• Aucun résultat trouvé

Fiber optics speckle interferometer for diffusivity measurements

N/A
N/A
Protected

Academic year: 2021

Partager "Fiber optics speckle interferometer for diffusivity measurements"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00248967

https://hal.archives-ouvertes.fr/jpa-00248967

Submitted on 1 Jan 1993

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Fiber optics speckle interferometer for diffusivity measurements

D. Paoletti, G. Schirripa Spagnolo

To cite this version:

D. Paoletti, G. Schirripa Spagnolo. Fiber optics speckle interferometer for diffusivity measurements.

Journal de Physique III, EDP Sciences, 1993, 3 (4), pp.911-914. �10.1051/jp3:1993171�. �jpa-00248967�

(2)

Classification Physics Abstracts

42.40F 66.10C

Fiber optics speckle interferometer for diffusivity

measurements

D. Paoletti and G. Schirripa Spagnolo

Dipartimento di Energetica Universith di L'Aquila, Localith Monteluco di Roio, 67040 Roio

Poggio, L'Aquila, Italy

(Received 9 September 1992, revised 31 December 1992, accepted 20 January 1992)

Abstract. A digital speckle pattem interferometer with optical fibers is proposed for the real

time measurement of the diffusion coefficient of liquid binary mixtures. Some examples of

application of the technique are reported.

Introduction.

Interferometric and holographic techniques have been applied successfully to measure the

diffusivity of liquid transparent mixtures [1-3]. For two liquids mutually diffusing, the concentration gradient and tl~erefore tl~e refractive index, linearly related, changes during tl~e diffusion process ; tl~is introduces a phase difference between the waveflonts reconstructed from the general element of the mixture at two different times, so that the concentration

changes are visualized as interference fringes. The diffusion coefficient D can be found with the equation [4, 5]

w2 tl' t( '

~

8 In (t~/tj)

where w is the distance between tl~e extremes of tl~e reflactive index variation curve along the diffusion cell and tj, t~ two different instants of the diffusion process. The combination of a system of carrier vertical fringes [6, 7] with the horizontal fringes, due to the diffusion process, has simplified the procedure allowing optical differentiation of the interferogram, with a direct

visualization of tl~e concentration variation curve along tl~e cell. In spite of obvious advantages

over otl~er physical or chemical methods, the practical applications of holographic techniques

encounter some difficulties : among these, the stability requirements of holography and the notable time delay due to recording and reconstruction process. In this note we propose to utilize for diffusivity measurements an out-of-plane sensitive interferometer with a smooth

reference beam. This arrangement, combining the properties of digital speckle pattem

interferometry with the flexibility of optical fiber illumination, allows to operate under difficult

(3)

912 JOURNAL DE PHYSIQUE III 4

condifiions and in out laboratory environments, with a minimum of adjustments and the same

sensitivity as holographic techniques. The ease of use and the cheapness of the system may eventually lead to a much greater acceptance of optical techniques as an altemative to other

methods in diffusion coefficient measurements.

Experimental procedure.

The schematic diagram of the fiber optic DSPI is given in figure I. A graded-index lens (Gin)

is used to couple the laser light into a single-mode fiber ; this beam is later split into a reference

wrn and an object illuminating wrn by a bidirectional coupler. The transparent diffusion cell

Object beam

Diffusion cell

Grin

Ground glass

S>ngle mode fiber

tf~

Diffused I>ght

~'

Mon>nor ~°°~ f

V,deo Reference beam ~~~~' ~P~"~~

90/10 Coupler CCD

~icrocomputer

Fig. I. Schematic diagram of the fiber optic DSPI arrangement.

Fig. 2. Fringe pattem relative to an isothermal diffusion (18.5°) of an aqueous solution of Nacl (I M).

(4)

Fig. 3. -Fringe pattem of figure 2 modified by adding vertical fringes (tj = 3 300 s, t~ =

3 600 s, W

= 0.59 ± 0.01, D

= 1.26 ± 0.06 x 10~cm~/s).

(1 x I x 5 cm), filled with a mixture of Nacl I M is located behind a ground glass diffuser, and the laser beam is passed through this cell and the ground glass, as shown in figure I. The

phase of the beam is distorted by the refractive index variation of the mixture, generating a speckle pattem at the ground glass which is similarly distorted [8]. The speckle pattem is

coupled to the reference beam through a beam splitter cube, placed between the photosensor

and the imaging lens of the charge-coupled device (CCD) camera. The speckle pattems are digitized and processed in a host computer and displayed on a monitor. A complete account of the technique is provided by the reference [9- II]. The basic equipment is contained in a closed

portable box, from which a fiber cable will provide the illuminating object beam. The cell is located on a rotating platform. The experimental procedure is the following : an image is stored

electronically at time ti then, during the diffusion process, the live video signal is subtracted from the stored wavefront. Correlations fringes, similar to conventional holographic fringes,

are obtained (Fig. 2). A slight tilt of the cell allows to introduce in this correlogram some carrier fringes of variable density. Electronically the vertical fringes are summarized to the

horizontal fringes in order to give the characteristic fringe pattem of figure 3, from that it is

possible to measure the distance w between the extremes of the curve. The fringes appear very noisy; for this reason, they are electronically treated for noise removal and contrast

enhancement with some conventional procedures [12]. For a correct quantitative evaluation of diffusion coefficient the same procedure of fringes treatment utilized for a holographic pattem [13] can be adopted.

Conclusion.

Many of the difficulties encountered with holographic techniques can be eliminated by using a

DSPI system. Problems of fringe localization are not present the stability requirements are not so strict. The major feature of this technique is the ability to present correlation real time

fringes displayed directly upon a TV monitor, without recourse to any form of photographic processing, plate relocation, and its tolerance toward cell instability, due to high sampling rate

and short exposures made possible by the sensitivity of the CCD camera (1/100s).

Additionally the system is easy to adjust, cheap, and can operate in day-light also in industrial environments.

(5)

914 JOURNAL DE PHYSIQUE III 4

References

[1] SzYDLOWSKA J. and JANOSKA B., Holographic measurement of diffusion coefficients, J. Phys. 15 (1982) 1385-1393.

[2] GABELMANN-GRAY L. and FENICHEL H., Holographic interferometric study of liquid diffusion, Appl. Opt. 18 (1979) 343-345.

[3] Ruiz-BEVIA F., CELDRAN-MALLOL A., SANTOS-GARCIA C. and FERNANDEz SEMPERE J., Liquid diffusion measurement by holographic interferometry, Can. J. Chem. Eng. 63 (1985) 765-771.

[4] CRANK J., The mathematics of diffusion (Oxford University Press, 1975).

[5] BOCHNER N. and PIPMAN J., A simple method of determining diffusion constants by holographic interferometry, J. Phys. D : Appl. Phys. 9 (1976) 1825-1830.

[6] PAOLETTI D., SCHIRRIPA SPAGNOLO G, and D'ALTORIO A., Liquid diffusion study by holographic

sandwich method, Can. J. Chem. Eng. 65 (1987) 508-511.

[7] PAOLETTI D., SCHIRRIPA SPAGNOLO G. and D'ALTORIO A., Sandwich Hologram for Displacement Derivative, Opt. Commun. 56 (1986) 325-329.

[8] VERHOEVEN D. D. and FARRELL P. V., Speckle interferometry in transparent media, Appl. Opt. 25 (1986) 903-906.

[9] LOKBERG O. J. and KRAKHELLE, Electronic speckle pattem interferometry using optical fibers, Opt.

Commun. 38 (1987) 153-158.

[10] JONES R., WYKES C., Electronic speckle pattem interferometry irt holographic and speckle interferometry (Cambddge University Press, 1983).

ii JONES R., The design and application of a speckle pattem interferometry for total plane strain field measurement, Opt. Laser Technol. 8 (1976) 1835-1842.

l12] YATAGAI T., NAKADATE S., IDESAWA M. and SAITO H., Automatic fringe analysis using digital image processing techniques, Opt. Eng. 21 (1982) 432-435.

Ii 3] PAOLETTI D. and SCHIRRIPA SPAGNOLO G., Automated fringe analysis in diffusivity measurements

by sandwich holography, J. Phys. III France 2 (1992) 13-19.

Références

Documents relatifs

Following the approach proposed in [8, 12], we consider the periodic Bloch-Torrey partial differential equation as a microscopic model for the (complex) transverse water

pour décrire la concentration, en mg/L, en fonction du temps écoulé t, en heures, valable pour les 5 heures après la prise.. Par ailleurs il est bien indiqué, pour prendre le volant

La touche RANDOM de la chaîne hi-fi permet d’écouter, lorsqu’on sélectionne cette option, les 8 morceaux du disque compact dans un ordre aléatoire1. On sélectionne l’option

Donner la probabilité P(B|N) que la tablette contienne un bon sachant que c’est du chocolat noir, ainsi que la probabilité P(B|L).. Déterminer la probabilité que la tablette

Le problème est de savoir si les apports prévus pendant les mois de juillet et août se- ront suffisants pour que le volume ne descende pas en dessous de la valeur critique de 27 000

Quelle est la probabilité que ce candidat soit une fille et qu’elle soit enga- gée comme stagiaire.. Calculer la probabilité que ce candidat

On choisit simultanément 2 pièces au hasard parmi les 25 pièces fabriquées (on suppose que tous les tirages de 2 pièces sont équiprobables).. On appelle X la variable aléatoire qui,

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des