• Aucun résultat trouvé

Time Series Technical Analysis via New Fast Estimation Methods: A Preliminary Study in Mathematical Finance

N/A
N/A
Protected

Academic year: 2021

Partager "Time Series Technical Analysis via New Fast Estimation Methods: A Preliminary Study in Mathematical Finance"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: inria-00338099

https://hal.inria.fr/inria-00338099v2

Submitted on 15 Nov 2008

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Time Series Technical Analysis via New Fast Estimation Methods: A Preliminary Study in Mathematical Finance

Michel Fliess, Cédric Join

To cite this version:

Michel Fliess, Cédric Join. Time Series Technical Analysis via New Fast Estimation Methods: A

Preliminary Study in Mathematical Finance. IAR-ACD08 (23rd IAR Workshop on Advanced Control

and Diagnosis), Nov 2008, Coventry, United Kingdom. �inria-00338099v2�

(2)

estimation methods: a preliminary study in

mathematial nane

Mihel FLIESS

,∗∗

Cédri JOIN

,∗∗∗

INRIA-ALIEN

∗∗

LIX (CNRS,UMR7161), Éole polytehnique

91128 Palaiseau, Frane

Mihel.Fliesspolytehnique.edu

∗∗∗

CRAN (CNRS,UMR 7039),Nany-Université

BP239, 54506 Vand÷uvre-lès-Nany, Frane

Cedri.Joinran.uhp-nany.fr

Abstrat: Newfast estimation methods stemming from ontrol theory lead to afresh look at

time series, whih bears someresemblaneto tehnial analysis. The results are applied to

atypialobjet of nanial engineering, namely the foreast of foreignexhange rates,via a

model-free setting,i.e., viarepeatedidentiationsofloworderlineardiereneequationson

slidingshort time windows. Severalonviningomputersimulations,inludingthepredition

ofthe position and of thevolatilitywith respet tothe foreastedtrendline, areprovided. Z-

transformanddierentialalgebraarethemainmathematialtools.

Keywords: Timeseries,identiation,estimation, trends,noises,model-freeforeasting,

mathematialnane,tehnialanalysis,heterosedastiity,volatility,foreignexhangerates,

lineardiereneequations,Z-transform,algebra.

1. INTRODUCTION

1.1 Motivations

Reent advanes in estimation and identiation (see,

e.g.,(Fliess &Sira-Ramírez,2003;Fliess&Sira-Ramírez,

2004; Fliess, Join & Sira-Ramírez, 2004; Fliess & Sira-

Ramírez,2008;Fliess,Join&Sira-Ramírez,2008)andthe

referenes therein) stemming from mathematial ontrol

theorymaybesummarizedbythetwofollowingfats:

Their algebrainature permits to derive exatnon-

asymptotiformulaeforobtainingtheunknownquan-

titiesin realtime.

Thereisnoneedtoknowthestatistialpropertiesof

theorrupting noises.

Those tehniques have already been applied in many

onrete situations, inluding signal proessing (see the

referenes in (Fliess, 2008)). Their reent and suessful

extension to disrete-time linear ontrol systems (Fliess,

Fuhshumer, Shöberl, Shlaher & Sira-Ramírez, 2008)

haspromptedustostudytheirrelevanetonanialtime

series.

Remark 1.1. Therelationshipbetweentimeseriesanalysis

and ontrol theory is well doumented (see, e.g., (Box,

Jenkins & Reinsel, 1994; Gouriéroux & Monfort, 1995;

Hamilton, 1994) and the referenes therein). Our view-

point seemsneverthelesstobequitenewwhenompared

to theexisting literature.

Remark 1.2. The title of this ommuniation is due to

analysis, or harting (see, e.g., (Aronson, 2007; Béhu,

Bertrand&Nebenzahl,2008;Kaufman,2005;Kirkpatrik

& Dahlquist, 2006; Murphy, 1999) and the referenes

therein),whihiswidelyusedamongtradersandnanial

professionals.

1

1.2 Lineardiereneequations

Consider the univariate time series {x(t) | t ∈ N}: x(t)

is not regarded here as a stohasti proess like in the

familiar ARMA and ARIMA models but is supposed to

satisfyapproximatively alineardiereneequation

x(t+n)−a1x(t+n−1)− · · · −anx(t) = 0 (1)

where a1, . . . , an ∈ R. Introdue as in digital signal

proessingtheadditivedeomposition

x(t) =xtrendline(t) +ν(t) (2)

where

• xtrendline(t) is the trendline2 whih satises Eq. (1)

exatly;

theadditivenoiseν(t)isthemismathbetweenthe

realdata andthetrendline.

Thus

x(t+n)−a1x(t+n−1)− · · · −anx(t) =ǫ(t) (3)

where

ǫ(t) =ν(t+n)−a1ν(t+n−1)− · · · −anν(t) (4)

1

Tehnial analysis is often severely ritiized in the aademi

worldandamongthepratitionersofmathematialnane(see,e.g.,

(Paulos,2003)).

2

(3)

Weonlyassumethat theergodimean ofν(t)is0,i.e.,

N→+∞lim

ν(0) +ν(1) +· · ·+ν(N)

N+ 1 = 0 (5)

Itmeansthat,∀t∈N, themovingaverage

MAν,N(t) = ν(t) +ν(t+ 1) +· · ·+ν(t+N)

N+ 1 (6)

is loseto 0 if N is largeenough.It follows from Eq. (4)

that ǫ(t)also satisestheproperties(5)and (6).Most of

thestohasti proesses,likenitelinearombinations of

i.i.d. zero-mean proesses, whih are assoiated to time

series modeling, do satisfy almost surely suh a weak

assumption.Ouranalysis

doesnotmakeanydierenebetweennon-stationary andstationarytimeseries,

does not need the often tedious and umbersome

trend and seasonalitydeomposition (our trendlines

inludetheseasonalities,iftheyexist).

1.3 Amodel-freesetting

Itshould belearthat

aonretetimeseriesannotbewell approximated in generalbyasolutionofaparsimonious Eq.(1),

i.e., alineardiereneequationofloworder;

the useof large order lineardierene equations, or

ofnonlinearones,mightleadtoaformidableompu-

tationalburden fortheir identiations withoutany

lear-utforeastingbenet.

We adopt therefore the quite promising viewpoint of

(Fliess &Join,2008)where theontrol of omplex sys-

temsisahievedwithouttryingaglobalidentiationbut

thanksto elementarymodels whih areonly validduring

ashorttime intervalandareontinuouslyupdated.

3

We

utilize here low order dierene equations.

4

Then the

windowsize for themovingaverage(6) doesnot needto

belarge.

1.4 Content

Set. 2, whih onsiders the identiability of unknown

parameters, extendsto the disrete-time ase aresult in

(Fliess, 2008). The onvining omputer simulations in

Set.3arebasedontheexhangeratesbetweenUSDollars

anduros.Besidesforeastingthetrendline,wepredit

the position of the future rate w.r.t. the foreasted

trendline,

thestandarddeviationw.r.t.theforeastedtrendline.

Thoseresultsmightleadtoanewunderstandingofvolatil-

ityandriskmanagement.

5

Set.4onludeswithashort

disussiononthenotionoftrend.

3

Seethe numerousexamplesandthe referenesin(Fliess&Join,

2008)foronreteillustrations.

4

Compare with (Markovsky, Willems, van Huel, de Moor &

Pintelon,2005).

5

See(Taleb,1997)foraritialappraisaloftheexistingliterature

onthissubjet,whihisofutmostimportaneinnanialengineer-

ing.(Extreme)risksaredisussedin(Bouhaud&Potters,1997;Da-

orogna,Gençay,Müller,Olsen&Pitet,2001;Mandelbrot&Hud-

son,2004;Sornette,2003)fromquitedierentperspetives.Itisthe

trendlinewhihwouldexhibitabrupthangesinoursetting(ompare

2. PARAMETERIDENTIFICATION

2.1 Rationalgenerating funtions

Consideragain Eq.(1). TheZ-transformX ofxsatises

(see,e.g.,(Doetsh,1967;Jury,1964))

zn[Xx(0)x(1)z1− · · · −x(n1)z(n1)]

− · · · −an−1z[Xx(0)]anX= 0 (7)

It showsthatX, whih is alled thegenerating funtion

ofx, isarationalfuntionofz,i.e., X∈R(z): X =P(z)

Q(z) (8)

where

P(z) =b0zn−1+b1zn−2+· · ·+bn−1∈R[z]

Q(z) =zn− · · · −an−1z−an∈R[z]

Hene

Proposition2.1. x(t), t ≥ 0, satises a linear dierene

equation(1)if,andonlyif,itsgeneratingfuntion X isa

rationalfuntion.

It is obvious that the knowledge of P and Q permits to

determinetheinitialonditionsx(0), . . . , x(n−1).

Remark2.2. Considertheinhomogeneouslineardierene

equation

x(t+n)−a1x(t+n−1)− · · · −anx(t)

= X

nite

̟(t)αt+ X

nite

̟(t) sin(ωt+ϕ)

where ̟(t), ̟(t) ∈ R[t], α, ω, ϕ ∈ R. Then the Z-

transformX ∈R(z) ofx(t)is againrational. It isequiv-

alentsayingthatx(t),t≥0, stillsatisesahomogeneous diereneequation.

2.2 Parameteridentiability

Generalities Let

K=Q(a1, . . . , an, b0, . . . , bn−1)

be the eld generated over the eld Q of rational num-

bers by a1, . . . , an, b0, . . . , bn−1, whih are onsidered as

unknownparametersandthereforeinouralgebraisetting

as independent indeterminates (Fliess & Sira-Ramírez,

2003; Fliess, Join & Sira-Ramírez, 2004; Fliess & Sira-

Ramírez, 2008). Writethe algebrailosure of K (see, e.g.,(Lang,2002;Chambert-Loir,2005)).ThenX ∈K¯(z),

i.e., X is arational funtion over. MoreoverK¯(z)is a

dierential eld (see, e.g., (Chambert-Loir, 2005)) with

respet to the derivation

d

dz. Its subeld of onstants is

thealgebraiallylosedeld.

IntroduethesquareWronskianmatrixMoforder2n+ 1

(Chambert-Loir,2005)whereitsχth-row,0≤χ≤2n,is dχ

dzχznX, . . . , dχ dzχX, dχ

dzχzn−1, . . . , dχ

dzχ1 (9)

It followsfrom Eq. (7) that the rank of M is 2n if, and

only if, x does not satisfy a linear dierene relation of

orderstritlylessthann. Hene

referenes therein). Our estimation tehniques permit an eient

hange-pointdetetion (Mboup,Join &Fliess,2008),whih needs

(4)

Theorem2.3. If x does not satisfy a linear dierene

equationoforderstritlylessthann,thentheparameters a1, . . . , an, b0, . . . , bn−1

arelinearly identiable.

6

Identiability of the dynamis For identifying the dy-

namis, i.e., a1, . . . , an, without having to determine the

initialonditionsonsiderthe(n+ 1)×(n+ 1)Wronskian

matrixN,where itsµth-row,0≤µ≤n+ 1,is dn+µ

dzn+µznX, . . . , dn+µ dzn+µX

It is obtained by taking the X-dependent entries in the n+ 1lastrowsoftype(9),i.e., indisregardingtheentries dependingonb0, . . . , bn−1.TherankofN isagainn.Hene

Corollary 2.4. a1, . . . , an arelinearlyidentiable.

Identiability of the numerator Assume now that the

dynamis is known but not the numerator P in Eq. (8).

Weobtainb0, . . . , bn−1 fromtherstnrows(9).Hene

Corollary 2.5. b0, . . . , bn−1 arelinearlyidentiable.

2.3 Somehintson theomputerimplementation

We proeed as in (Fliess &Sira-Ramírez, 2003; Fliess &

Sira-Ramírez,2008)andin(Fliess,Fuhshumer,Shöberl,

Shlaher & Sira-Ramírez, 2008). The unknown linearly

identiable parameters are solutions of a matrix linear

equation, the oeients of whih depend on x. Let

us emphasize that we substitute to x its ltered value

thanks to a disrete-time version of (Mboup, Join &

Fliess,2009).

7

3. EXAMPLE:FORECASTING 5DAYS AHEADTHE

$-EXCHANGERATES

We are utilizing data from the European Central Bank,

depited by the blue lines in theFigures 1and 2, whih

summarizethe2400lastdailyexhangeratesbetweenthe

US Dollarsandtheuros.

8

3.1 Foreastingthe trendline

In order to foreast the exhange rate 5 days ahead we

applytherulesskethedinSet.2.3andweutilizealinear

diereneequation(1)oforder3(thelteredvaluesofthe

exhangeratesaregivenbytheblaklinesintheFigures1,

2). Fig.3providestheestimated valuesoftheoeients

of the dierene equation. The results on the foreasted

valuesoftheexhangeratesaredepitedbytheredlinesin

theFigures1and2,whihshouldbeviewedasapredited

trendline.

6

It means following the terminology of (Fliess & Sira-Ramírez,

2003; Fliess & Sira-Ramírez, 2008) that a1, . . . , an, b0, . . . , bn−1

are uniquely determined by a system of 2n linear equations, the

oeientsofwhihdependon

dχ

dzχX and dzdχχzm,0mn1.

7

See,e.g.,(Gençay,Selçuk&Hafner,2002)foranexellentpresen-

tationofvariouslteringtehniquesineonomisandnane.

8

Theauthors areperfetly aware thatonlyomputationsdealing

withhighfrequenydata mightbeofpratialvalue.Thistypeof

resultswillbepresentedelsewhere.

0 500 1000 1500 2000 2500

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Samples

Figure 1.Exhange rates(blue ),ltered signal(blak-

-),foreastedsignal(5 daysahead)(red)

0 500 1000 1500 2000 2500

−3

−2

−1 0 1 2 3

Samples

Figure 3. Parameter estimations a1 (red −.−), a2 (blue

−−)anda3(blak−−)(5 daysahead)

3.2 Above orunder the preditedtrendline?

Consideragaintheerror ν(t)in Eq. (2)andits moving

averageMAν,N(t)in Eq. (6). ForeastingMAν,N(t) asin

Set.3.1tellsusanexpetedposition withrespettothe

foreastedtrendline. The blue line of Fig. 4 displaysthe

resultfor the window size N = 100.The meaningof the

indiatorsandis lear.

Table1omparesforvariouswindowsizesthesignsofthe

preditedvaluesofMAν,N(t),whih tellsusifoneshould

expet to beaboveorunder thetrendline, with the true

positionsofx(t)withrespettothetrendline.Theresults

areexpressedviaperentages.

3.3 Preditedvolatility w.r.t.the trendline

Introduethemoving standarddeviation

MSTDν,N(t) =

s PN

τ=0(ν(t+τ)MAν,N(tN+τ))2 N+ 1

(5)

1050 1100 1150 1200 1250 1300 1350 1400 1450 1.00

1.05 1.10 1.15 1.20 1.25 1.30 1.35

Samples

Figure2.ZoomofFigure1

0 500 1000 1500 2000 2500

−0.03

−0.02

−0.01 0.00 0.01 0.02 0.03

Samples

Figure 4. Predited position w.r.t. the trendline (5 days

ahead):above,:under

Window'ssize Perentage

50 65.6%

100 88.3%

200 62.3%

300 67.1%

Table 1. Comparison between the sign of the

preditedvalueofMAν,N(t)andthetrueposi-

tionofx(t)w.r.t.thetrendline(5daysahead).

and foreast it as in Set. 3.2. The results, whih are

displayedforawindowsize N = 100 in Table 2and Fig.

5viathefamiliarondeneintervals,

9

onrmthetime-

dependeneofthevariane,i.e.,theheterosedastiity.

9

There is of ourse no need for the underlying statistis to be

Condeneintervals Predition Real

mean-3×std,mean+3×std 99% 98.7%

mean-std,mean+std 95% 92.2%

mean-std,mean+std 68% 64.4%

Table2.Condeneintervalvalidations(5days

ahead)

0 500 1000 1500 2000 2500

−0.20

−0.15

−0.10

−0.05 0.00 0.05 0.10 0.15 0.20

Samples

Figure5.Condeneinterval(95%)(5daysahead)

3.4 Forasting10 days ahead

Figures 6, 7, 8, 9 display the same type of results as

in Setions 3.1, 3.2, 3.3 via similar omputations for a

foreasting 10 days ahead. The quality of the omputer

simulationsonlyslightlydeteriorates.

quantitieslikeskewnessand kurtosis,whihwouldbeobtained by

(6)

1050 1100 1150 1200 1250 1300 1350 1400 1450 1.00

1.05 1.10 1.15 1.20 1.25 1.30 1.35

Samples

Figure7.ZoomofFigure6

0 500 1000 1500 2000 2500

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Samples

Figure 6.Exhange rates(blue ), lteredsignal(blak -

-),foreastedsignal(red) (10daysahead)

4. CONCLUSION

Theexisteneoftrends,whihis

thekeyassumptionin tehnialanalysis,10

quite foreign, to the best of our knowledge, to the

aademimathematialnane,wheretheparadigm

of random walks is prevalent (see, e.g., (Wilmott,

2006)),

10

Trendsintehnialanalysisshouldnotbeonfusedwithwhatare

alledtrendsinthetimeseriesliterature (see,e.g.,(Gouriéroux &

0 500 1000 1500 2000 2500

−0.03

−0.02

−0.01 0.00 0.01 0.02 0.03

Samples

Figure 8.Predited position w.r.t. thetrendline (10 days

ahead):above,: under

isfundamentalinourapproah.Atheoretialjustiation

willappearsoon(Fliess &Join,2009).

11

Wehopeitwill

leadto asoundfoundation oftehnialanalysis,

12

whih

will bring asa byprodut easily implementable real-time

omputerprograms.

13

11

Theexisteneoftrendsdoesnotneessarilyontraditarandom

harater(see(Fliess&Join,2009)fordetails).

12

Seealso(Daorogna,Gençay,Müller,Olsen&Pitet,2001)fora

mostexiting studywhihemployshighfrequenydata.Thereare

alsoothertypesofattemptstoputtehnialanalysisonarmbasis

(see,e.g.,(Lo,Mamaysky&Wang, 2000)).See(Blanhet-Salliet,

Diop, Gibson, Talay & Tanré, 2007) for a omparison between

tehnial analysis and model-based approahes with parametri

unertainties.

13

Ourtehnisalreadyleadtosuhomputerprogramsinautomati

(7)

0 500 1000 1500 2000 2500

−0.20

−0.15

−0.10

−0.05 0.00 0.05 0.10 0.15 0.20

Samples

Figure9.Condeneinterval(95%)(10daysahead)

Aknowledgement.TheauthorswishtothankG.Daval-Lelerq

(Soiété Générale - Corporate & Investment Banking) for helpful

disussionsandomments.

REFERENCES

Aronson D. (2007). Evidene-Based Tehnial Analysis.

Wiley.

Béhu T., Bertrand E., Nebenzahl J. (2008). L'analyse

tehnique(6

e

éd.).Eonomia.

Blanhet-SallietC.,DiopA.,GibsonR.,TalayD.,Tanré

E.(2007).Tehnialanalysisomparedtomathemat-

ial models based methods under parameters mis-

speiation.J. BankingFinane,31, 13511373.

BouhaudJ.-P.,PottersM.(1997).Théoriedesrisques-

naniers.Eyrolles.Englishtranslation(2000):Theory

ofFinanial Risks.CambridgeUniversityPress.

BoxG.E.P.,JenkinsG.M.,Reinsel,G.(1994).TimeSeries

Analysis: Foreastingand Control (3

rd

ed.). Prentie

Hall.

Chambert-Loir A. (2005). Algèbre orporelle. Édit. Éole

Polytehnique. English translation (2005): A Field

GuidetoAlgebra.Springer.

Daorogna M.M., Gençay R., Müller U., Olsen R.B.,

PitetO.V.(2001).AnIntrodutiontoHighFrequeny

Finane.Aademi Press.

Doetsh G. (1967). Funktionaltransformationen. In R.

Sauer,L.Szabó(Eds):MathematisheHilfsmitteldes

Ingenieurs,1.Teil,pp.232484.Springer.

DurlaufS.N.,PhilipsP.C.B.(1988).Trendsversusrandom

walksintimeseriesanalysis.Eonometria,56,1333

1354.

Fliess M. (2008). Critique du rapport signal à bruit en

ommuniationsnumériques.ARIMA,toappear.On-

linehttp://hal.inria.fr/inria- 003 1171 9/en /.

Fliess M., Fuhshumer S., Shöberl M., Shlaher K.,

Sira-RamírezH.(2008).Anintrodutiontoalgebrai

disrete-time linear parametri identiation with a

onrete appliation. J. europ. syst. automat., 42,

211232.

Fliess M., Join C. (2008). Commande sans modèle et

ommande à modèle restreint, e-STA, 5. Online

http://hal.inria.fr/inria -00 2881 07/e n/.

Fliess M., Join C. (2009). A mathematial proof of the

Fes,Maroo.Soononlinehttp://hal.inria.fr/INRIA.

FliessM.,JoinC.,Sira-RamírezH.(2004).Robustresidual

generation for linear fault diagnosis: an algebrai

settingwithexamples.Int.J.Control,77,12231242.

FliessM.,JoinC.,Sira-RamírezH. (2008).Non-lineares-

timationiseasy.Int.J.ModellingIdentiationCon-

trol,4,1227.

FliessM.,Sira-RamírezH.(2003).Analgebraiframework

forlinearidentiation.ESAIMControlOptimiz.Cal-

ulus Variat.,9,151168.

Fliess, M., Sira-Ramírez, H. (2004). Reonstruteurs

d'état. C.R.Aad.Si. ParisSer. I,338,9196.

FliessM.,Sira-RamírezH.(2008).Closed-loopparametri

identiation for ontinuous-time linear systems via

new algebrai tehniques. In H. Garnier, L. Wang

(Eds):Identiation ofContinuous-timeModels from

SampledData,pp.363391,Springer.

GençayR.,SelçukF.,WhitherB.(2002).AnIntrodution

to Wavelets and Other Filtering Methods in Finane

andEonomis.AademiPress.

Gouriéroux C., Monfort A. (1995). Séries temporelles

et modèles dynamiques (2

e

éd.). Eonomia. English

translation(1996):TimeSeriesandDynamiModels.

CambridgeUniversityPress.

Hamilton J.D. (1994). Time Series Analysis. Prineton

UniversityPress.

KaufmanP.J.(2005).New Trading Systemsand Methods

(4

th

ed.).Wiley.

Jury E.I. (1964). Theory and Appliation of the z-

Transform Method.Wiley.

Kirkpatrik C.D.,Dahlquist J.R.(2006). Tehnial Anal-

ysis: The Complete Resoure for Finanial Market

Tehniians.FTPress.

LangS. (2002).Algebra(3

rd

rev.ed.).Springer.

LoA.W., MamayskyH., Wang J. (2000).Foundationsof

tehnial analysis: omputational algorithms, statis-

tial inferene, and empirial implementation. J. Fi-

nane,55,1705-1765.

MandelbrotB.B.,HudsonR.L.(2004).The(Mis) Behav-

ior of Markets.BasiBooks.

Markovsky I., Willems J.C., van Huel S., de Moor B.,

Pintelon R. (2005). Appliation of strutured total

least squares for systemidentiation and model re-

dution. IEEE Trans. Automat. Control, 50, 1490-

1500.

Mboup M., Join C., Fliess M. (2008). A delay estima-

tion approah to hange-point detetion. Pro. 16

th

Medit. Conf. Control Automation, Ajaio. Online

http://hal.inria.fr/in ria- 0017 977 5/en /.

MboupM.,JoinC.,FliessM.(2009).Numerialdierenti-

ationwithannihilatorsinnoisyenvironment.Numer.

Algor.,DOI:10.1007/s11075-008-9236-1.

Murphy J.J. (1999). Tehnial Analysis of the Finanial

Markets(3

rd

rev.ed.).NewYorkInstituteofFinane.

Paulos J.A. (2003). A Mathematiian Plays the Stok

Market. BasiBooks.

Sornette D. (2003). Why Stok Markets Crash: Critial

EventsinComplexFinanialSystems.PrinetonUni-

versityPress.

TalebN.(1997).DynamiHedging.Wiley.

WilmottP.(2006).PaulWilmottonQuantitativeFinane

(2

nd

ed.,3volumes).Wiley.

Références

Documents relatifs

The objective of this case study is to identify various sources of expert disagreement in sleep stage classification and to investigate if and to what extent disagreement may

Give an example of strictly stationary times series which is not second order stationary..

Show that it is a linear time series that is not

This exercise is using the properties of the projection in order to get an efficient algorithm for determining the best linear prediction Π t (X t+1 ) and the associated risk R

Deduce an algorithm to compute the coefficients ψ j using the A and check that they decrease exponentially fast..

Time Series Analysis: TD5.. Olivier

Based on time rescaling and change of variable techniques, we introduced the third-order in time gradient-based evolution system (TOGES) with the convergence rate of the values of

In the first part, we introduce a new method of estimation (counting estimator) well suited to the case, in which the distribution of a process is defined by conditional distributions