaris30, F. Fiedler80, A. Filipˇciˇc73,

A. Filippas9, F. Filthaut103, M. Fincke-Keeler168, M.C.N. Fiolhais123a,h, L. Fiorini166, A. Firan39,

G. Fischer41, P. Fischer20, M.J. Fisher108, M. Flechl48, I. Fleck140, J. Fleckner80, P. Fleischmann172,

S. Fleischmann173, T. Flick173, A. Floderus78, L.R. Flores Castillo171, M.J. Flowerdew98, M. Fokitis9,

T. Fonseca Martin16, D.A. Forbush137, A. Formica135, A. Forti81, D. Fortin158a, J.M. Foster81,

D. Fournier114, A. Foussat29, A.J. Fowler44, K. Fowler136, H. Fox70, P. Francavilla11, S. Franchino118a,118b,

D. Francis29, T. Frank170, M. Franklin57, S. Franz29, M. Fraternali118a,118b, S. Fratina119, S.T. French27,

F. Friedrich43, R. Froeschl29, D. Froidevaux29, J.A. Frost27, C. Fukunaga155, E. Fullana Torregrosa29,

J. Fuster166, C. Gabaldon29, O. Gabizon170, T. Gadfort24, S. Gadomski49, G. Gagliardi50a,50b,

P. Gagnon60, C. Galea97, E.J. Gallas117, V. Gallo16, B.J. Gallop128, P. Gallus124, K.K. Gan108,

Y.S. Gao142,e, V.A. Gapienko127, A. Gaponenko14, F. Garberson174, M. Garcia-Sciveres14, C. Garc´ıa166,

J.E. Garc´ıa Navarro166, R.W. Gardner30, N. Garelli29, H. Garitaonandia104, V. Garonne29, J. Garvey17,

C. Gatti47, G. Gaudio118a, B. Gaur140, L. Gauthier135, P. Gauzzi131a,131b, I.L. Gavrilenko93, C. Gay167,

G. Gaycken20, J-C. Gayde29, E.N. Gazis9, P. Ge32d, C.N.P. Gee128, D.A.A. Geerts104, Ch. Geich-Gimbel20,

K. Gellerstedt145a,145b, C. Gemme50a, A. Gemmell53, M.H. Genest55, S. Gentile131a,131b, M. George54,

S. George75, P. Gerlach173, A. Gershon152, C. Geweniger58a, H. Ghazlane134b, N. Ghodbane33,

B. Giacobbe19a, S. Giagu131a,131b, V. Giakoumopoulou8, V. Giangiobbe11, F. Gianotti29, B. Gibbard24,

A. Gibson157, S.M. Gibson29, L.M. Gilbert117, V. Gilewsky90, D. Gillberg28, A.R. Gillman128,

D.M. Gingrich2,d, J. Ginzburg152, N. Giokaris8, M.P. Giordani163c, R. Giordano101a,101b, F.M. Giorgi15, P. Giovannini98, P.F. Giraud135, D. Giugni88a, M. Giunta92, P. Giusti19a, B.K. Gjelsten116,

L.K. Gladilin96, C. Glasman79, J. Glatzer48, A. Glazov41, K.W. Glitza173, G.L. Glonti64, J.R. Goddard74,

J. Godfrey141, J. Godlewski29, M. Goebel41, T. G¨opfert43, C. Goeringer80, C. G¨ossling42, T. G¨ottfert98,

S. Goldfarb86, T. Golling174, A. Gomes123a,b, L.S. Gomez Fajardo41, R. Gon¸calo75,

J. Goncalves Pinto Firmino Da Costa41, L. Gonella20, A. Gonidec29, S. Gonzalez171, S. Gonz´alez de la

Figure

Table 2: Lower thresholds applied to m 34 for reference values of m 4 ℓ . For m 4 ℓ values between these reference values the selection requirement is obtained via linear interpolation.
Figure 2: Invariant mass distributions of the lepton pairs in the control sample defined by a Z boson candidate and an additional same-flavour lepton pair
Table 3: The expected numbers of background events, with their systematic uncertainty, separated into “Low-m 4 ℓ ” (m 4 ℓ &lt;
Figure 4: m 4 ℓ distribution of the selected candidates, compared to the background expectation for (a) the 100 − 250 GeV mass range and (b) the full mass range of the analysis
+2

Références

Documents relatifs

as the number of different parasite genotypes co-existing within a particular infection and monthly malaria incidence (number of reported cases from DHIS2-Endos medical data of

Although very little is known regarding these viruses, the phylogenetic position of its polymerase protein within a clade including associated narnaviruses, as well as members of

Bien avant la parution du célèbre essai de Ngugi Wa Thiong’o, Decolonizing the Mind 4 , Med Hondo expérimentait, dans la pratique, des expériences de création indépendante, en

ﺔﻘهاﺮﻤﻟا.. ﻟا ﻞﺼﻔﻟا ﺚﻟﺎﺜ ﺔﻘهاﺮﻤﻟا ﺪﻴﻬﻤﺗ. ﺔﻘهاﺮﻤﻟا ﺔﻠﺣﺮﻣ ﻲﻓ ﻮﻤﻨﻟا ﺮهﺎﻈﻣ. ﺔﻘهاﺮﻤﻟا ةﺮﺘﻔﻟ ﺔﻣﺎﻌﻟا ﺺﺋﺎﺼﺨﻟا. ﺔﻴﺳﺎﺳﻷا ﻖهاﺮﻤﻟا تﺎﺟﺎﺣ. ﺔﻘهاﺮﻤﻠﻟ ةﺮﺴﻔﻤﻟا ﺔﻴﺴﻴﺋﺮﻟا تﺎهﺎﺠﺗﻻا.. ﺪﻴﻬﻤﺗ

The objectives we identified to provide self- and social awareness while learners are practicing in their virtual learning environment are threefold: (1)

Considering the same period for ecosystem structure loss, stabilization and recovery (e.g., 30 years of forest degradation, followed by 30 years of agriculture), the ecosystem

Le bâtiment est constitué d’un système contreventé par des voiles porteurs qui sera justifier ultérieurement dans la partie dynamique. La résistance aux

Term extraction methods usually involve two main steps. The first step extracts candidate terms by unithood calculation to qualify a string as a valid term, while the second