• Aucun résultat trouvé

Protecting the durability of major resistance genes to plant viruses with quantitative resistance

N/A
N/A
Protected

Academic year: 2021

Partager "Protecting the durability of major resistance genes to plant viruses with quantitative resistance"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02738827

https://hal.inrae.fr/hal-02738827

Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Protecting the durability of major resistance genes to plant viruses with quantitative resistance

Elsa Rousseau, Frédéric Fabre, Ludovic Mailleret, Alain Palloix, Vincent Simon, Sophie Valière, Benoit Moury, Frédéric Grognard

To cite this version:

Elsa Rousseau, Frédéric Fabre, Ludovic Mailleret, Alain Palloix, Vincent Simon, et al.. Protecting the durability of major resistance genes to plant viruses with quantitative resistance. Conférences Jacques Monod : “From emerging to pandemic viruses: interplay between host ecology and viral evolution”, Apr 2014, Roscoff, France. 2014. �hal-02738827�

(2)

Protecting the durability of major resistance

genes to plant viruses with quantitative resistance

Elsa Rousseau

1,2,3

, Frédéric Fabre

4

, Ludovic Mailleret

1,2

, Alain Palloix

5

,

Vincent Simon

3

, Sophie Valière

6,7

, Benoît Moury

3

, Frédéric Grognard

1

1 Inria, Biocore Team, F-06902 Sophia Antipolis, France, 2 INRA, UMR 1355 ISA, 400 route des Chappes, BP 167, F-06903 Sophia Antipolis, France, 3 INRA,

UR407 Unité de Pathologie Végétale, F-84140 Montfavet, France, 4 INRA, UMR 1065 Unité Santé et Agroécologie du Vignoble, BP 81, 33883 Villenave

d'Ornon cedex, 5 INRA, UR1052 Unité de Génétique et Amélioration des Fruits et Légumes, F-84140 Montfavet, France, 6 INRA, UAR1209 Département de

Génétique Animale, INRA Auzeville F31326, Castanet-Tolosan, France, 7 GeT-PlaGe, Genotoul, INRA Auzeville F31326, Castanet-Tolosan, France

The deployment of virus-resistant plants often leads to the emergence of

resistance-breaking (RB) mutants that suppress the

yield benefit provided by the resistance.

Combining qualitative and quantitative resistance can increase the

sustainability of the qualitative

resistance (Palloix et al. 2009, New Phytol,

Brun et al. 2010, New Phytol).

Quantitative resistance decreases the fixation rate of RB mutants (Quenouille

et al. 2012, Mol Plant Pathol). Two possible

mechanisms :

(i) decrease in selection advantage (ii) increase in genetic drift.

Qualitative resistance : total resistance to the virus

conferred by a major resistance gene.

Quantitative resistance : partial resistance to the virus

conferred by Quantitative Trait Loci (QTLs).

Viral load in a plant

0 1 no infection maximal infection Qualitative resistance Susceptibility Quantitative resistance Genetic determism Major resistance gene QTLs

3. Preliminary results : demo-genetic dynamics of virus variants

2. Materials & methods

4. Conclusion / Prospects

1. Introduction & definitions

Objective : To analyze the effect of quantitative resistance, in terms of genetic drift and selection, on the

sustainability of qualitative resistance by coupling experimental and modeling approaches.

Genotype DH2173 :

Genotype DH219 :

Plant quantitative resistance has an effect on a life history trait of a pathogen (illustration here with the viral load in a plant).

Plants :

16 pepper genotypes :

(i) carrying a major resistance gene (pvr23) and several combinations of QTLs,

(ii) with contrasted resistance-breakdown

frequency (proportion of plants infected when inoculated with an unadapted virus

variant), and number of primary infection foci .

Virus inoculum :

Mixture of 5 RB Potato virus Y (PVY) variants carrying distinct mutations, conferring weak to strong adaptation to the qualitative

resistance. N K GK KN weak weak strong strong strong Adaptation to pvr23 Virus variant Days post inoculation 6 10 14 20 27 34 Sampling Plants Inoculated

leaf Systemically infected leaves 8 plants / pepper genotype & sampling date

Sampling : Proportion in inoculum 1/5 1/5 1/5 1/5 1/5

Focus on 2 contrasted pepper genotypes :

Relative viral concentrations per host plant at each sampling date

Weak genetic drift on virus populations :

At each date, virus variants frequencies seem homogeneous among plants.

Strong selection effect on the weakest variants :

Virus variants G and N tend to disappear with time.

Strong genetic drift on virus populations : At each date, virus

variants frequencies seem highly heterogeneous among plants.

Stochastic extinctions of the fittest variants by genetic drift :

The weak variant N is largely present at 34 days post inoculation (dpi).

Slight selection effect : Virus variant G tends to disappear with time.

Strong bottleneck at inoculation : non-infected plants at 6 and 34 dpi. Slower viral multiplication in the plant genotype DH219, that

could lead to strong genetic drift during the first days.

strong weak strongly adapted variant weakly adapted variant Apparition of strongly adapted variants in a viral population Selection advantage TR AN SM IS SI O N

Any idea for estimating genetic drift and selection on these data ?

To estimate the effect of genetic drift and selection by fitting a Lotka-Volterra model of competition between virus variants to frequencies data (Fabre et al. 2012, PLoS Path) together with viral concentration data.

Laboratory analyses :

Double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) to

quantify the global virus load in plants.

Miseq Illumina sequencing on the region of interest of the virus genome (realized in

collaboration with the Genomic Platform of INRA Toulouse) to characterize virus

populations. 0 5 10 15 20 25 30 35 0.0 0.2 0.4 0.6 Time (dpi) Vir al concentr ati on /plant 2192173 0 5 10 15 20 25 30 35 0.0 0.2 0.4 0.6 0.8 1.0 Time (dpi) Frequencies G N K GK KN 0 5 10 15 20 25 30 35 0.0 0.2 0.4 0.6 0.8 1.0 Time (dpi) Frequencies G N K GK KN Mean frequencies

and 95% confidence interval

Mean frequencies

and 95% confidence interval

G

Identification of contrasted patterns in terms of genetic drift and selection.

Exploration of the links with additional parameters : a decrease in the number of primary infection foci seems associated with an increase in

genetic drift and a decrease in the resistance breakdown frequency.

weak

strong

Genetic drift

Frequencies of the 5 virus variants in each plant at each sampling date,

and in the inoculum.

1 2 3 4 5 6 7 8 Mean Day 6 0.0 0.2 0.4 0.6 0.8 1.0 Plant number Frequencies 1 2 3 4 5 6 7 8 Mean Day 10 0.0 0.2 0.4 0.6 0.8 1.0

Plant number 1 2 3 4 5 6 7 8 Mean

Day 20 0.0 0.2 0.4 0.6 0.8 1.0

Plant number 1 2 3 4 5 6 7 8 Mean

Day 34 0.0 0.2 0.4 0.6 0.8 1.0 Plant number G N K GK KN 1 2 3 4 5 7 8 Mean Day 6 0.0 0.2 0.4 0.6 0.8 1.0 Plant number Frequencies 1 2 3 4 5 6 7 8 Mean Day 10 0.0 0.2 0.4 0.6 0.8 1.0

Plant number 1 2 3 4 5 6 7 8 Mean

Day 20 0.0 0.2 0.4 0.6 0.8 1.0

Plant number 1 2 3 4 5 6 Mean

Day 34 0.0 0.2 0.4 0.6 0.8 1.0 Plant number G N K GK KN

Références

Documents relatifs

Here we introduce WIsH, a tool to predict the prokary- otic host of viral contigs with good accuracy for contigs as short as 3 kbp that runs several hundred times faster

Nous pensons que ces deux évènements correspondent à des réactions de réductions (effet endothermique). L’échantillon garde une stabilité acceptable jusqu’à 350°C. Ceci

In situations where social payoffs are not aligned with private incentives, enforcement with fines can be a way to sustain cooperation. In this paper we show, by the means of a lab

ةيئلاولا ةنجللا تاصاصتخا : يناثلا ثحبملا تارارقلا نع ةبترتملا راثلآا و زجعلل : اهنع ةرداصلا نم اءاوس زجعلل ةيئلاولا ةنجللا ميظنت ةلأسم ىلإ لصفلا اذه

نوكما في قولمخ زعاو لىغ أ لى ا حيانجو يدجه ةرثم يدها يمديو ماهظفيح ن أ الله نم وجر أو بيلق لىع ينيماغما يالداو ماتهيفاعو ماتهصح... ب‌ ميحرلا نامحرلا للها مسب

In contrast, at higher concentrations of AZD-8055 (2, 4 or 10 mol l − 1 ), neutral lipid accumulation was rapidly triggered and the fluorescence signal reached almost 4-fold the

رد ﺎﻨﻟ رﺎﻧأ يﺬﻟا ﺪﻤ ا ﺎﻨﻘﻓوو ﺐﺟاﻮﻟا اﺬ ءادأ ﻋ ﺎﻨﻧﺎﻋأ و ﺔﻓﺮﻌﳌاو ﻢﻠﻌﻟا ب ﺚﺤﺒﻟا اﺬ زﺎﺠﻧا , ﻦﻣ ﻞﻤﻌﻟا اﺬ زﺎﺠﻧا ﺎﻧﺪﻋﺎﺳ ﻦﻣ ﻞ إ نﺎﻨﺘﻣ و ﺮﻜﺸﻟا ﻞﺰﺠﺑ ﮫﺟﻮﺘﻧ ﻞﺨﺒﻳ ﻢﻟ يﺬﻟا

• Les modes de gouvernance pour organiser et coordonner, à l’échelle d’un bassin de mobilité multimodes et multiréseaux, l’information dynamique des usagers : quels rôles