• Aucun résultat trouvé

CO optical sensing properties of nanocrystalline ZnO-Au films: Effect of doping with transition metal ions

N/A
N/A
Protected

Academic year: 2021

Partager "CO optical sensing properties of nanocrystalline ZnO-Au films: Effect of doping with transition metal ions"

Copied!
10
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Sensors and actuators B: Chemical, 161, 1, pp. 675-683, 2012-01-03

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.1016/j.snb.2011.11.011

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

CO optical sensing properties of nanocrystalline ZnO-Au films: Effect

of doping with transition metal ions

Della Gaspera, E.; Guglielmi, M.; Perotto, G.; Agnoli, S.; Granozzi, G.; Post,

M. L.; Martucci, A.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=1bc3d2ab-5033-403e-86d4-aae04b132464

https://publications-cnrc.canada.ca/fra/voir/objet/?id=1bc3d2ab-5033-403e-86d4-aae04b132464

(2)

SensorsandActuatorsB161 (2012) 675–683

ContentslistsavailableatSciVerseScienceDirect

Sensors

and

Actuators

B:

Chemical

j o u r n al hom e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n b

CO

optical

sensing

properties

of

nanocrystalline

ZnO–Au

films:

Effect

of

doping

with

transition

metal

ions

E.

Della

Gaspera

a,∗

,

M.

Guglielmi

a

,

G.

Perotto

b

,

S.

Agnoli

c

,

G.

Granozzi

c

,

M.L.

Post

d

,

A.

Martucci

a

aINSTMandDipartimentodiIngegneriaMeccanicaSettoreMateriali,UniversitàdiPadova,ViaMarzolo9,35131Padova,Italy bDipartimentodiFisica,UniversitàdiPadova,ViaMarzolo8,35131Padova,Italy

cDipartimentodiScienzeChimicheandINSTMResearchUnit,UniversitàdiPadova,ViaMarzolo1,35131Padova,Italy

dInstituteforChemicalProcessandEnvironmentalTechnology,NationalResearchCouncilofCanada,1200MontrealRoad,Ottawa,OntarioK1A0R6,Canada

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received14June2011

Receivedinrevisedform27October2011 Accepted4November2011

Available online 12 November 2011 Keywords: Nanoparticles Nanocomposite Thinfilms Sensors

a

b

s

t

r

a

c

t

Zincoxidenanocrystals,pureanddopedwithtransitionmetalions,havebeensynthesizedusingcolloidal techniques;afterpurificationandconcentrationprotocols,theZnOsolutionsaremixedwith monodis-perseAucolloidalsuspensionsandusedforthinfilmdepositions.Theeffectofthedopantionsonthe structural,morphologicalandopticalpropertiesoftheas-synthesizedcolloidsaswellasthe nanocom-positethinfilmshasbeenanalyzedanddiscussed.ThedopantpresencehasbeenfoundtoaffecttheCO opticalsensingpropertiesofthenanocompositeZnO–Aufilms:comparedtopureZnO,anincreasein sensitivityupto80%and55%hasbeendetectedforCo-dopedandMn-dopedZnOrespectively,while Ni-dopedZnOfilmsshowonlyminorimprovements.Thisobservationhasbeenascribedtothemultiple oxidationstatesofcobaltandmanganeseionsthatcanfacilitateelectrontransferbetweenthetarget gasandsemiconductiveoxidematrix,andalsotothelowersurfaceconcentrationofNiionsinsideZnO crystals,ascomparedtoCoandMn.AfastandreversibleresponseafterrepeatedCOexposureshas beendetectedforalltestedsamples,andalinearresponseintensitywiththeorderofmagnitudeofCO concentrationhasbeenobservedinthe10–10,000ppmrange,withalowerdetectionlimitof1–2ppm.

Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.

1. Introduction

Theneedforhighqualityandlowtemperatureactivematerials

hasincreasedsubstantiallyinrecentyears,especiallyforprintable

electronicdevices[1],andforsensingapplicationsthatrequire

del-icateandtemperature-sensitivesubstrates,e.g.surfaceplasmon

resonance(SPR)substrateswheretheAuorAglayerisdeposited

overapolymericdiffractiongrating[2].Wetchemicalsyntheses

of inorganic colloidal nanoparticles(NPs) of the active

materi-alsrepresentausefultooltoobtainlow-temperature,crystalline

materialsdispersedinanappropriatesolventthatcanbedirectly

depositedwithavarietyoftechniques(spinning,dipping,casting,

spraying,andink-jetprinting)onthedesiredsubstrates.Sincethe

as-depositedmaterialiscrystalline,thethermaltreatmentofthe

filmcanbededicatedtoobtainthedesiredfinal properties,for

exampletopromotesintering,ortoremove organictemplating

agentsincreasingtheporosity.Moreover,thecolloidalapproach

allowsanaccuratecontrolonthesize,theshapeandother

physi-calandchemicalpropertiesofthesynthesizednanocrystals,allkey

parametersformaterialstobeusedinsensingandcatalysis.

∗ Correspondingauthor.Tel.:+390498275634;fax:+390498275505. E-mailaddress:enrico.dellagaspera@unipd.it(E.DellaGaspera).

Zincoxideisoneofthemostinvestigatedmaterials:itswide

directbandgap(3.36eVat25◦C[3])anditshightransmittance

in thevisibleand nearinfraredrange make ZnO aninteresting

materialforawiderangeofapplications,especiallyin

optoelec-tronicdeviceslikesensors,transistors,solarcells,lightemitting

diodes(LEDs),transparentconductingelectrodesandsmart

win-dowscoatings[4–9].

In this paper we report the synthesis of colloidal ZnO NPs,

pureanddopedwithtransitionmetalions,andtheiruseas

start-ingmaterialstodepositnanocrystalline ZnO–Authin films.The

effectoftheiondopinghasbeenevaluatedwithstructural,

opti-calandelectroniccharacterization,andit hasbeenexploitedto

increase thesensing performances for opticalCO detection. An

enhancementintheopticalresponse,togetherwithanalmostideal

step-likedynamicbehaviorhasbeenobserved.Thedeveloped

pro-cedurecouldbeusedfortherealizationofnanocrystallineinksfor

highqualityprintablesensingmaterialsonavarietyofdifferent

substrates.

2. Materialandmethods

The syntheticprocedureemployed herefor thesynthesis of

ZnO and doped-ZnO NPs is adapted from the work presented

byGamelin and coworkers[10]:briefly, 500mg ofzinc acetate

0925-4005/$–seefrontmatter.Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved. doi:10.1016/j.snb.2011.11.011

(3)

676 E.DellaGasperaetal./SensorsandActuatorsB161 (2012) 675–683

dihydratearedissolvedin22.5mLdimethylsulfoxide;separately,

750mgtetramethylammoniumhydroxide (TMAH)aredissolved

in7.5mLethanol.TheTMAHsolutionisaddeddropwise (about

2mL/min) tothe zinc solutionunder vigorous stirring atroom

temperature;after10minthesolutionisheatedat50◦Cfor1h

topromoteOstwaldripeningoftheparticles.ToprepareZnONPs

dopedwith2.5%metalions,itissufficienttosubstitute12.5mg

oftheZnprecursorwiththerespectiveamountofthedopant

pre-cursor,keepingthetotalZn+dopantmolarityconstant.TheZnO

dopingwasperformedwithmanganese(frommanganeseacetate

tetrahydrate),nickel(fromnickelacetatetetrahydrate)andcobalt

(fromcobaltacetatetetrahydrate).After1hat50◦C,thesolutions

werecooled downto roomtemperature, precipitatedwiththe

minimumamount(about3:1involume)ofmethylethylketone,

centrifugedat1500rpmfor5minandredispersedinethanoltoa

finalnominalconcentrationof0.8MinmolarzincorZn+dopant.

GoldcolloidswerepreparedaccordingtotheTurkevichmethod

[11,12]byreducingHAuCl4withtrisodiumcitrateinwater.Briefly,

12mLof 1%trisodiumcitrate aqueoussolutionwasaddedto a

200mLboilingsolutionof0.5mMHAuCl4.Afterthesolutionturned

a red-wine colour, it was stirred at boiling point for an

addi-tional15minand thenwascooleddowntoroomtemperature;

10,000g/molaveragemolecularweightpoly(N-vinylpyrrolidone)

(PVP)wasdissolvedinwatertoyielda50g/Lconcentration,and

thenthis solutionwasmixed withaqueousgold colloidsunder

constantstirringaccordingtotheratiogPVP/molAu=1000.After

2hthesolutionwasconcentratedinarotaryevaporatorandAu

NPswereprecipitatedwithacetone,centrifugedat4000rpmfor

5minandre-dispersedinethanolleadingtoa30mMconcentrated

solution.

Thesolutionsforthefilmdepositionswerepreparedby

mix-ingtheethanolicsuspensionofZnONPsandPVP-cappedAuNPs

leadingtoafinalAu:Znmolarratioofabout0.06.Aufreesamples

werealsopreparedforcomparisonpurposes,bysubstitutingtheAu

colloidalsolutionamountwithpureethanol.Allthesampleswere

depositedbyspincoatingwithamultilayerprocedure:solutions

werespunat2500rpmfor30soneitherSiO2orSisubstrates,and

thefilmswerestabilizedat400◦Cfor5minonahotplate.This

pro-cedurewasrepeated4times,andthelastannealingwasperformed

at500◦Cfor1hinamufflefurnace.

Thecrystallinephasesofthethinfilmswerecharacterizedby

X-raydiffraction(XRD) byusinga PhilipsPW1710

diffractome-terequipped withgrazing incidence X-rayoptics. Theanalyses

wereperformedat0.5◦ incidence,usingCuK␣Nifiltered

radia-tionat30kVand40mA.Themeancrystallitediameterhasbeen

evaluatedusing the Scherrer equationperforming a Lorentzian

fit of themostintense diffraction peaks.Transmission electron

microscopy(TEM)analysisofnanoparticlesdepositedfrom

col-loidal solutions deposited oncarbon-coated coppergrids were

performedwithaPhilipsCM20STEMsystemoperatingat200kV.

UV–visabsorptionspectraofcolloidalsolutionsandthinfilmswere

takenusingaJASCOV-570standard spectrometer.Ellipsometry

measurementswerecarriedoutonaJ.A.WoollamV-VASE

Spec-troscopicEllipsometerinverticalconfiguration,attwodifferent

anglesofincidence(60◦and70).Thesurfacecompositionofthin

filmswas analyzed by X-ray photoelectron spectroscopy (XPS)

usingamodified VGESCALABMKII(Vacuumgenerators,

Hast-ings,England)whereatwin(Mg/Al)anodeX-raysource,asputter

gun,andahemisphericalelectrostaticanalyzerwithafivechannel

detectoraremounted.TheXPSdatareportedwereobtainedusing

Mg-K␣radiation(1253.6eV)astheexcitationsource.Thecharging

effecthasbeencompensatedbyreferencingallthebinding

ener-gies(BEs)totheC1speakat284.8eV.Photoemissionspectrahave

beenobtainedatroomtemperatureusingnormalemission

geom-etry.BeforetakingXPSmeasurements,thesamplesweredegassed

overnightunderUHV(pressurelowerthan10−8mbar).Inorderto

Fig.1. XRDpatternsofZnOanddoped-ZnONPs(dopinglevelis2.5%)heatedat50◦C for1h;thetheoreticaldiffractionlinesforwurtzitecrystallinephaseareindicated atthebottom.

Table1

CrystallitesizeofZnOanddoped-ZnONPs(dopinglevelis2.5%)heatedat50◦Cfor 1hevaluatedwiththeScherrerequationusingtheFWHMofthefivediffraction peaksdetectedforeachsample(seeFig.1).

Sample Crystallitessize(nm)

ZnO 7.6±0.5

ZnO:Co 5.8±0.7

ZnO:Ni 5.7±0.4

ZnO:Mn 5.0±0.5

derivethechemicalcompositionofthefilms,thetheoretical pho-toemissioncrosssectionsbyYehandLindauhavebeenused[13],

whiletheelectroninelasticmeanfreepathhasbeencalculatedwith

theTPP2algorithm[14].Atomicforcemicroscopy(AFM)height

profileswererecordedusingaNT-MDTSolverProinstrumentin

tappingmode.Thesurfacestructureofthenanocompositefilms

hasbeeninvestigatedwithanxTNovaNanoLabscanningelectron

microscopy(SEM).Opticalgassensingtestswereperformedby

makingopticalabsorbance/transmittancemeasurementsoverthe

wavelengthrange400nm<<800nmwithsamplefilmsmounted

onaheaterinsideacustom-builtgasflowcellcoupledwithaVarian

Cary1Espectrophotometer.Thinfilmswereexposedtofour

differ-entconcentrations(10ppm,100ppm,1000ppmand10,000ppm,

i.e.1%v/v)ofCO,allbalancedindryair,ataflowrateofabout

0.4L/min.Testswereperformedatanoperatingtemperature(OT)

of300◦C.Thesubstratesizewasapproximately1cm×2cmandthe

incidentspectrophotometerbeamwasnormaltothefilmsurface

andcoveringa6mm×1.5mmsectionarea.

3. Resultsanddiscussion

Zinc oxide NPs synthesized with this method present the

wurtzitecrystallinestructure,withameancrystallitedimension

rangingfrom3to10nmdependingonthesyntheticparameters.

SincethefreshlypreparedNPsarefoundtocontinuouslygrow

forseveralhoursatroomtemperaturedue toOstwaldripening,

it wasdecided toperforma mild heating at 50◦C for 1hafter

theTMAHadditioninordertoacceleratethisprocessandobtain

stable colloidalsolutions. XRD patternsof ZnO and doped-ZnO

NPsaftertheannealingprocedurearereportedinFig.1.Typical

diffractionpeaksforwurtziteZnO(JCPDSno.36-1451)areclearly

detectedinallsamples,butadifferenceinpeakbroadeningcanbe

observed,withthecrystallitesizeofdopedNPsbeingsignificantly

(4)

161 (2012) 675–683 677

Fig.2. TEMimagesof(a)pureZnOcolloidsand(b)Aucolloids.

nanocrystalshavethelowercrystallitesize,andthisismaintained

alsointhethinfilmsdepositedfromthesesolutionsandheatedat

500◦C(seebelow).

Thiseffecthasbeenascribedtothedifferenceinsizebetween

Zn2+anddopantions:sincethesedopantsaresubstitutionaltozinc

intheZnOlatticestructure[10,15,16],thedopedcrystallitesgrow

mechanicallystressed.Thence,extendedgrowthofthecrystalsis

expectedtobeenergeticallyunfavorablesincethevariationin

lat-ticeenergyisnotbalancedbythereductioninthesurface/volume

ratio.

Fig.2showsTEMimagesofas-synthesizedZnO andAuNPs:

almostsphericalZnOnanocrystalswithanaveragediameter

rang-ingfrom4to7nmcanbeseeninFig.2a,ingoodagreementwith

theXRDevaluation,suggestingthattheNPsaremainly

monocrys-talline;despitethelowcontrastofZnO,somelatticeplanescan

beseen,confirmingthecrystallinewurtzitephase.Monodisperse

(standarddeviationabout7%)sphericalAucolloidsof13nmin

diametercanbeeasilyseeninFig.2b:somefacetingand some

triangularshapescanbedetected,quitecommonphenomenafor

AuNPssynthesizedwiththecitratereductionmethod.

FromUV–visabsorptionspectraoftheZnOcolloidalsolutions

reportedinFig.3,it ispossibletoseethesharpUVabsorption

onsetofZnOnanocrystalsatabout350–360nm.FordopedZnO

Fig.3.UV–visabsorptionspectraofethanolicsuspensionofZnOcolloids.Theinsets show(a)theeffectofthedopantsontheUVabsorptiononsetofZnOand(b)the distinctiveCo2+ionabsorptionbands.

theonsetisblueshifted,ashighlightedintheinset(a)ofFig.3.

Thisisduetothedopanteffectinreducingtheparticlesizethat

inturnleadstohigherenergiesassociatedtotheopticalbandgap,

duetothequantumconfinementeffect.Infactithasbeen

con-firmedthatthesizedependenceofZnOelectronicpropertiescan

bepresentforcrystalssizeupto7nm[17],inagreementwiththat

evaluatedbothfromXRDandTEM.Thethreedistinctive

absorp-tionbandsinthegreen–redrangethatcanbeseenintheinset

(b)ofFig.3areascribedtothed–dadsorptionlevelsofdivalent

Co2+ionsintetrahedralcoordination[18],inthisparticularcasein

thetetraoxocationcoordinationenvironmentofwurtzite[19,20],

consistentwithaCo2+substitutionalsite.

EthanolicsuspensionsofAuandZnONPsaremixedtogether

anddirectlyusedforfilmdeposition,asdescribedinSection2.All

thecharacterizationspresentedinthefollowing,ifnotdifferently

specified,refertoAu-containingfilmsannealedat500◦C,sinceno

significantdifferenceinstructural,morphologicalandoptical

prop-ertiesofZnOfilmsisdetectedwhenAuNPsareembeddedinside

theoxidematrix(excepttheexpectedpresenceoftheAudiffraction

andplasmonpeaks).

TheXRDpatternsofthesynthesizedfilmsareshowninFig.4:

bothAu(JCPDSno.04-0784)andZnO(JCPDSno.36-1451)

diffrac-tionpeaksareclearlyevident,andabigdifferenceintheFWHM

of ZnO peakscompared totheas synthesizedNPs canbeseen

Fig.4.XRDpatternsofZnOanddoped-ZnOthinfilmscontainingAuNPsannealedat 500◦C;thetheoreticaldiffractionlinesforwurtzite(straightlines)andAu(dashed lines)crystallinephasesareindicatedatthebottom.

(5)

678 E.DellaGasperaetal./SensorsandActuatorsB161 (2012) 675–683 Table2

CrystallitesizeofZnOanddoped-ZnOthinfilmscontainingAuNPsannealedat 500◦Cfor1hevaluatedwiththeScherrerequationusingtheFWHMofthefiveZnO diffractionpeaksdetectedforeachsample(seeFig.4).

Sample ZnOcrystallitesize(nm)

ZnO 19.5±0.7

ZnO:Ni 19.0±0.6 ZnO:Co 15.8±0.6 ZnO:Mn 10.7±0.4

Table3

SurfacestoichiometriesoftheZnOanddoped-ZnOthinfilmscontainingAuNPs annealedat500◦CderivedfromtheXPSdatareportedinFigs.5and6.

Atomiccomposition ZnO ZnO:Ni ZnO:Co ZnO:Mn

Zn 48.5 47.0 47.6 42.8

O 49.0 50.6 49.0 51.4

Au 2.5 2.0 2.4 2.9

M2+dopant 0.4 1.0 2.9

(comparewithFig.1).Thisisduetocrystalgrowthpromotedby

hightemperatureannealing.TheaveragediameteroftheZnO

crys-tallitesisbetween11and20nmaccordingtothetypeofdopant,

asshowninTable2.

Again,theinfluenceofthedopantistoreduceoralmostprevent

thetemperature-drivenZnOcrystallitegrowth,evenifthiseffect

ismuchmoreevidentforMncomparedtotheotherions.

Besidesthealreadydiscusseddifferenceindopantsize,a

pos-sibleexplanationofthisbehaviorcanbeascribedalsotodifferent

oxidationstatesofthecations:whileZnandNiionsexistmainlyin

the+2oxidationstate,CoandMnpresentmultipleoxidationstates

(+2and+3themorecommon,butMncanbealsofoundin

com-poundswithhigheroxidationstates).Thepresenceofanionwitha

differentoxidationstate,higherthanZn2+,wouldleadtoa

substan-tialamountofnegativelychargedZnvacancies,inducingahigher

extentofmechanical stressinthelattice,inhibitingthe

crystal-litegrowth.ConsideringthatsamplesdopedwithCoandMnshow

thesmallestcrystallitesizes,whiletheeffectofNiinreducingthe

crystallitesizeisnotsopronouncedafterthe500◦Cannealing,the

differentoxidationstateofthedopantionscouldbeanexplanation

ofthedifferenceincrystalgrowth.EvenifCo2+absorptionbandsare

onlydetectedinthecorrespondingopticalspectra,aminor

contri-butionfromCo3+speciescannotbeexcluded.Actually,ZnOcrystals

dopedwithseveralions,includingFeandCo,havebeenprepared

andanalyzedbyXANES[16]:thepresenceofbothFe2+andFe3+

specieshasbeendemonstrated,whileinthecaseofCothe

major-ityoftheionsaredivalent,evenifabroadeningatshorterlengthsof

peakprofilesoftheradialdistributionfunctionshasbeenascribed

totheeffectofCo3+species.

Asexpected,Audiffractionpeaksarenotevidentlyaffectedby

thetypeofZnONPs,andtheydonotundergoanyrelevantchange

inshape, indicatinggood stabilityof AuNPsinsidetheseoxide

matrixes,asobservedalsointhepastforTiO2-based

nanocompos-ites[21].

Inordertoevaluatethesuccessfulincorporationofdopantions

insidetheZnOfilmsandtoevaluatetheiroxidationstate,XPS

anal-ysiswascarriedout.AsfarastheZnOmatrixandtheAuNPsare

concerned,theXPSresultsarequitehomogeneousinallthe

exam-inedsamples:thephotoemissionspectraoftheZn2pandAu4f

corelevelsdonotshowsignificantchangesinallthesamples(see

Fig.5)andarecompatiblewiththepresenceofstoichiometriczinc

oxideandmetalAuNPs,respectively.InTable3theelemental

sur-facestoichiometriesofthedifferentfilmsarereported:theamount

ofAufoundinthedifferentsamplesisonlyslightlyvaryingranging

from2.9%intheMndopedsampleto2.0inthecaseoftheNidoped

one.However,itcanbeseenthatlargedifferencescanbeobserved

Table4

ThicknessandsurfaceroughnessforthefoursamplescontainingAuannealedat 500◦CevaluatedfromAFMimages.

Sample Thickness(nm) Surfaceroughness(nm)

ZnO 92.3±2.8 3.4

ZnO:Co 67.9±2.5 2.3

ZnO:Ni 78.1±5.9 2.4

ZnO:Mn 67.6±3.3 2.7

intheconcentrationofthedopantitself,whichvariesfrom0.4% inthecaseofNito2.9%inthecaseofMn(i.e.almostoneorderof magnitude).

One possible explanation for this trend is surface

segrega-tion [22] of the larger dopant ions (the ionic radii scale as

Mn2+>Co2+>Ni2+)inducedbythestrain,consideringthatthe

prob-ingdepthofXPSmeasurementsisratherlow(3–5nm).

Itisinterestingtonotethatthereisalsoadirectrelationbetween

thedopantsurfaceconcentration,asdeterminedby

photoemis-sion,andthecrystallitesize,asdeterminedbyXRD,whichisabulk

sensitivetechnique:themorethedopantconcentrationatthe

sur-face,thesmalleristhecrystallitesize(asshowninTables2and3).

Thereforeitseemsreasonabletointerpretbothcompositionaland

structuraldatawitha uniqueframework that istheamountof

dopinginducedstrain.

Fortheidentificationofthechemicalstatesofdopingcations,

highresolutionspectraofthecorresponding2plevelshavebeen

measured(see Fig.6).A clear and definitiveassessment ofthe

chemicalstatesisratherdifficultsincethesemetalsarepresent

onlyintraceamountsand theexpectedchemicalshiftbetween

differentoxidationstatesisquitesmall.Moreusefulinthisrespect

istoanalyzethesatellitefingerprintofthephotoemissionlines,

which,inthecaseof2ptransitionmetalsisverydistinctiveofthe

oxidationstate[23].Thusbycomparingthepositionsandrelative

intensitiesofthemainphotoemissionpeakandsatellites[24–28]

itcanbeconcludedthatallthedopingionsarepresent

predom-inantlyasdivalentcations.Howeverthelowsignaltonoiseratio

preventsexcludingthepossibilityofthepresenceofsmall

contri-butionsfromminorityoxidationstates.

Atomic force microscopy measurements were conducted to

analyzesample morphologyandevaluatethickness: Fig.7a and

Table4showtheresultsoftheAFManalysis.Ascanbeseen,the

sur-faceofthesamplesisquitestructured,duetoZnOcrystallinegrains;

neverthelessthesurfaceroughnessisnothigh,beingbelow4nm

forallthesamples,providinggoodopticalqualityandabsenceof

scatteringphenomena.OnlyoneAFMscanhasbeenpresentedhere

becausethedifferentsamplesarerather similar,andjustminor

differencesinsurfaceroughnesshavebeendetected.Thethickness

evaluatedbyscratchingthesamplesandusingtheAFMtiptoscan

theedgeofthelines,isintherange70–90nmforallthesamples,

butatrendinthethicknesscanbeseen,withthepureZnOsample

beingthethickest,andtheCo-dopedandMn-dopedsamplesthe

thinnest.

AconfirmationofthesurfacemorphologycomesalsofromSEM:

atypicalmicrographofaZnO–AufilmisreportedinFig.7b.Ascan

beseenthesurfaceroughnessaswellasthehighporosityextent

canbeappreciatedfromthisimage.

Opticalabsorptionspectra ofthe Au-containingsamplesare

showninFig.8:theUVabsorptiononsetofZnOisstillclearly

evi-dent,anditisslightlyredshiftedcomparedtoas-synthesizedNPs;

moreoverthedifferencebetweenthe4samplesisnotaslargeas

theonefoundforthecolloidalsolutions.Thisbehaviorisduetothe

temperature-drivencrystalgrowththatcausestheparticlenotto

besubjectedanymore(oronlyweakly)tothequantum

confine-mentregime,reachingtheZnObulkbandgapvalue.AlsotheAuSPR

(6)

161 (2012) 675–683 679

Fig.5. XPSAu4fandZn2pdataofZnOanddoped-ZnOthinfilmscontainingAuNPsannealedat500◦C.

Fig.6. XPSCo2p,Mn2pandNi2pdataofdoped-ZnOthinfilmscontainingAuNPsannealedat500◦C.

shiftedcomparedtotheAuSPRpeakfortheas-synthesized

col-loidsinethanolrecordedat523nm.Thisisduetothedifference

inrefractiveindexbetweenethanolandthenanocrystallinezinc

oxidefilms,thelatterbeingmuchhigherthantheformer.

Infact,therefractiveindexvaluesoftheZnOfilmsarefound

tobeinthe1.8–1.85rangeat600nm,asmeasuredwith

spectro-scopicellipsometry,substantiallyhighercomparedtotherefractive

indexofethanolatthesamewavelength(1.36[29]).Byusingthe

effectivemediumapproximation(EMA)models,theporosityofthe

filmscanbeestimatedfromthecomparisonbetweenthe

experi-mentalrefractiveindex,andthetheoreticalvalueforfullydensified

material(2.01at600nmforwurtziteZnO[30,31]):the

nanocom-positefilmisthusmodeledasaneffectivemediumcomposedof

denseZnOandpores.AmongthedifferentEMAmodelsthatcan

beused,theBruggemannfunction[32]isuniversallyacceptedand

widelyemployedforporosityevaluation [33,34].Table5shows

(7)

680 E.DellaGasperaetal./SensorsandActuatorsB161 (2012) 675–683

Fig.8. OpticalabsorptionspectraofZnOanddoped-ZnOthinfilmscontainingAu NPsannealedat500◦C.

Table5

Experimentalrefractive indexat600nm andestimatedporosityforthe sam-pleswithoutAuannealedat500◦C,evaluatedfromspectroscopicellipsometry measurements.

Sample Refractiveindex Porosity%

ZnO 1.84 16

ZnO:Co 1.84 16

ZnO:Mn 1.80 20

ZnO:Ni 1.82 18

refractiveindexvaluesat600nmandcorrespondingporesvolume fractionsforthefoursamples:ascanbeseen,porosityvaluesarein the16–20%rangeforallsamples.Theellipsometricmeasurements wereperformedonAu-freesamplesinordertoobtainaCauchy dispersionofthe refractiveindex in thevisible range,because, asaconsequenceof thestrongSPR absorptionpeakof AuNPs, ZnO–Aufilmspresentaperturbationoftherefractiveindex dis-persioncurve.Nevertheless,intheNIRregion,therefractiveindex valuesofAu-freeandAu-containingsamplesarealmostidentical, suggestingthattheporosityamountisonlyweaklyaffectedbyAu NPspresence.

Besidesthealready mentionedred shiftof AuNPsSPR peak whenthemetalisembeddedinside aZnO matrix comparedto ethanol,alsoaclearbroadeningandasmallredshiftoftheAuSPR peakisdetectedwhenAuNPsareembeddedinsideadoped-ZnO matrixwithrespecttopureZnO.Thiseffectmightberelatedtoa differenceintheelectronicpropertiesofthedoped-ZnOcrystals comparedtotheundopedones,thatcaninteractwiththesurface freeelectronsofAuNPs,affectingtheSPRfrequencies,asdescribed bytheMietheory[35].

FromtheintensityoftheZnOexcitonpeakitispossiblehave

someinsightonthethicknessofthefilms,asreportedinthe

lit-erature[36]: theundopedZnO filmis thethickest, followed in

orderbyNi-doped,Co-dopedandMn-doped.Thesedataareingood

agreementwiththethicknessestimatedfromAFMmeasurements.

Sincetheprecipitation–redispersionprotocolforallthedifferent

ZnOcolloidalsolutionswasthesame,andsowerethedeposition

parameters,thisdifferenceinthicknesscanbeascribedtoa

dif-ferentprecipitationthresholdoftheZnOcolloidsaccordingtothe

typeofdopant,ortodifferentsolubilityoftheseparticlesinthe

sol-vent/nonsolventmixture(beingalsothesizeoftheparticlesslightly

different).Thisleadstoadifferenceinnanocrystalsconcentration

andalsotheviscosityof thefinal solutionusedfordepositions.

Moreover,alsoexperimentalvariabilityofthespinningprocedure

cannotbeexcludedasacauseofsuchthicknessdifferences,aswell

asalimitedsinteringofZnOcrystalsduringtheannealingofthe

filmsduetothepresenceofthedopants.Theactualthicknessof

thesamplehasthustobetakenintoconsiderationwhencomparing

thegassensingresults.

Thesematerialsweretestedasopticalsensorsfor CO

detec-tionwheredifferentoperatingtemperatures(OTs)wereused,in

orderto identifythebestoperative conditions.Allthesamples

gavelowresponsebetween25◦Cand200COTs,withquitelong

transienttimes,whileinthe250–350◦Crangetheresponsewas

easilydetected,andallthetestsreportedinthefollowinghavebeen

carriedoutat300◦COT.Au-freesamplesdidnotgiveany

appre-ciableopticalresponse,asalreadyobservedinthepast[37],while

Au-containingsamplesshowedthetypicalwavelengthdependent

behaviorofAu-dopedtransitionmetaloxides[38,39].Allsamples

presentablueshiftoftheAuSPRpeakwhenexposedtothe

reduc-inggas,consistentwiththeoxidationofCOandthesubsequent

electroninjectioninsidethen-typeZnOmatrix,leadingtotheshift

tohigherfrequencies oftheplasmonband. Itisreasonablethat

otherreducing gasses likeH2 willreactsimilarly withtheZnO

matrix,whileoxidizinggasseslikeNO2 willcausea redshiftof

theSPRpeak.Thesensingperformancesweremonitoredusingthe

opticalabsorptionchangeparameter,definedasthedifferencein

absorbanceduringtarget gasexposureand duringair exposure

(OAC=ACO−Aair).Fig.9ashowstheOACcurvesforthe4prepared

samplesexposedto1%COat300◦COT.

Thedistinctiveshapeoftheresponseversuswavelengthcurve

can be seen, resulting in wavelengths were the response is

maximized (about 570nm and 670nm, positive and negative,

respectively)andwavelengthsinwhich thesensing responseis

extremelylowornull(below450nm,∼625nmandover800nm),

allowingtotunethematerialsensitivityandpossiblyselectivityby

usingwavelengthmodulation.

Adifferenceintheintensityoftheresponsecanbeseen

compar-ingthefoursampleswithundopedZnOshowingthelessintense

OACmaximumandminimum,despitehavingthehighest

thick-ness,whiletheCo-dopedsampleisthemostsensitivetoCO,even

thoughthethicknessismuchlowerthanwiththepureZnOsample.

Thisdifferenceinresponse becomes clearerwhen

normaliz-ingthesevaluestothesamplethicknessexpressedinmicrons,as

showninFig.9b.Thenormalizationhasbeenperformedby

cal-culatingtheaverageresponseofeachsampleand summingthe

absoluteOACvaluebothatthepositiveandnegativemaximum

wavelengths,andthendividingbythesamplethicknessas

mea-suredwithAFM (thustheunitsareexpressedin␮m−1).Cobalt

andmanganesedopedsamplesshowevidentlythebestsensing

response,whileundopedZnOhasthelowerresponse,confirming

thepositiveeffectofdopingZnOcrystalswithtransitionmetalions.

TheenhancingeffectofCoandMnionsmightbeagainrelatedto

theirmultipleoxidationstates,thatallowsavariationofcharge

car-rierconcentrations,therebyimprovingthematerialperformances,

asshownintheliteratureforZnOfilmsdopedwithtrivalentions

likeAl3+orGa3+[8,40,41],asamatteroffactNi-dopedZnOdoesnot

showagreatimprovement,andaccordingtowhatwasdiscussed

earlier,thismightbeascribedtothemainoxidationstateofNi,

beingthesameasZn.Moreover,asshownabove,theNiamount

atthesurfaceofZnOcrystalsisratherlowcomparedtotheother

dopants,andsincethegassensingmechanismincludesasurface

process,thismaybeanadditionalexplanationtotheratherlow

opticalresponseoftheNi-dopedZnOnanocomposite.

Sincethereisnoconfirmationofthedifferentoxidationstateof

thedopantions,duetotheaccuracyprovidedbyXPS

measure-mentsnotallowingtodistinguishclearly possible3+ species,it

cannotbestatedunequivocallythattrivalentionsarepresent.In

anycase, evenassumingthatallthespeciesareinthe2+state,

the presence of cations that can exist with different oxidation

statesisusefulinthegassensingperformancebecausethedopants

(8)

161 (2012) 675–683 681

Fig.9.(a)Opticalabsorptionchangeplot(OAC=ACO−AAir)forZnOanddoped-ZnOthinfilmscontainingAuNPsannealedat500◦Cfor1h.(b)NormalizedOACintensityfor thefourtestedsamples.

theatmospheretheyareincontactwith,facilitatingtheelectron

transferbetweenthegasandmatrix,improvingthesensing

perfor-mances.Forexample,itisknownthatWO3crystalswhenexposed

tohydrogen,undergotheformationofsomeW5+speciesin

oppo-sitiontothepristineW6+ions,changingboththeelectricalandthe

opticalpropertiesofthematerial[42].

All ZnO doped samples show acceptable dynamic behavior

afterrepeatedexposurestodifferentCOconcentrationsinair,as

reportedinFig.10: theresponsetimesarerelativelyfast,while

therecoverytimesarealittlelongerbutstillsatisfactory.If

con-sideringanair-1%CO–aircycle,theresponsetimes(definedasthe

timesneededtoreach90%ofthetotalresponse)forallthe

sam-plesareinthe15–20srange,whiletherecoverytimes(defined

as thetimes neededto recover90% of theinitial baseline)are

around2–3min.IfconsideringlowerCO concentrationsinstead,

responsetimesdonotchangesignificantly,whilerecoverytimes

Fig.10.Dynamicresponseof(a)ZnO;(b)ZnO:Ni;(c)ZnO:Coand(d)ZnO:Mn sam-plescontainingAuNPsatthewavelengthcorrespondingtothemaximumofthe OACcurve(Fig.9a)andat300◦COT,duringexposuretodifferentCOconcentrations expressedinppm.

aresubstantiallylower.Ascanbeseen,eventhoughthesesamples

arerelativelythin,theyareabletoeasilydetectdownto10ppm

CO,withalinear-logarithmicrelationshipbetweenintensityofthe

opticalvariationandtargetgasconcentration,asalreadyobserved

fornanocrystallineTiO2–Ausamplespreparedbyourgroup[21].

Comparingtheresponseintensitiesofthetime-resolvedtests,it

canbeseenagainthatsamplesdopedwithcobaltandmanganese

ionsshowthebestperformance,whiletheundopedZnOhasthe

lowerintensity:thisisaconfirmationofthenormalizedresponse

showninFig.9b.Fromthesedynamicteststhesensitivityandthe

detectionlimitscanbeevaluated.Theparameterusedforthis

eval-uationistheresponseintensity(RI),definedasthefollowing:

RI=







OAC t







wheretisthethicknessofthesamplesexpressedinmicrons.

Basi-cally,theresponse intensityisdefined astheabsolutevalueof

OACtakenatonewavelengthandnormalizedtothesample

thick-ness;theRIvaluehasbeendefinedinthiswayinordertotake

intoaccountthedifferenceinthicknessbetweenthefoursamples,

andtoobtainalwayspositivevaluesofthesensingresponse,since

consideringtheOACcurvesshowninFig.9a,thereisarangeof

fre-quenciesinwhichtheOACisnegative.MeasuringtheRIvaluesfor

twodifferenttestsforeachsample,andplottingtheaveragevalue

versustheCOconcentration(Fig.11),alinearrelationshipbetween

theresponseintensityandtheorderofmagnitudeofthetargetgas

concentrationcanbeseen,andalsoextrapolatingthedataatlower

concentrationsthedetectionlimitcanbeestimatedtobeinthe

1–2ppmrange.Thelinearfitsoftheexperimentaldatashownas

dashedlinesconfirmthelinearrelationship,andmake the

cali-brationcurvecalculationsimple.Thesensitivityishencedefined

astheslopeoftheresponsecurveversusconcentration,andthe

Co-dopedsampleshowedthehighestsensitivitytogetherwiththe

highestresponseintensityasisalsoindicatedfortheMn-doped

sample.BydefiningthesensitivitySasthefollowing:

S= RI

Log([CO])

where[CO]istheCOconcentrationexpressedinppm,theSvalue

isexactlytheslopeofthelinearfitspresentedinFig.11.

The obtained sensitivity values – taking the horizontal axis

(9)

682 E.DellaGasperaetal./SensorsandActuatorsB161 (2012) 675–683

Fig.11. SensitivityplotsforCOdetectionforthefoursamplestestedatthe wave-lengthcorrespondingtomaximumofOACcurvesandat300◦COT.Linearfitsfor thefourexperimentalsetsofdataarealsoreported.

2.9× 10−2␮m−1ppm−1forundoped,Ni-doped,Mn-dopedand

Co-dopedZnOfilms,respectively.Atrendisclearlyidentified,being

Co-doped ZnOfilm thebetter,withthesensitivity almost

dou-bledcomparedtopureZnO(theactualincreaseismorethan80%);

thehighestsensitivitytogetherwiththehighestresponseintensity

makescobaltionstheidealdopanttoenhanceZnOsensing

prop-erties.Inaddition,promisingsensingpropertieshavebeenshown

alsoforZnO:Mnsamples(sensitivityisincreasedmorethan55%),

whileonlyminorpositiveeffectshavebeendetectedforNi-doped

films(sensitivityimprovedby25%).

4. Conclusion

High quality nanocrystalline ZnO and transition metal

ions-doped ZnO films have been prepared starting from colloidal

solutionsofcrystallineNPs,andtheincorporationofmonodisperse

AuNPshasalsobeenperformed.Morphologicalandoptical

charac-terizationofbothcolloidalsolutionsandthinfilmsconfirmedthe

dopantspresenceandtheireffectonthecrystallitesizesandonthe

UVabsorptiononsetofZnO.OpticalgassensingtestsforCO

detec-tionshowedafast,reversibleandlinear-logarithmicresponsein

the10–10,000ppmrangeforallthesamplestested,andthe

pos-itiveeffectofthedopantshavebeenexploitedtoincrease both

themagnitudeoftheresponseandthesensitivityofthe

nanocom-posites.CobaltionsinsidetheZnOlatticestructurearefoundto

increasetheCOsensitivityofZnO–Aufilmsbymorethan80%.

Thesenanocrystallinecolloidalsolutionsareapromisingtool

fortherealizationoflow-temperatureactivethinfilmsformany

applicationslikesensors,LEDs,transistors,andcoatingsingeneral.

Acknowledgements

This work has been supported through Progetto Strategico

PLATFORMSofPadovaUniversity.E.D.G.thanksFondazione

CARI-PAROforfinancialsupport.ThispaperisissuedasNationalResearch

CouncilofCanada,NRCC#53007.

References

[1]Ü.Özgür,Y.I.Alivov,C.Liu,A.Teke,M.A.Reshchikov,S.Do˘gan,V.Avrutin,S.J. Cho,H.Morkoc¸,J.Appl.Phys.98(2005)041301.

[2]J.Homola,S.S.Yee,G.Gauglitz,Sens.ActuatorsB54(1999)3–15.

[3] Y.Chen,D.M.Bagnall,Z.Zhu,T.Sekiuchi,K.Park,K.Hiraga,T.Tao,S.Koyama, M.Y.Shen,T.Goto,J.Cryst.Growth181(1997)165.

[4]J.B.Yoo,A.L.Fahrenbruch,R.H.Bube,J.Appl.Phys.68(1990)4694–4699.

[5]W.J.E.Beek,M.M.Wienk,R.A.J.Janssen,Adv.Mater.16(2004)1009. [6]A.Bashir,P.H.Wobkenberg,J.Smith,J.M.Ball,G.Adamopoulos,D.D.C.Bradley,

T.D.Anthopoulos,Adv.Mater.21(2009)2226.

[7]B.S.Mashford,T.L.Nguyen,G.J.Wilson,P.Mulvaney,J.Mater.Chem.20(2010) 167–172.

[8]Q.B.Ma,Z.Z.Ye,H.P.He,Y.Luo,L.P.Zhu,J.Y.Huang,Y.Z.Zhang,B.H.Zhao, ChemPhysChem9(2008)529–532.

[9] Y.Sun,J.A.Rogers,Adv.Mater.19(2007)1897–1916.

[10]D.A.Schwartz,N.S.Norberg,Q.P.Nguyen,J.M.Parker,D.R.Gamelin,J.Am.Chem. Soc.125(2003)13205–13218.

[11]B.V.Enustun,J.Turkevich,J.Am.Chem.Soc.85(1963)3317. [12] G.Frens,Nat.:Phys.Sci.241(1973)20(London).

[13]J.J.Yeh,I.Lindau,At.DataNucl.DataTables32(1985)1.

[14] S.Tanuma,C.J.Powell,D.R.Penn,Surf.InterfaceAnal.21(1993)165. [15]N.S.Norberg,K.R.Kittilstved,J.E.Amonette,R.K.Kukkadapu,D.A.Schwartz,D.R.

Gamelin,J.Am.Chem.Soc.126(2004)9387–9398.

[16]I.Bilecka,L.Luo,I.Djerdj,M.D.Rossell,M.Jagodic,Z.Jaglicic,Y.Masubuchi,S. Kikkawa,M.Niederberger,J.Phys.Chem.C115(2011)1484–1495.

[17]A.Wood,M.Giersig,M.Hilgendorff,A.Vilas-Campos,L.M.Liz-Marzan,P. Mul-vaney,Aust.J.Chem.56(2003)1051–1057.

[18] F.A.Cotton,M.Goodgame,D.M.Goodgame,J. Am.Chem.Soc.83(1961) 4690–4699.

[19]H.A.Weakliem,J.Chem.Phys.36(1962)2117–2140.

[20]P.V.Radovanovic,N.S.Norberg,K.E.McNally,D.R.Gamelin,J.Am.Chem.Soc. 124(2002)15192–15193.

[21]E.DellaGaspera,A.Antonello,M.Guglielmi,M.L.Post,V.Bello,G.Mattei,F. Romanato,A.Martucci,J.Mater.Chem.21(2011)4293–4300.

[22]T.Singh,T.J.Mountziaris,D.Maroudas,Appl.Phys.Lett.97(2010)073120. [23]M.Martins,K.Godehusen,T.Richter,T.Wolff,P.Zimmerman,J.Electron

Spec-trosc.Relat.Phenom.137–140(2004)345–350.

[24]F.H.Han,F.Chen,Z.Zhong,K.Ramesh,C.Chen,E.Widjaja,J.Phys.Chem.B110 (2006)24450–24456.

[25]T.Mizokawa,T.Nambu,A.Fujimori,T.Fukumura,M.Kawasaki,Phys.Rev.B65 (2002)085209.

[26]S.C.Petitto,E.M.Marsh,G.A.Carson,M.A.Langell,J.Mol.Catal.A281(2008) 49–58.

[27]F.Parmigiani,L.Sangaletti,J.ElectronSpectrosc.Relat.Phenom.98–99(1999) 287–302.

[28]S.Agnoli,A.Barolo,P.Finetti,F.Sedona,M.Sambi,G.Granozzi,J.Phys.Chem. C111(2007)3736–3743.

[29]D.R.Lide,CRCHandbookofChemistryandPhysics,87thEd.,TaylorandFrancis, BocaRaton,FL,2007,pp.8–57.

[30]W.L.Bond,J.Appl.Phys.36(1965)1674.

[31] D.R.Lide,CRCHandbookofChemistryandPhysics,87thEd.,TaylorandFrancis, BocaRaton,FL,2007,pp.10–248.

[32]D.A.G.Bruggeman,Ann.Phys.24(1935)636(Leipzig).

[33]D.Grosso,A.R.Balkenende,P.A.Albouy,M.Lavergne,L.Mazerolles,F. Babon-neau,J.Mater.Chem.10(2000)2085–2089.

[34] M.T.Othman,J.A.Lubguban,A.A.Lubguban,S.Gangopadhyay,R.D.Miller,W. Volksen,H.C.Kim,J.Appl.Phys.99(2006)083503.

[35]C.F.Bohren,D.R.Huffman,AbsorptionandScatteringofLightbySmallParticles, Wiley,NewYork,1998.

[36] X.L.Cheng,H.Zhao,L.H.Huo,S.Gao,J.G.Zhao,Sens.ActuatorsB102(2004) 248–252.

[37]E.DellaGaspera,A.Martucci,M.L.Post,Sens.Lett.9(2011)600–604. [38]M.Ando,T.Kobayashi,M.Haruta,Catal.Today36(1997)135–141.

[39]D.Buso,M.L.Post,C.Cantalini,P.Mulvaney,A.Martucci,Adv.Funct.Mater.18 (2008)3843.

[40]Z. Ben Ayadi, L. ElMir,K. Djessas, S.Alaya, Nanotechnology 18(2007) 445702.

[41]H.Wang,M.Xu,J.Xu,M.Ren,L.Yang,J.Mater.Sci.21(2010)589–594. [42]S.K.Deb,Sol.EnergyMater.Sol.Cells92(2008)245–258.

Biographies

EnricoDellaGasperagraduatedinmaterialsengineeringin2007andreceivedhis PhDinmaterialsscienceandengineeringin2011attheUniversityofPadova.He iscurrentlyapost-doctoralresearchfellowatthemechanicalengineering– mate-rialsdepartmentatthesameuniversity.Hisworkisfocusedonthesynthesisof noblemetal/metaloxidenanocompositesthinfilmswithtailoredmorphologyand propertiesusingwetchemistrytechniquesforopticalsensingofreducinggases. MassimoGuglielmiisfullprofessorofmaterialsscienceandtechnologyatthe UniversityofPadova,Italy.Hewasawardedwiththe“ProfessorVittorioGottardi MemorialPrize”bytheinternationalcommissiononglassin1992.Hisscientific interestisfocusedonthesynthesis,characterizationandapplicationof nanostruc-turedmaterialsobtainedbysol–gelmethods.Heisauthororco-authorofmorethan 200papers,mostofthempublishedoninternationalscientificjournals.

GiovanniPerottograduatedinmaterialsciencein2007andgotthePhDinmaterial scienceandengineeringin2011attheUniveristyofPadova.Heiscurrentlya post-doctoralresearchfellowatthephysicsdepartmentofthesameuniversity.Hiswork isfocusedonthenanofabricationofdifferentfunctionalorderednanostructures arrangedas2Darraysonsurfacesforplasmonicapplications.

(10)

161 (2012) 675–683 683 StefanoAgnolitookhisMScandPhDinmaterialsscienceattheUniversityofPadova

(Italy).HeworkedasresearchassociateatthechemistrydepartmentofBrookhaven NationalLaboratory(US)andnowisassistantprofessorattheUniversityofPadova. Hisresearchisfocusedonthegrowthandcharacterizationofnanostructured sur-facesandonthestudyoftheirchemicalproperties.

GaetanoGranozzigraduatedinchemistry,professorofsurfaceandsolidstate chem-istryanddirectorofthePhDschoolinmaterialscienceandengineeringatthe UniversityofPadova.Hisresearchfieldisultrathinoxidefilms,supported nanopar-ticlesandmodelcatalysts.Authorofca.250papers.

MichaelPostreceivedhisPhDinchemistryfromtheUniversityofSurrey,UK,and isaprincipalresearcherintheenvironmentalmonitoringtechnologiesprogram attheICPETinstituteofthenationalresearchcouncilofCanada,wherehehas beenanactiveresearcherinmaterialssciencesince1975.Projectshaveincluded

X-raydiffractionandstructuredetermination,intermetalliccompoundsfor hydro-genstorageandphasestudiesofhightemperaturesuperconductingceramics. Currentresearchinterestsaredirectedtowardtheinvestigationofstructuraland functionalrelationshipsofthinandthickfilmnonstoichiometriccompoundsand nanomaterialcompositesforapplicationasgassensors.

AlessandroMartuccigraduatedinphysicsattheUniversityofPadovaandin1997 hegotthePhDdegreeinmaterialsscienceandengineeringatthesame univer-sity.From1999heholdsafacultypositionatPadovaUniversityandfrom2007 heisassociateprofessorteachingmaterialsscienceandengineeringatthe fac-ultyofengineering.Hismainresearchactivityisdevotedtonanoparticlesdoped sol–gelmaterialsforphotonicsandgassensingapplications.Heisresponsibleof nationalandinternationalresearchprojectsandholdsmorethan100international publications.

Figure

Fig. 1. XRD patterns of ZnO and doped-ZnO NPs (doping level is 2.5%) heated at 50 ◦ C for 1 h; the theoretical diffraction lines for wurtzite crystalline phase are indicated at the bottom.
Fig. 3. UV–vis absorption spectra of ethanolic suspension of ZnO colloids. The insets show (a) the effect of the dopants on the UV absorption onset of ZnO and (b) the distinctive Co 2+ ion absorption bands.
Fig. 5. XPS Au 4f and Zn 2p data of ZnO and doped-ZnO thin films containing Au NPs annealed at 500 ◦ C.
Fig. 8. Optical absorption spectra of ZnO and doped-ZnO thin films containing Au NPs annealed at 500 ◦ C.
+3

Références

Documents relatifs

Le comportement optimal a été observée dans des films qui ont été préparés à haute température du substrat (~700 °C) pouri induire la migration du chrome Cr au voisinage de

From the physical interpretation, this method gives a better description of the system in study, but unfortunately it has some practical limitations: in the case of large clusters

Rksumk. - Les donnkes du transport Blectrique, de la susceptibilite magnetique et de la RMN dans Si dope au P sont examinees pour donner une image de la transition mBtal-non

Therefore we are reporting here some results of our electron spin resonance (e. r.) and Mossbauer spectrometry investigations on crystals which have been purposely doped with Fe

Mais ces stages sont aussi vus comme une occasion de prendre conscience des risques, de prévenir les accidents, de prendre conscience de ses limites voire d'un éventuel déclin dans

123 ةاناعملا تايوتسم يف بيترتلا ثيح نم ىلولأا ةبترملا يف ءاج ثيح ، مونلا تابارطضاو امنيب ، ينايرشلا طغضلا ةئف اهيلت ناطرسلا ىضرم ةئف ىدل تابارطضلاا نم عونلا

One should accurately examine within this framework the various situations explained by the standard Newton law and by general relativity (movements of rockets

Reviews Ivan lIIich. Ivan Illich has a radical solution for today's educational problems: do away with the schools entirely. Illich sees the deschool- ing of society