• Aucun résultat trouvé

Grape juice contamination by Botrytis. Impact on the characteristics and foaming properties of yeast macromolecules released in the wine during alcoholic fermentation

N/A
N/A
Protected

Academic year: 2021

Partager "Grape juice contamination by Botrytis. Impact on the characteristics and foaming properties of yeast macromolecules released in the wine during alcoholic fermentation"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01984272

https://hal.archives-ouvertes.fr/hal-01984272

Submitted on 19 Sep 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Grape juice contamination by Botrytis. Impact on the characteristics and foaming properties of yeast macromolecules released in the wine during alcoholic

fermentation

Thierry Doco, Thomas Salmon, Ramon Gonzalez, Céline Vrigneau, Richard Marchal

To cite this version:

Thierry Doco, Thomas Salmon, Ramon Gonzalez, Céline Vrigneau, Richard Marchal. Grape juice contamination by Botrytis. Impact on the characteristics and foaming properties of yeast macro- molecules released in the wine during alcoholic fermentation. International Congress on Grapevine and Wine Sciences, 2018, Logroño, Spain. 242 p., 2018, International Congress on Grapevine and Wine Sciences. �hal-01984272�

(2)

Grape juice contamination by Botrytis. Impact on the

characteristics and foaming properties of yeast macromolecules released in the wine during alcoholic fermentation

T. Doco

d

, T. Salmon

a

, R. G. Gonzalez

b

, C. Vrigneau

c

, P. Williams

d

and R. Marchal

a*

a Laboratoire d’Oenologie , Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2, France – Université de Haute-Alsace, Biopôle de Colmar, France. b Instituto de Ciencias de la Vid y del Vino (ICVV-Universidad de La Rioja-Gobierno de La Rioja) - Apartado Postal Nº

1.042 – 26080 Logroño, Spain. c Institut Œnologique de Champagne, 9 Rue du Commerce, 51350 Cormontreuil, France. d INRA, UMR n°1083, Sciences Pour l’Œnologie, 2 Place Pierre Viala, 34060 Montpellier, France

. * richard.marchal@univ-reims.fr

References

Abdallah, Z., Aguié-Béghin, V., Abou-Saleh, K., Douillard, R. and Bliard, C. (2010). Food Res. Int. 43 : 4, 982-987.

Brissonnet, F. and Maujean, A. (1991). Am. J. Enol. Vitic. 42: 97-102.

Cilindre, C., Castro, A. J. Clément, C., Jeandet, P. and Marchal, R. (2007). Food Chem. 103: 139-149.

Coelho, E., Reis, A., Domingues, M. R. M. Rocha, S. M. and Coimbra, M. A. (2011). J. Agric. Food Chem. 59: 3168-3179.

Esteruelas M., González-Royo E., Kontoudakis N., Orte A., Cantos A., Canals J.M. and Zamora, F. (2015). J. Sci. Food Agric. 15:

95, 10, 2071-80.

Girbau-Sola, T., Lopez-Tamames, E., Bujan, J. and Buxaderas, S. (2002). J. Agric. Food Chem. 50: 5596-5599.

Gonzalez-Ramos, D., Cebollero, E., and Gonzalez, R. (2008). Applied and Environmental Microbiology, 74(17), 5533–5540.

Marchal, R., Warchol, M., Cilindre, C. and Jeandet, P. (2006). J. Agric. Food. Chem. 54: 5157-5165.

Martínez-Lapuente, L., Guadalupe, Z., Ayestaran, B., Ortega-Heras, M. and Perez-Magarino, S. (2013). J. Agric. Food Chem. 61:

12362-12373.

Martínez-Lapuente L, Guadalupe Z, Ayestarán B, and Pérez-Magariño S. (2015). Food Chem., 174, 330-338.

Maujean, A., Poinsaut, P., Dantan, H., Brissonnet, F. and Cossiez, E. (1990). Bulletin de l'OIV , 63 : 405-427.

Botrytis cinerea culture in a synthetic must

* Fungus isolated from Champagne’s vineyard (B.c 630, INRA Versailles, France)

* Culture on a synthetic must to avoid grape berry macromolecules and phenolic compounds.

* Inoculation at 1,67.104 spores/mL in a Manteau medium.

* Agitation at 150 rpm – Culture during 22 days at 18°C.

International Congress on Grapevine and Wine Sciences

Logroño, 7-9 November 2018 - Palacio de Congresos de La Rioja “Riojaforum”

Alcoholic fermentation (AF) of the Synthetic must and WSM preparation

* Each experiment was performed in triplicate

* Oenological yeast strains : IOC 18-2007 (IOC), HPS (Lallemand) , IFI 473

* Native/Geneticallly modified yeast strains : EC 118, EKD 13

* Yeast inoculation: 2.106 cells/mL in 250mL shake flasks

* Enzymatic « contamination » : 5% (v/v) with Botrytis culture

* AF at 18°C in a dark room followed by weighing the shake flasks

* End of AF controlled by measuring reducing sugars + alcohol content (%v/v)

* Centrifugation of the WSM 15min at 17000g + filtration on 0,45µm membrane

* Addition of 80mg/L SO2 + ullage in crystal flasks + storage at 18°C

Introduction

Several studies have demonstrated the contribution of (glyco)proteins and polysaccharides (PS) to sparkling wine foam properties (Maujean et al., 1990; Brissonnet and Maujean, 1991; Abdallah et al., 2010; Coelho et al., 2011; Martínez Lapuente et al., 2013). Correlations between foam properties of grape juices, base wines, and sparkling wines with PS content and composition have been shown (Girbau Sola et al., 2002).

More precisely some studies have identified yeast mannoproteins (MPs) released during alcoholic fermentation and autolysis as molecules involved in improving foam properties (Abdallah et al., 2010;

Coelho et al., 2011). Also, Martínez Lapuente et al. (2015) suggested that MPs were not involved in foamability but were good foam stabilizers. Moreover, we know that Botrytis can degrade grape berry proteins (Marchal et al., 2006; Cilindre et al., 2007). Nevertheless, we know very little concerning the impact of Botrytis cinerea enzymatic activities onto 1) the characteristics of the macromolecules released by Saccharomyces in the juice/wine during the alcoholic fermentation and 2) their contribution to wine foamability. To answer this question, we have produced Wine from Synthetic Must (noted WSM) by fermenting synthetic “healthy” and “Botrytis contaminated” musts with 3 oenological yeast strains (IOC 18- 2007 (IOC), HPS (Lallemand) , IFI 473). The model juice was also fermented with EC1118, a wine yeast strain (Lallemand) and EKD-13 that is an EC1118 recombinant derivative, deleted for both copies of KNR4/SMI1 as described by Gonzalez-Ramos et al. (2008).

Proteic content of the Botrytis culture (22 days)

Studied by SDS-PAGE + Silver nitrate staining after Surnageant concentrated 14,7 x. Calibration with BSA.

Total released proteins : 1.075 mg/L (densitometric integration)

0%

20%

40%

60%

80%

100%

0 25 50 75 100 125

Relative foamheight%

Time (sec)

18-2007 S 18-2007 B

HPS S HPS B

IFI 473 S IFI 473 B

Foaming properties – Enological strains

The evolution of the foam height following a foaming expansion test in 30mL tubes shows that the 3 healthy WSM exhibit a strong and stable foamability.

Whatever the time, after 10 sec, the ANOVA indicates a significant difference between the « healthy » and the contaminated WSM. The PS and protein compositions of these 2 WSM groups explain these foaming behaviours, due to the hydrolytic fungal enzymes present in the botrytized medium. The ANOVA shows no significant differences between the healthy WSM.

WSM foaming properties

WSM 18-2007 foam at t0= 100%

WSM Polysaccarides molecular weight distribution

In the WSM produced by 4 oenological strains and a recombinant strain, strong differences between the wines produced with the « healthy » and the « botrytized » synthetic juices can be observed whatever the size range, as analysed size by exclusion chromatography (SEC-MALLS).

Polysaccharides ranging from 1 to 500 kDa are present in higher quantities in the botrytized WSM. At the opposite, the molecules with MW higher than 500 kDa have contents much higher in the healthy WSM.

This indicates that Botrytis hydrolytic enzymes (potentially mannosidases and glucanases) are capable to partially degrade the MPs released during the alcoholic fermentation. During wine storage in the cellar, the enzymes still present in the WSM could most probably continue their hydrolytic activities leading to stronger differences between botrytized and healthy WSM.

Calculated

mass (µg) Mn (g/mol) Mw (g/mol) Mw/Mn Rz Visco

Hw (mL/g) Rh (w) 1.103 - 100.103 g/mol

100.103- 250.103 g/mol

250.103 - 500.103 g/mol

500.103 - 1.106 g/mol

1.106 - 10.106 g/mol

MOYENNE 51,4 207833 423033 2,0 19,8 40,7 12,9 13,2 27,4 36,6 18,2 4,6

Ecart-type 10,1 27775 52466 0,1 1,8 0,6 0,5 9,2 8,6 0,6 1,8 1,4

MOYENNE 56,7 143850 313050 2,2 24,2 35,2 11,2 24,2 22,5 36,6 13,8 2,8

Ecart-type 4,8 8980 37547 0,1 6,4 3,9 0,8 5,8 0,6 1,5 2,5 1,3

p-test Student 0,455 0,057 0,087 0,232 0,322 0,079 0,054 0,133 0,379 0,989 0,067 0,191

MOYENNE 47,6 207350 361550 1,7 17,4 38,7 12,3 7,3 37,0 38,2 14,4 5,1

Ecart-type 1,0 6250 12940 0,0 0,5 0,2 0,2 4,8 6,1 4,8 4,1 1,2

MOYENNE 38,2 170433 324667 1,9 16,8 43,3 12,2 18,9 31,0 36,5 11,0 2,6

Ecart-type 4,3 23481 24809 0,1 0,7 1,1 0,2 6,2 5,3 0,9 0,9 0,4

p-test Student 0,063 0,058 0,158 0,175 0,311 0,012 0,911 0,042 0,266 0,568 0,239 0,033

MOYENNE 50,9 214467 478767 2,2 23,0 45,2 13,6 13,2 26,5 40,9 14,7 4,2

Ecart-type 0,4 15316 41101 0,1 0,9 2,9 0,4 6,3 4,2 1,0 0,9 0,9

MOYENNE 43,8 161100 412050 2,6 24,8 42,6 12,5 29,4 20,7 37,5 9,9 2,2

Ecart-type 3,0 12162 23264 0,0 1,5 2,9 0,5 8,9 0,6 6,7 1,1 0,6

p-test Student 0,052 0,027 0,136 0,030 0,195 0,389 0,079 0,061 0,073 0,436 0,004 0,034

Moyenne 26,0 139 950 506 850 3,6 20,3 31,7 11,4 29,7 20,0 32,0 11,5 6,4

écart type 3,3 354 109 672 0,8 1,6 2,2 0,6 2,0 1,7 1,4 0,2 0,2

Moyenne 25,3 90 585 208 900 2,7 12,9 30,7 9,3 42,6 24,6 26,1 5,7 0,9

écart type 1,6 13 456 6 843 0,6 2,8 3,6 0,6 5,1 2,1 3,7 0,4 0,2

p-test Student 0,743 0,035 0,014 0,130 0,013 0,756 0,002 0,014 0,081 0,135 0,000 < 0,0001

Moyenne 19,2 151 200 324 350 2,1 14,7 33,3 12,0 28,1 30,7 31,3 14,6 4,7

Ecart-type 1,9 424 212 0,0 2,3 0,7 1,5 2,5 10,3 3,0 3,2 0,7

Moyenne 22,9 74 160 190 450 2,4 12,2 35,3 9,7 43,3 22,3 27,2 6,7 0,7

Ecart-type 2,8 1 117 12 799 0,2 0,2 10,5 1,5 2,8 3,5 3,9 1,9 0,4

p-test Student 0,080 0,000 0,005 0,171 0,270 0,814 0,132 0,009 0,254 0,227 0,022 0,007

Moyenne 88,9 159 700 300 050 1,9 13,4 34,6 11,3 19,4 24,9 41,2 13,8 0,7

Ecart-type 5,1 24 846 15 493 0,2 1,5 1,3 0,3 1,8 1,9 1,6 1,7 0,2

Moyenne 80,5 90 420 261 667 2,6 13,2 32,0 10,5 23,7 27,9 39,9 8,1 0,4

Ecart-type 5,3 2 772 14 289 0,5 2,2 0,1 0,2 1,4 2,3 2,0 1,6 0,1

p-test Student 0,055 0,010 0,009 0,014 0,926 0,010 0,005 0,010 0,079 0,332 0,002 0,052

EC 118 Sain EC 118 Botrytisé

EKD 13 Sain EKD 13 Botrytisé

IOC 18 sain IOC 18 Botrytisé

HPS sain HPS Botrytisé

Ifi 473 sain Ifi 473 Botrytisé

18-07 Sain 18-07 Botrytisé

Calculated

mass (µg) Mn (g/mol) Mw (g/mol) Mw/Mn Rz Visco

Hw (mL/g) Rh (w) 1.103 - 100.103 g/mol

100.103- 250.103 g/mol

250.103 - 500.103 g/mol

500.103 - 1.106 g/mol

1.106 - 10.106 g/mol

MOYENNE 51,4 207833 423033 2,0 19,8 40,7 12,9 13,2 27,4 36,6 18,2 4,6

Ecart-type 10,1 27775 52466 0,1 1,8 0,6 0,5 9,2 8,6 0,6 1,8 1,4

MOYENNE 56,7 143850 313050 2,2 24,2 35,2 11,2 24,2 22,5 36,6 13,8 2,8

Ecart-type 4,8 8980 37547 0,1 6,4 3,9 0,8 5,8 0,6 1,5 2,5 1,3

p-test Student 0,455 0,057 0,087 0,232 0,322 0,079 0,054 0,133 0,379 0,989 0,067 0,191

MOYENNE 47,6 207350 361550 1,7 17,4 38,7 12,3 7,3 37,0 38,2 14,4 5,1

Ecart-type 1,0 6250 12940 0,0 0,5 0,2 0,2 4,8 6,1 4,8 4,1 1,2

MOYENNE 38,2 170433 324667 1,9 16,8 43,3 12,2 18,9 31,0 36,5 11,0 2,6

Ecart-type 4,3 23481 24809 0,1 0,7 1,1 0,2 6,2 5,3 0,9 0,9 0,4

p-test Student 0,063 0,058 0,158 0,175 0,311 0,012 0,911 0,042 0,266 0,568 0,239 0,033

MOYENNE 50,9 214467 478767 2,2 23,0 45,2 13,6 13,2 26,5 40,9 14,7 4,2

Ecart-type 0,4 15316 41101 0,1 0,9 2,9 0,4 6,3 4,2 1,0 0,9 0,9

MOYENNE 43,8 161100 412050 2,6 24,8 42,6 12,5 29,4 20,7 37,5 9,9 2,2

Ecart-type 3,0 12162 23264 0,0 1,5 2,9 0,5 8,9 0,6 6,7 1,1 0,6

p-test Student 0,052 0,027 0,136 0,030 0,195 0,389 0,079 0,061 0,073 0,436 0,004 0,034

Moyenne 26,0 139 950 506 850 3,6 20,3 31,7 11,4 29,7 20,0 32,0 11,5 6,4

écart type 3,3 354 109 672 0,8 1,6 2,2 0,6 2,0 1,7 1,4 0,2 0,2

Moyenne 25,3 90 585 208 900 2,7 12,9 30,7 9,3 42,6 24,6 26,1 5,7 0,9

écart type 1,6 13 456 6 843 0,6 2,8 3,6 0,6 5,1 2,1 3,7 0,4 0,2

p-test Student 0,743 0,035 0,014 0,130 0,013 0,756 0,002 0,014 0,081 0,135 0,000 < 0,0001

Moyenne 19,2 151 200 324 350 2,1 14,7 33,3 12,0 28,1 30,7 31,3 14,6 4,7

Ecart-type 1,9 424 212 0,0 2,3 0,7 1,5 2,5 10,3 3,0 3,2 0,7

Moyenne 22,9 74 160 190 450 2,4 12,2 35,3 9,7 43,3 22,3 27,2 6,7 0,7

Ecart-type 2,8 1 117 12 799 0,2 0,2 10,5 1,5 2,8 3,5 3,9 1,9 0,4

p-test Student 0,080 0,000 0,005 0,171 0,270 0,814 0,132 0,009 0,254 0,227 0,022 0,007

Moyenne 88,9 159 700 300 050 1,9 13,4 34,6 11,3 19,4 24,9 41,2 13,8 0,7

Ecart-type 5,1 24 846 15 493 0,2 1,5 1,3 0,3 1,8 1,9 1,6 1,7 0,2

Moyenne 80,5 90 420 261 667 2,6 13,2 32,0 10,5 23,7 27,9 39,9 8,1 0,4

Ecart-type 5,3 2 772 14 289 0,5 2,2 0,1 0,2 1,4 2,3 2,0 1,6 0,1

p-test Student 0,055 0,010 0,009 0,014 0,926 0,010 0,005 0,010 0,079 0,332 0,002 0,052

EC 118 Sain EC 118 Botrytisé

EKD 13 Sain EKD 13 Botrytisé

IOC 18 sain IOC 18 Botrytisé

HPS sain HPS Botrytisé

Ifi 473 sain Ifi 473 Botrytisé

18-07 Sain 18-07 Botrytisé

WSM protein composition by SDS-PAGE (AF with enological yeast strains)

As for the PS composition of the WSM, the SDS-PAGE analysis (AgNO3 staining) showed strong differences between the sound/healthy wine (S) and the wine produced from a synthetic grape juice containing enzymatic activities from a Botrytis culture (B.c). When compared to the sound WSM, the total protein content decreased by 53 to 63% for the B.c-18-2007 and B.c-HPS WSM respectively. For the 17kDa protein, the hydrolysis even reached 72 and 54% respectively.

These results alone can largely explain the differences in foaming properties between the “wines” originating from healthy and botrytized model grape juices.

WSM protein analysis

S : Sound, B.c : Botrytis cinerea MW : molecular weight markers

250

25 20 37 100

75 50

15 MW (kDa)

10

18-2007

MW S B.c

HPS

S B.c BSA

Conclusions

Botrytis enzymatic activities are capable to degrade the macromolecules released by enological strains of Saccharomyces during the AF, i.e the polysaccharides, the glycoproteins and the proteins not glycosylated.

This leads to a strong decrease of the macromolecules MWs as well as a strong decrease of the wine foaming properties as shown in the PCA Biplot with a negative correlation between 1) botrytized WSM + Low MW-PS) and 2) healthy WSM + foam HM + proteins + High MW yeast-PS. The 18-2007 stain seems to better resist to the fungus enzymes. Nevertheless, degradation of yeast macromolecules probably continues to progress during the wine storage step. This aspect is currently studied.

IOC 18 sain

IOC 18 Botrytisé HPS sain

HPS Botrytisé Ifi 473 sain

Ifi 473 Botrytisé 18-07 Sain

18-07 Botrytisé EC 118 Sain

EC 118 Botrytisé

EKD 13 Sain

EKD 13 Botrytisé -2

-1 0 1 2 3

-3 -2 -1 0 1 2 3 4

F2 (20.31 %)

F1 (60.00 %)

Observations (axes F1 et F2 : 80.31 %)

IOC 18 sain

IOC 18 Botrytisé HPS sain

HPS Botrytisé

Ifi 473 sain Ifi 473 Botrytisé 18-07 Sain

18-07 Botrytisé EC 118 Sain

EC 118 Botrytisé

EKD 13 Sain

EKD 13 Botrytisé

1 - 100 103g/mol

100 - 250 103g/mol

250 - 500 103g/mol 0.5 - 1 106 g/mol

1 - 10 106g/mol

-3 -2 -1 0 1 2 3 4

-4 -3 -2 -1 0 1 2 3 4

F2 (20.31 %)

F1 (60.00 %) Biplot (axes F1 et F2 : 80.31 %)

PCA with polysaccharides ranges PCA with all parameters

Proteolytic activity of Botrytis culture

Grape juices and Botrytis culture proteolytic activities were compared using the BSA as a substrate Pinot noir must and Pinot meunier must were obtained from 100% botrytized bunches.

The proteolytic activity of Botrytis culture on the BSA corresponds to a grape juice with a 5% Botrytis contamination (estimation by densitometric integration of the native BSA band).

So, the « botrytized » synthetic must was « contaminated » with 5% (v/v) of the Botrytis culture supernatant. This must not be considered as a fungus contamination, but rather like an enzymatic contamination.

Références

Documents relatifs

1 Plant- Microbe Interaction Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Japan, 2 Gene Research Center, Ibaraki

Moreover, we know that Botrytis can degrade grape berry proteins (Marchal et al., 2006; Cilindre et al., 2007). Nevertheless, we know very little concerning the impact of

Keywords: Insect defensin, antifungal defensin, Botrytis cinerea, proteomics, fungal infection, 34.. heliomicin, mechanism of action

Erick Casalta, Morgane Coloignier, Jean-Michel Salmon, Jean-Marie Sablayrolles.. To cite

Other authors (r olle et al. 2009) observed the same behavior on another grapevine variety ('Brachetto'), at two ripening stages, and noted a high variability of skin break

Impact of grape variety, berry maturity and size on the extractability of skin polyphenols during model wine-like..

Emphasis was given on micro-planning (day-to-day and sprint), issue resolution – with users or other technical staff, and self estimation. TexCo made a plan for SoftCo

The aim of this work was to study the relationships between grape maturity parameters (pH, sugars, total acidity, malic acid and grape berry MD) and Champagne base wine