• Aucun résultat trouvé

mpérature (°C)Te

N/A
N/A
Protected

Academic year: 2021

Partager "mpérature (°C)Te"

Copied!
27
0
0

Texte intégral

(1)

Rice panicle temperature and crop

p

p

p

microclimate in stressfull thermal

environments:

towards a model of spikelet sterility

Cécile Julia

J

PhD directed by Michael Dingkuhn (CIRAD)

and Folkard Asch (Hohenheim University)

and Folkard Asch (Hohenheim University)

(2)

CONTEXT

Gl b l

Global:

Climate Change

RISOCAS project (Hohenheim university) + CIRAD

My PhD study:

Thermal stress at the reproductive stage for floaded rice

2 main sensitive stages :

• cold at the early microspore stage (disruption of meiosis) and

at flowering (failure of panicle exsersion)

f

g (f

f p

)

• heat at the flowering (affects pollination and fertilization processes)

PREVIOUS STUDIES ISSUES

STERILITY

(3)

Chilling at the young microspore stage:

1) Irrigated rice sowing date experiment in semi-arid environment

é é l

(

)

at Ndiaye, Sénégal (ARC)

Problem of Tb:

- Using air T, model-fitted

Tb was 14-16 °C

- Using microclimatic

°

corrections, it was 9-12 °C

- Calculation of thermal time

is prone to errors

(Dingkuhn and al., 1995)

2) Irrigated rice in Japan

(Shimono and al., 2005)

Spikelet sterility is better predicted using

panicle temperature (Tp) = f(culm position)

Microclimate

+

Organs Temperature

panicle temperature (Tp) = f(culm position)

= combination of water temperature (Tw) and

air temperature (Ta)

= parameters to be taken

into account

(4)

Heat at the flowering stage (anthesis)

AirT and plant organsT can differ a lot under stressing thermal conditions

Ta (2m)

45

Irrigated rice in Senegal

(dry season 2010)

Ta (2m)

Ta (panicle layer)

Ta (canopy)

Tpanicle

Tflagleaf

Tdry

30

35

40

Twater

Twet

20

25

30

m

p

éra

tu

re (

°C

)

5

10

15

Te

Environnement

18/05/2010, 12:44

Rad= 734.9 W/M²

0

5

0

50

100

150

200

Position par rapport au sol (cm)

RH = 22%, ws= 3.8 m/s

Panicle Temperature

Panicle Temperature

(5)

SCIENTIFIC APPROACH OF THE ISSUES

What are the relationships between climate, microclimate, canopy structure,

and organs temperature at sensitive stages?

What are the links with the sterility and yield loss observed at maturity ?

What are the links with the sterility and yield loss observed at maturity ?

1) EXPERIMENTING IN THE FIELD

In climatically contrasting sites

2) CREATING A GREAT

DATASET

For 7 contrasting varieties

4) MODELLING (CIRAD SAMARA)

3) ANALYSING

The relationships

p

G×E

(6)

1) FIELD EXPERIMENTS

Irrigated Rice

Varieties:

IR64, N22, Chromrong, Sahel 108, Sahel 202, IR4630, IR72

Contrasting environments:

IRRI/Philippines 2009

(DS t

i l f

bl )

CFR, France 2009

(temperate summer)

(DS, tropical-favourable)

-0°

Production

+

ARC/Senegal 2010

(7)

Senegal Dry Season 2010

Different sites, seasons, and climates:

Philippines Dry Season 2009

55 60 65 70 75 80 85 90

e (°

C

)

20 25

-²)

Ta_max Ta_min Rg

60

65

70

75

80

85

90

95

e (°C

)

15

20

25

-²)

Ta_max Ta_min Rg 15 20 25 30 35 40 45 50 55

Tem

p

era

tur

e

5 10 15

Rg

(

M

J

.m

-Harmattan

15

20

25

30

35

40

45

50

55

60

Tem

p

era

tur

e

0

5

10

Rg

(

M

J

.m

-0 5 10 15 7/5 11/5 15/5 19/5 23/5 27/5 31/5 4/6 8/6 12/6 16/6 20/6

Date

0 5

RH = 65.8%

± 11%

0

5

10

15

10/3 14/3 18/3 22/3 26/3 30/3 3/4 7/4 11/4 15/4 19/4 23/4 27/4 1/5 5/5

Date

-10

-5

RH = 85.6%

± 6%

France Summer Season 2009

Senegal Cold Season 2010

65

70

75

80

85

90

°C)

20

25

Ta_max Ta_min Tw_max Tw_min R

France Summer Season 2009

60

65

70

75

80

85

90

C

)

20

25

)

Ta_max Ta_min Rg

25

30

35

40

45

50

55

60

65

T

em

pera

ture (

°

10

15

20

Rg

(

M

J

.m

-²)

Rg

Heat stress

20

25

30

35

40

45

50

55

60

Tem

p

era

ture

10

15

Rg

(

M

J

.m

0

5

10

15

20

20/1 26/1 1/2 7/2 13/2 19/2 25/2 3/3 9/3 15/3

Date

T

0

5

RH = 53.9%

± 16%

Chilling stress

0

5

10

15

28/7 29/7 4/8 5/8 6/8 7/8 8/8 9/8 10/8 11/8

Date

0

5

RH = 68.3%

± 10%

2/08 3/08

(8)

Environment and Plant Measures

:

from booting to the end of flowering

(Daily measurements)

TEMPERATURE GRADIENT

Rn

CANOPY STRUCTURE

2m

Air and RH above

the canopy Ta, RH

Rg

Rrefl

(Net radiometer)

Canopy and plant

LAI at flowering

Air and RH inside

the panicle layer

Tpℓ, RH

pℓ

(

)

py

p

heights

Panicle position

Tp

Tfl

Panicles and Flag leaf temperature

during anthesis

(IR camera)

Air inside the

Panicle position

Fl position

Fl length and width

Fl-1 position

Water Tw

canopy Tcan

Water level

Last nodes position

0

Soil Ts

-30cm

0

(9)

+ Phenology observations

PLANT MEASUREMENTS

Micrometeo

gy

+ Yield and YC

+ Spike sterility

N

InfraRed

IR72

IR64

Sahel202

Chomrong

N22

IR46 30

Sahel108

InfraRed

IR46-30

(10)
(11)

PHENOLOGY

Duration to flowering depends on environment and variety

From Sowing to 50% Flowering

From Sowing to 50% Flowering

110

120

130

140

150

160

a

ys

hil

40

50

60

70

80

90

100

110

N

u

m

b

er o

f d

a

Phil_DS

Sen_DS

Sen_CS

Fr_cam

0

10

20

30

40

ON

G

N2

2

10

8

R

64

R

72

6

30

20

2

N

CH

R

O

M

R

ON

N2

Sa

he

l 10

IR

IR

IR

46

_3

Sah

el

20

Variety

(12)

SENSITIVE PERIODS FOR STERILITY AND GRAIN FILLING

AD=0

Heading

Anthesis

Booting

Grain filling

Maturity

Booting

Grain filling

Time

Tpanicle

TGW (filled)

Tmin (air and water)

Sterility

(Cold)

Tpanicle

Time of anthesis

Sterility

(Heat)

Tmin (canopy)

Sterility

(non exserted

spikelets)

Assimilats

F l

Assimilats

(13)

COLD STERILITY

exemple of the cold season in Senegal

exemple of the cold season in Senegal

Plant measures

Auricule Distance (AD)

young microspore stage = Between -16 and -1cm

Panicle position

young microspore stage Between 16 and 1cm

(Satake and al., 1970; Imin and al., 2006)

Fl position

Fl length and width

Fl-1 position

AD<0

AD>0

AD=0

Last nodes position

(Flag leaf inside)

Panicle exsersion

at flowering

(

t d

Microspore stage dates

(non exserted

sterility)

Microspore stage dates

(cold sterility)

(14)

Meteo and micrometeo at the microspore stage

Time (week

from AD=0)

Variety Rep Tmax (air) Tmin (air) Tmoy (air) RHmo y Tmax (water) Tmin (water) Nd of days with Ta_min < 13°C Nd of days with Ta_avg < 20°C Nd of days with Ta_max > 30°C Nd of days with Tw_min < 16°C 2 CHROMRONG 1 24 0 14 8 7 7 6 11

Sterility induced by cold at

microspore stage is explained

m i l b th i d

2 t 0

-2 CHROMRONG 1 24,0 14,8 7 7 6 11 -2 CHROMRONG 2 25,1 14,8 7 7 6 10 -2 CHROMRONG 3 25,9 14,3 7 7 6 9 -1 SAHEL108 1 34,2 11,0 21,7 38,0 20,8 15,1 5 2 7 5 -1 SAHEL108 2 34,2 11,0 21,7 38,0 21,2 16,1 5 2 7 2 -1 SAHEL108 3 34,0 11,0 21,1 46,1 21,7 15,1 5 8 7 4 -1 IR64 1 23,8 15,7 4 8 7 3 35,9 11,0 21,9 34 2 11 0 21 1 40,4 49 0

mainly by the window -2 to 0

week before AD=0

Nd of

1000

-1 IR64 2 21,1 14,8 4 8 7 5 CHROMRONG 1 27,3 18,4 0 0 7 0 CHROMRONG 2 24,6 18,9 0 0 7 0 CHROMRONG 3 22,5 18,6 0 0 7 0 SAHEL108 3 18,9 0 0 7 0 SAHEL108 1 24,1 14,8 1 1 7 1 SAHEL108 2 58,0 23,1 15,9 1 1 7 1 0 39,7 34,5 34,2 11,0 21,1 15,8 24,8 11,4 22,6 49,0 52,1

Variety

Rep

CHROMRONG 1

CHROMRONG 2

h days with

Tw_min <

16°C

%

sterility

grains

weight

(g)

Yield

(t/ha)

11

39,9

22,3

4,42

10

21 6

23 8

3 76

IR64 1 18,2 0 0 7 0 IR64 2 25,1 18,2 0 0 7 0 CHROMRONG 1 27,4 16,7 2 2 5 0 CHROMRONG 2 24,1 17,3 2 2 5 0 CHROMRONG 3 23,6 16,5 2 2 5 0 SAHEL108 3 16,9 2 2 5 0 SAHEL108 1 23,2 16,3 1 0 7 0 39 7 13 4 24 7 47 0 1 31,8 39,7 15,2 24,0 22,5 55,7 58,6 12,7

CHROMRONG 2

CHROMRONG 3

SAHEL108

1

SAHEL108

2

SAHEL108

3

IR64

1

10

21,6

23,8

3,76

9

18,6

28,3

0,76 (rats)

5

98,7

26,2

1,1

2

97,2

26,6

1,6

4

98,7

25,5

2,31

3

86 5

21 6

2 59

SAHEL108 1 23,2 16,3 1 0 7 0 SAHEL108 2 23,0 16,9 1 0 7 0 IR64 1 17,4 2 1 6 0 IR64 2 21,9 16,6 2 1 6 0 CHROMRONG 1 26,0 18,1 1 2 1 0 CHROMRONG 2 24,4 18,3 1 2 1 0 CHROMRONG 3 23,6 18,1 1 2 1 0 39,7 13,4 24,7 47,0 2 27,9 33,8 12,7 23,6 13,0 20,8 51,8 77,6

IR64

1

IR64

2

3

86,5

21,6

2,59

5

86,4

20,7

1,48

50% of tillers of the subplot have

(15)

HEAT STERILITY

exemple of the hot season in Senegal

p

g

IR photos analysis

(Sahel 108)

:

(16)
(17)

Tp at anthesis for 3 different varieties

19/05/2010 - 13:01 - Anthesis

32

34

36

38

Tp

Ta = 37.2

18

20

22

24

26

28

30

32

rat

ur

e (

°C

)

Tp

Tfl

Tw = 26.8

4

6

8

10

12

14

16

18

Tem

pe

r

0

2

N22

IR64

CHROMRONG

Variety

40

50

e

rility

High

Rg = 21.8 W.m-²

RH = 21.8 %

0

10

20

30

%

grain

st

e

Medium

Low

e (cm)

-40

-30

-20

-10

N22

IR64

Chromrong

Position of

th

e

panicle

layer

(

(18)

TIME OF ANTHESIS: Flower Opening Time (FOT)

Observations in the field + Photos

Before anthesis

10: 50 am

Anthesis

11: 20 am

After anthesis

13: 20 am

FOT = 11:20

(19)

TIME OF ANTHESIS: FOT

Location

Ta_min = 23.8°C ±0.8

Sen_DS

_2010

Phil_DS

_2009

Ta_min = 21.5°C ±1

Ta_min = 16.5°C ±2.4

Sen_CS

_2010

Time

Fr_cam

_2009

8am 9am

10am

11am

12pm

1pm

2pm

3pm

Ta_min =18.5°C ± 1.6

Ta but also RH and Rg before anthesis + Genotype dependant

Controled environment (Jagadish and al., 2008), field experiments (Kobayasi and al., 2010)

(20)

900

1000

70

80

m

-²)

05/19/2010

1

2

3

400

500

600

700

800

40

50

60

d

iation (W

.m

C

), RH (%)

Ta

Tw

1: Chromrong

2 S h l 108

FOT

0

100

200

300

400

0

10

20

30

Solar Ra

d

Ta

(

°C

Tw

RH

Rs

2: Sahel 108

3: IR64

0

0

0

8

16

24

32

40

48

Time of day (hr)

800

900

1000

70

80

m-²)

05/20/2010

1 2

3

400

500

600

700

800

30

40

50

60

d

iation (W

.

C

), RH (%)

Ta

Tw

0

100

200

300

400

0

10

20

30

Solar Ra

d

Ta

(

°C

Tw

RH

Rs

0

0

8

16

24

32

40

48

Time of day (hr)

4 8 12 16 20 24

(21)

IN PROCESS…

Phenology and Morphology

(H

plant

, H

fl

,H

p

)

var/date

Dataset

Variety, stage,

morphology

Extraction

(var/date/hh

/

)

MacroClimate at

2m (T, H, Rad, vent)

date/hh/mm

Microclimate

(gradient de T, H)

var/date/hh/mm

morphology,

environment, Torgans

/mm)

Biological analysis

Organs temperatures(T

p

, T

fl

)

var/date/hh/mm/ss

g

n y

Sterility and TGW correlated with « historical » conditions of micro and

agrometeo

= Observations time shifted

= Observations time shifted

Including micrometeo data in the FOT analysis

Physics

y

Physical analysis of the relation between organ temperature × energy

balance and canopy morphology

(22)

To be continued…

(23)

IR64

900

1000

70

80

Chromrong

Sahel 108

700

800

50

60

W

.m-²)

)

FOT

500

600

40

50

a

diation (

W

°C), RH (%

Ta

Tw

300

400

20

30

Solar R

a

Ta

(

°

RH

Rs

0

100

200

0

10

0

0

0

8

16

24

32

40

48

Time of day (hr)

4 8 12 16 20 24

(24)
(25)
(26)

1000

80

Sahel 108

800

900

60

70

Chromrong

600

700

50

60

o

n (W

.m-²)

R

H (%)

Ta

FOT

400

500

30

40

lar Radiati

o

T

a

(°C),

R

Ta

Tw

RH

Rs

100

200

300

10

20

So

l

Rs

0

100

0

0

4 8 12 16 20 24

8

16

24

32

40

48

Time of day (hr)

(27)

« Old » spikelets

Références

Documents relatifs

Figures 7 and 8 compare the average potential tem- peratures of the urban boundary layer calculated by the UBL model with the average urban and rural boundary layer

Study site and sampling design Canopy structure Spectral properties Statistical analysis 3 Results Variables distribution Multiple comparisons.. Canonical

Le petit tambour est d’une dimension de 30 centimètres et le grand tambour de 60 centimètres, ils sont tous faits de la peau d’un animal sauvage en particulier

Je travaillais toujours avec un ingénieur à chaque étape de mon travail : d’abord avec Clément Doumouro, ingénieur en apprentissage automatique (data scientist)

Ainsi, dans les estuaires nous obtenons 3 types de variation du nombre de paragnathes : augmen- tation vers l'amont dans l'estuaire du Bou Regreg, diminution

Une fois les micro-organismes établis dans la phyllosphère, des interactions complexes se développent entre les bactéries, les champignons, les macroorganismes

The forward scatter within the smooth-wall boundary layer was shown to occur within a large shear layer spanning a length of 1.5 times the boundary layer thickness (1) suggesting

Multiplier un nombre par une fraction revient parfois à augmenter ce