• Aucun résultat trouvé

Mucosal vaccination against toxoplasmosis

N/A
N/A
Protected

Academic year: 2021

Partager "Mucosal vaccination against toxoplasmosis"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: hal-00902338

https://hal.archives-ouvertes.fr/hal-00902338

Submitted on 1 Jan 1995

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Mucosal vaccination against toxoplasmosis

D Bout, D Buzoni-Gatel, T Chardès, N Debard, Mn Mevelec

To cite this version:

(2)

stratégies.

L’une d’elles consiste à obtenir des

protéines purifiées

par

génie génétique.

Cette méthode a ainsi été utilisée pour la

production

d’une toxine recombinante

(l’exo-toxine de P

multocida)

et est

envisagée

pour les

Apx

toxines d’Actinobacillus

pleuro-pneumoniae.

Pour ce

qui

concerne les

mollicutes,

leur code

génétique

est

légèrement

différent du code universel

(le

codon UGA n’est pas un

codon de terminaison mais code pour le

tryptophane).

De ce

fait,

les

produits

de tra-duction des

gènes

des mollicutes sont

tron-qués lorsque

leur

expression

est réalisée dans un

système

bactérien

classique

tel

qu’E coli.

Néanmoins,

de nouvelles

approches

ont été récemment décrites et concernent l’uti-lisation de vecteurs de

gènes

spécifiques

des mollicutes ou celle de souches

sup-pressives d’E coli capables

de lire le codon

UGA comme codon

tryptophane

(Renau-din

et al, 1994 ;

Minion

et al,

1994).

Les pro-téines recombinantes obtenues devraient

permettre

d’élaborer des vaccins de

nou-velle

génération.

Références

Dayalu KI, Ross RF (1990) Evaluation of experimental

vaccines for control of porcine pneumonia induced by Mycoplasma hyopneumoniae. 11 thInternational Pig Veterinary Society Congress 1-5 juillet, Lausanne, Suisse, 83 p

Kobish M, Quillien L, Tillon JP, Wroblewski H (1987)

The Mycoplasma hyopneumoniae plasma

mem-brane as a vaccine against porcine enzootic pneu-monia. Ann lnst Pasteurllmmunol 138, 693-705

Kobish M, Labbé A, Morvan P, Cariolet R (1994) Eval-uation of a Mycoplasma hyopneumoniae vaccine in

pigs experimentally infected with Mycoplasma

hyop-neumoniae and Pasteurella multocida. l0th Inter-national Organisation of Mycoplasmology. 19-26

juillet. Bordeaux, France, 244-245

Minion C, Artiushin S, Van Dyk C, Smiley BK (1994)

Use of a novel opal suppressor strain of Escherichia coli to screen Mycoplasma hyopneumoniae gene libraries. l0th International Organisation of Mycoplas-mology, 630-631

Mori Y, Hamaoka T, Sato S, Takeuchi S (1988) lmmunoblotting analysis of antibody response in

swine experimentally inoculted with Mycoplasma hyopneumoniae. Vet Immunot /mmunopaf!o/19, 239-250

Peterson G, Weiss D (1990) Response to Mycoplasma

hyopneumoniae vaccination in nursing piglets. 11th

International Pig Veterinary Society Congress, 1-5

juillet, Lausanne, Suisse, 84 p

Renaudin J, Marais A, Verdin E, Duret S, Laigret F,

Bové JM (1994) Spiroplasma citri-OricC plasmids: expression of the Spiroplasma phoeniceum spiralin

in S citri. IOM Congr, Bordeaux, France, 583-584 Ross RF, Zimmermann-Erickson B, Young T (1984)

Char-acteristics of protective activity of Mycoplasma

hyo-pneumoniae vaccine. Am J Vet Res 45, 1899-1905 Young TF, Ross RF (1987) Assessment of antibody

response of swine infected with Mycop/asma hyo-pneumoniae by immunoblotting. Am J Vet Res 48,

651-656

Mucosal vaccination

against

toxoplas-mosis. D

D Bout,

Bout,

D D

Buzoni-Gatel,

Buzoni-Gatel,

T T

Chardès,

Chardès,

N Debard MN

Mevelec Equipe

associée INRA

d’immunologie

parasitaire,

UFR des sciences

pharmaceutiques,

31,

avenue

Monge,

37200

Tours,

France)

Toxoplasmosis

affects over 50% of

sheep,

goat

and

pig populations.

The abortions that it causes

represent

a

major

economic

problem

for

sheep

farmers. It is

responsible

for over 50% of the abortions of infectious

origin

in

sheep.

Animal

toxoplasmosis

is also a

public

health risk since the

majority

of cases of human

toxoplasmosis

results from the

consumption

of contaminated

sheep

or

pig

meat.

Congenital

toxoplas-mosis and

immunodeficiency

neurotoxo-plasmosis

are the severe forms of human infection. There is a clear need for a

vet-erinary

vaccine to

prevent

animal

toxo-plasmosis

and as a result human

toxo-plasmosis.

The causal

agent

of

toxoplasmosis, Toxoplasma gondii,

is a

coccidium. The site of

penetration

into the animal

body

is the intestinal mucosa. This

(3)

approach

to vaccination

by

the mucosal route. In the first

phase

of our

work,

we

showed that the animals

developed

humoral and cellular

immunity

in the intestinal

mucosa. After oral

infection,

IgA

antibodies,

principally

directed

against

3

antigens

(SAG1,

GRA4 and

ROP2)

were

synthe-sized.

Intraepithelial

CD8ap

+

Thy-1

+

lym-phocytes, cytotoxic

for

enterocytes

infected with

T gondii and

producing IFN-y,

also

appeared

(Chardes

et al,

1994).

In

addi-tion,

we showed that the

IFN-y

activated the

enterocyte

and thus inhibited the

multi-plication

of the

toxoplasm

which had pen-etrated it

(Dimier

and

Bout,

1993).

This

rational,

physiopathological

and

immuno-logical approach

then led us to

attempt

vac-cination

by

the mucosal route

(Bourguin

et

al, 1993).

Recent work has shown that cholera toxin is a

powerful adjuvant

for the mucosal immune response

against

well-defined

antigens

such as ovalbumin. We have shown that its use opens the way to efficient vaccination

by

the mucosal route. A total

antigen

of

T gondii

combined with cholera toxin and administrated

orally

to the mouse induced 50%

protection against

the 76K strain as assessed on a cumula-tive

lethality

basis. A substantial reduction in the number of cerebral

cysts

was also observed.

Experiments

on immunization

by

the nasal route were then carried out

using

well-defined

antigens (SAG1, GRA4)

com-bined with cholera toxin.

Eighty

percent

pro-tection,

assessed

by

the number of

cere-bral

cysts,

was, for

example,

obtained with

antigen

SAG1. Excellent correlation was

observed between the

protection

and the immune response in the intestinal mucosa.

Preliminary protection

results have been observed for another

coccidiosis,

cryp-tosporidiosis.

This

present

work with

toxo-plasm

is an excellent

study

model and makes it reasonable to suppose that it could be used as a basis for

obtaining

similar results

against

many other infectious

agents.

References

Chardbs T, Buzoni-Gatel D, Lepage A, Bernard F, Bout D (1994) Toxoplasma gondii oral infection induced specific cytotoxic CD8aØ+ Thy-1 gut intraepithelial lymphocytes, lytic for parasite-infected enterocytes.

J Immunol 153, 4596-4603

Dimier I, Bout D (1993) Rat intestinal epithelial cell line IEC-6 is activated by rIFN-yto inhibit replication of the coccidian Toxoplasma gondii. Eur J Immunol 23,

981-983

Bourguin I, Chard6s T, Bout D (1993) Oral immunization

with Toxoplasma gondii antigens in association with cholera toxin induces enhanced protective and cell-mediated immunity in C57BU6 mice. Infect Immun

61,2082-2088

Vaccination contre les coccidioses aviaires. P

P Péry

Péry 1

,

P Yvore P Yvore 2

2

,

F F Laurent

2

Laurent

,

2

MM

Bessay

(!

INRA,

virologie

et

immunologie

moléculaires,

78350

Jouy-en-Josas;

2

INRA,

pathologie

aviaire et

parasitologie,

37380

Nouzilly, France)

En matière de coccidiose

aviaire,

et

jusqu’à

ces dernières

années,

il

n’y

avait pas d’al-ternative à la

chimiothérapie

pour la

protec-tion des oiseaux. Actuellement une vaccina-tion à l’aide d’un vaccin vivant est mise en

place

dans toute

l’Europe

à l’exclusion de la France. Le vaccin est constitué de souches dont la

période prépatente

est

plus

courte que la normale

(souches

dites

précoces)

et

qui

ont conservé

après

sélection un bon

pou-voir

immunogène,

mais ont un

pouvoir

patho-gène

atténué. Il contient un

mélange

des 7

espèces

de coccidies les

plus répandues,

une deuxième souche d’Eimeria maxima

ayant

été

rajoutée

pour tenir

compte

de la variabilité de cette

espèce.

Ce vaccin est effi- i-cace, mais des

problèmes

subsistent

(coût

et difficulté de

production,

absence de

mar-queurs).

Ce succès n’a pas

empêché

les recherches vers un vaccin moléculaire et,

Références

Documents relatifs

In naturally exposed chickens that had also been exam- ined by direct detection methods, the TgSAG1 bio -BBMA showed both high diagnostic sensitivity and specificity to

Purpose We evaluated the diagnostic accuracy of attenua- tion corrected nuclear myocardial perfusion imaging (MPI) with a novel hybrid single photon emission computed

Midi Minuit 17h21m30s MathsLibres.com... Midi Minuit

[r]

Mice were nonimmunized mice (IP) or immunized by the nasal route with nanoparticles only (DGNP), Toxoplasma proteins extract only (TE) or the nanoparticle vaccine

Dubey JP, Mitchell SM, Morrow JK, Rhyan JC, Stewart LM, Granstrom DE, Romand S, Thulliez P, Saville WJ, Lindsay DS: Prevalence of antibodies to Neospora caninum, Sarcocystis

This zoonosis was studied in fi ve North African countries (Morocco, Algeria, Figure 6. Prevalence of Toxoplasma gondii infection in Egypt: Animal toxoplasmosis,

Using multilocus analysis, all Tunisian isolates examined in the present study, except one, harbored recombinant I/II and/or I/III strain, which is in concordance with the very few