• Aucun résultat trouvé

Holomorphic mappings into smooth projective varieties

N/A
N/A
Protected

Academic year: 2022

Partager "Holomorphic mappings into smooth projective varieties "

Copied!
13
0
0

Texte intégral

(1)

Holomorphic mappings into smooth projective varieties

BJ()RN DAHLBERG University of G6teborg, Sweden

1. Introduction

Let M and N be two complex manifolds of complex dimensions m and n respectively. A holomorphic map f: M - + N is called nondegenerate if in each component of M, there exists a point p, such that the induced linear map of the holomorphic tangent spaces f , : Te(M)--> Tf(p)(N) is surjective. This can only happen if m _ ~ n .

I f L is a holomorphic line bundle on a complex manifold N and R is a positive integer, then we say t h a t R has property P with respect to L if there exists a positive holomorphic line bundle T and a positive integer s, such that

H ~ R Q K N ) 8 | -1) # 0

(].1)

where KN is the canonical bundle of N.

The main result of this paper is the following generalization of the big Picard Theorem.

THEOREM ] .2. Let N be a smooth projective algebraic variety and L a holomorphic line bundle on N. Suppose further that F 1 .. . . , F n are sections of L in normal position, where R has property P with respect to L, and put F = F 1 • . . . Q F ~.

Let M be a complex manifold and f: M ~ S --> N ~ IDFI a nondegenerate holo- morphic mapping, where S is an analytic subvariety of M. Then f can be extended to a meromorphic map from M into N.

COROLLARY 1.3. Let f: M ~ S --> Pn be a nondegenerate holomorphic mapping, where S is an analytic subvariety of M and Pn is the n-dimensional complex projective space. I f f fails to meet R d-dimensional hypersurfaces in normal position and R ~_ (n ~- 1)/d, then f can be extended to a meromorphic mapping of M into Pn.

(2)

60 B J O R N DAHLBE:RG

L e t us b r i e f l y outline t h e idea o f t h e p r o o f o f T h e o r e m 1.2. A f t e r a suitable i m b e d d i n g o f N into a Pq has been chosen, f can be r e p r e s e n t e d b y c e r t a i n a n a l y t i c fimctions gl . . . gq. T o show t h a t f has a m e r o m o r p h i c extension, it is sufficient to show t h a t t h e g r o w t h o f gl . . . . , gq is n o t too wild n e a r S. W e control t h e g r o w t h w i t h p o t e n t i a l - t h e o r e t i c m e t h o d s , which are o u t l i n e d in section 3.

I t m a y be p o i n t e d o u t t h a t t h e R i e m a n n e x t e n s i o n t h e o r e m implies t h a t i f codim (S) > 2, t h e n a n y h o l o m o r p h i c m a p p i n g f: M ~ S - ~ N can be e x t e n d e d t o m e r o m o r p h i c m a p p i n g of M into N , w h e n e v e r N is a s m o o t h p r o j e c t i v e v a r i e t y . F o r a b a c k g r o u n d t o this p a p e r we refer t o t h e s u r v e y article b y G r i f f i t h s [3]

a n d Carlson-Griffiths [2].

T h e p l a n o f t h e p a p e r is t h e following. I n section 2 we give t h e n e c e s s a r y b a c k - g r o u n d material. W e p r o v e in section 3 some technical results, a n d in section 4 we p r o v e T h e o r e m 1.2.

2. Notations and terminology

L e t M be a c o m p l e x manifold. R e l a t i v e t o a suitable open covering { Ui} o f M, a h o l o m o r p h i c line b u n d l e L is g i v e n b y h o l o m o r p h i c t r a n s i t i o n f u n c t i o n s fq: Ui A Uj --> C* = C ~ {0}, satisfying t h e cocycle condition

f,k = f,,fik in U, n u j n u k .

T h e t e n s o r p r o d u c t L 1 @ L 2 o f t w o line b u n d l e s L 1 a n d L 2 is g i v e n b y m u l t i - plication o f t h e c o r r e s p o n d i n g t r a n s i t i o n functions. A h o l o m o r p h i c section F = {F~) of L is given b y h o l o m o r p h i c f u n c t i o n s Fi: Ui - ~ C, satisfying t h e c o m p a t i b i l i t y r e l a t i o n

F , = f q F j in U, n u j .

T h e v e c t o r space o f all h o l o m o r p h i c sections o f L is d e n o t e d b y H ~ L ) . W e o b s e r v e t h a t a section F o f L in a n a t u r a l w a y gives rise t o a divisor D F on M. W e d e n o t e b y [DF[ t h e s u p p o r t of DF, which is t h e set {z C M: F~(z) = 0 for some i}. Suppose F 1 , . . . , F P are s~ctions o f L a n d p u t

F = F 1 @ . . . @ F ~ E H ~ Lp).

W e s a y t h a t F 1, . . . , F P are in n o r m a l p o s i t i o n if for eac21 p o i n t x C ]DFI we can fired an i, such t h a t x E Ui a n d {F~: s C Z(x)} can bz t a k e n as p a r t o f a c o o r d i n a t e s y s t e m a r o u n d x, where Z ( x ) - - {s: F~(x) = 0}. I~ is e a s y to see tha*~ a collection o f hype~planes m e e t s this c o n d i t i o n i f a n d o n l y if t h e y are in general position.

A m e t r i c in L is given b y positive C ~ f u n c t i o n s a~ in Ui, sa+Asfying in n

(3)

]-[OLO1VfO~I~:KIC Ir INTO S~/fOOTI~ PI~OJECTIVE VARIETIES 61 T h u s for a holomorph~e section F = {F~} E H ~

L),

t h e l e n g t h

]]Fll 2 = ]Fi 12a~ 1 is well defined.

I n particalay, i f we let { U~} be a covering o f M w i t h c o o r d i n a t e n e i g h b o u r - hoods U i w i t h h o l o m o r p h i c coordinates Z i : (z~ . . . . , zm), t h e n t h e canonical b u n d l e K M of M is g i v e n b y t h e t r a n s i t i o n ~unctions

g~j -= det ~zjl) in

u i n u ~ .

Thus, if F = {F~} is a section o f

KM,

t h e n t h e locally g i v e n h o l o m o r p h i c (m, 0)- f o r m s

F~dz~ A . . . A dz7

p a t c h t o g e t h e r to a h o l o m o r p h i c (m, 0)-form on M . I n t h e same way, we o b s e r v e t h a t t h e metrics on KM are in o n e - t o - o n e c o r r e s p o n d e n c e w i t h t h e positive (m, m)-forms on M.

I f h is a C ~ real form of t y p e (1, 1), t h e n h is g i v e n locally b y h = V -- l ~ h,jdz, A dSj (hij = hji).

W e Shall s a y t h a t h is positive if (h~j) is a positive d e f i n i t e H e r m i t i a n m a t r i x . W e are n o w in a position to define w h a t is m e a n t b y a positive line bundle.

Definition

2.1. L e t L be a h o l o m o r p h i c line b u n d l e on t h e c o m p l e x m a n i f o l d M.

T h e n L is said to be

positive,

if t h e r e exists a m e t r i c {ai} on L, such t h a t t h e real (1, 1)-form h on M , given in U~ b y

h -- ~ r 1 a~ log a~

is positive. This m e t r i c is t h e n said t o be positive.

3. Some technical results

Since we are going to w o r k in C m, w e s t a r t b y collecting some n o t a t i o n .

][Zll 2 = [Z!] 2 -~- . . . Jr- [Zm[ 2 for

z = ( z l , . . . ,

Zm) E Ca m,

- 2 - 2 {Za JAd J} j = l

V k ~-- V 1 A V 1 A . . . A V 1, V 0 = 1,

A = 4 ~- . . . @ , t h e L a p l a c e o p e r a t o r .

( 3 . 1 )

(4)

6 2 B J O R N D A H L B E R G

W e shall f r o m n o w on assume t h a t N is a s m o o t h c o n n e c t e d n - d i m e n s i o n a l p r o j e c t i v e v a r i e t y a n d t h a t L is a h o l o m o r p h i c line b u n d l e on N a n d t h a t R has p r o p e r t y P w i t h r e s p e c t to L.

L e t F 1 , . . . , F R E H ~ L) be in n o r m a l position a n d p u t F = F 1 | . . . | F R C H ~ LR).

H e n c e , we can f i n d a positive b u n d l e T, an integer s > 0 a n d an H c H ~ (L R | KN)" | T -~)

such t h a t H ~ 0 . L e t { a t } = a be a positive m e t r i c on T, a n d let e be a n y positive n u m b e r . W e o b s e r v e t h a t

R

cr • (alHI2)" 11F]-2 1-1" [log (ellFJll2)] -2 j=l

is a section o f K N Q R ~ in N ~ IDFI, a n d t h e r e f o r e gives rise to a n o n - n e g a t i v e (n, n ) - f o r m W in N ~ IDFI, g i v e n locally b y

W = \ 2 / (a, iH, l:)'-t]F,I-2 ]-[ [log (eliFJH2)]-2dwl A dffh A . . . A dw~A dff;,.

W e are now in a position to f o r m u l a t e t h e m a i n r e s u l t o f this section. F o r a r e l a t e d r e s u l t see Carlson-Griffiths [2].

THEOREM 3.3. There exist two positive numbers e and c with the following property: For any domain M in G '~ (open, connected set) and any nondegenerate holomorphic function f: M --> N ~ IDF] the nonnegative function uf in M defined by

f * W A V " - " = u f V m is such that log u I is plurisubharmonic and

A log uf ~ c(uy) 1!~ in M ~ {z E M: uy(z) : 0}. (3.4) Proof. L e t W 1 be a n y (n, n ) - f o r m on N given locally b y

W1 ~ \ 2 / hdwl A d ~ A . . . A dw~ A d ~ ,

a n d let Q b e t h e class o f subsets o f { 1 , . . . , m} c o n t a i n i n g e x a c t l y n elements.

I f we w r i t e f = ( f ~ , . . . , f , ) in local coordinates, t h e n one f i n d s easily t h a t f * W ~ A V " - ~ = h o f d e t \ o z j / j e s

Since

f

is a s s u m e d t o be n o n d e g e n e r a t e , we h a v e t h a t

(5)

HOLOMOR1)HIC MA1)iPINGS II~TO SMOOTI-[ PROJECTIVE VARIETIES 63

is n o t identically zero. B y using Corollary 1.6.8 in H S r m a n d e r [5], we f i n d t h a t log Jf is p h r i s u b h a r m o n i c . T o show (3.4) it is t h e r e f o r e sufficient to p r o v e t h a t t h e r e exists a c > 0 such t h a t t h e i n e q u a l i t y

R

C(~f) 1In ~ A l o g {(ai o f l H i

oflZ)s-llFi

o f [ - 2 ]7- l o g ( e l l F " o fl12) -2}

r = l

holds in M 1 = M ~ . {z e M: uf(z) = 0}. Since b o t h log [Hi o f]~ a n d log IFi o f]2 are h a r m o n i c in M 1 it is e n o u g h t o show t h a t

C(Uf) x/n < UO, (3.6)

w h e r e we h a v e p u t u0 = s-l{A log (ai o f ) } - - ~ , ~ 1 A log (log (eHF o f H2)) 2.

W e s t a r t b y choosing e so small t h a t cHFI] 2 < 1 in N for 1 < r < R . This is possible b y t h e c o m p a c t n e s s o f N. W e localize a r o u n d ]DFI. F r o m t h e a s s u m p - t i o n s a b o u t F a n d t h e c o m p a c t n e s s o f N, it follows t h a t we can c o v e r ]DFI w i t h f i n i t e l y m a n y c o o r d i n a t e n e i g h b o u r h o o d s {U}, w i t h local c o o r d i n a t e s (wl . . . . , w , ) , such t h a t for some p, 1 < p < n , t h e r e exist kl . . . . , k v 1 < k 1 < k S < . . . < k~ _< R, w i t h w 1 = • k l , . . . , W p = F ~ , a n d if k q { k , , . . . , kp};

t h e n irrf~euIIFk(z)ll > 0. F u r t h e r m o r e , t h e r e exists a positive b E C k ( U ) , such t h a t if G E H~ L), t h e n IIGII2 = b]Ggl 2. W i t h o u t loss of g e n e r a l i t y we m a y a s s u m e t h a t wj = F [ for 1 _< j < p. Since we h a v e a s s u m e d t h a t T is positive, t h e r e exists a n u m b e r c > 0, such t h a t

s-lA log (a~ o f ) > c - - . (3.7)

-- i = I k = l OZk

I f v > 0, t h e n A log v = v-iAv -- 4 v - 2 ~ = 1 IOv/Ozkl 2. W e a p p l y this r e l a t i o n t o v = (log (e]]F of[j2)) 2. T h e n we h a v e in f - l ( U ) [3 M 1

A log (log (~IIF ~ o f i t 2 ) ) ~ = 2 ( l o g ( ~ i l f ~ o f l i 2 ) ) - l A log II F~ o f i l ~ - -

O log liE" ~ 2 2 (3.8)

8 (log of[J2)) -2

k=l/" azk "

I t is o b v i o u s t h a t t h e r e exists a n u m b e r C > 0, such t h a t if 1 < r < R, t h e n IA log ]IF" o fit 2 ] _< C ~

i=1"= k=l a n d if p + 1 < r < R , t h e n

0 log IIF" ofll 2 < C Z Ofi2

- - O z ~ "

k=l OZlt i=1 k=l

(6)

6 4 B J O R ~ D A H L B E R G

T h e r e f o r e , b y combining t h e e s t i m a t e s a b o v e w i t h (3.7) a n d b y choosing s u f f i c i e n t l y small, we get t h e following e s t i m a t e of %, w i t h possibly a different c > 0

Ofi 2 0 l o g ] i F , ofl)-~ 2

l/ roJll ))

- - i = 1 k = l r = l k = l OZk "

N o w we h a v e t h a t

0 log IIF ~ o fll 2 0 log b o f 0fi

0z~ - 0zk + (w~ o f ) - I 0z~"

W e recall t h e following e l e m e n t a r y i n e q u a l i t y . I f ~1 a n d ~2 are two c o m p l e x n u m b e r s , t h e n ]~1 + ~2[ 2 ~> 1/21~1]2 - - r~212. B y using this i n e q u a l i t y w i t h

~ = Ofl/Ozk a n d ~2 ~ 0 l o g b of/Ozk we f i n d f r o m

(3.9)

t h a t

n & Ofi 2 l, ~ 2 _ _ O f f

U o > C ~ k~__li~Zk l + 4 Z Iw~ofl-2(log(ellF~ofll2)) -2

- - i = 1 r = l k = l I OZk

- - 8 Z (log (~IIF r ofl12)) -~ I 0 log b

,=l k=i 0zk "

W e m a y as before absorb t h e t h i r d t e r m of t h e r i g h t h a n d side of t h e i n e q u a l i t y a b o v e into t h e f i r s t t e r m b y choosing e s u f f i c i e n t l y small, a n d we are left w i t h u~ > c ~ Of, p

- - i = 1 k = l 0Z~k @ 4 ~ ~:l k=~ Iw~of[-2(log(elIF'of[I2))-2 Off2 Ozk > c ~(i) 2 ,

- - i = 1 k = l ~ k

w h e r e we h a v e p u t

~(i) = { I + ]w~ of]_2 (log (e]]F ~ of]l=))-= if I < i < p 1 i f

p + l < i < n .

H e n c e we can f i n d a c > 0, such t h a t

0fl 2 SEQ i = 1 kES

(3.10) F r o m t h e i n e q u a l i t y b e t w e e n t h e a r i t h m e t i c a l a n d t h e g e o m e t r i c a l m e a n we h a v e

T

k e s OZk - - \ i = 1

i = 1 = kfiS i = 1

N o w we h a v e f r o m H a d a m a r d ' s i n e q u a l i t y t h a t

of, 2 i I~-t/Ofi\l<-i<n 2

fr :

i = I k6S

Since inf{]lF~(z)l]: z e U} > 0 for p + 1 < r < R, it follows t h a t

(7)

H O L O 1 K O R P H I C 1 K A P P I N G S I I ~ T O SI~OOTI-I P R O J E C T I V E V A I % I E T I E S 65

R

~(i) ~ cI[F ofl/-~ T-[ (log (~IIF" o f[12))-%

i = 1 r ~ l

for some c > 0 in f I(U). B y c o m b i n i n g this w i t h (3.10) we get, w i t h some c > 0

Uo >--c(llF~ (l~ ~ ))- ) / Z tdet~-~/

I 9

2in

r = l S ~ Q ~ \ U ~ ' k / k E S i

F r o m this i n e q u a l i t y (3.6) follows b y observing t h a t t h e t e r m s a~ a n d 1H~] can be t a k e n to be b o u n d e d a n d b y a p p l y i n g t h e i n e q u a l i t y ~ x ~ / " ~ (~. x;) 1/~ t o t h e last f a c t o r o f t h e i n e q u a l i t y above. T o c o m p l e t e t h e p r o o f we h a v e t o show t h a t we can choose e such t h a t log uf is also p l u r i s u b h a r m o n i c , b u t t h a t is done in t h e same way, a n d is t h e r e f o r e o m i t t e d .

W e shall n o w t u r n t o some consequences of T h e o r e m 3.3. S u p p o s e P0 C N ~ ID~[

~nd t h a t t h e r e exists a n H E H ~ R Q K N ) ~ | -1) w i t h H(po) r F i x a c o o r d i n a t e n e i g h b o u r h o o d U a r o u n d P0 w i t h local c o o r d i n a t e s (wl . . . . , w~).

I f f: Bm(r) -~ N is a h o l o m o r p h i c m a p p i n g , w h e r e B"(r) ~- {z e C,m: Hzll < r}, w i t h f ( 0 ) = Po, t h e n we p u t

/af~\,<,<o2

t J j i - -

s~ e d e t t ~ ) for z E f - ' ( U ) .

g l ( ~ ) = Q, ~ '

H e r e Q is t h e set of all subsets o f {1 . . . m} c o n t a i n i n g n e l e m e n t s a n d we h a v e w r i t t e n f ~ (fl, 9 9 fn) in local c o o r d i n a t e s (Wl . . . . , wn).

As a n a p p l i c a t i o n of T h e o r e m 3.3 we shall p r o v e t h e following g e n e r a l i z a t i o n o f L a n d a u ' s t h e o r e m (cf. K o d a i r a [7] a n d Carlson-Griffiths [2]).

THEOREM 3.11. To each m >_ n there exists a constant r, > 0 with the following properties: For any holomorphic mapping f: Bin(@) ----> N Nx 1DFI with f(O) ~ Po and Jf(O) > 1, the intequality @ <_ r o holds.

F r o m this r e s u l t we d e d u c e t h e following v a r i a n t o f t h e (small) P i c a r d t h e o r e m . COROLLARY 3.12. A n y holomorphic mapping f: C'~--> N "~ IDF] is degenerate.

Proof of Corollary 3.12. P i c k a G C H ~ (L R Q KN) s (~ T - I ) w i t h G r 0.

L e t M be t h e set o f all points z C {3 m such t h a t f , : T~(C')-+Tf(z)(N ) is surjective. S u p p o s e t h a t M is n o t e m p t y . T h e n M is o p e n a n d h e n c e f(M) is o p e n in N. T h e r e f o r e f ( M ) contains a p o i n t P0 such t h a t G(po) r 0. W e m a y a s s u m e f(0)--~ P0 a n d 0 C M. W e can choose a c o o r d i n a t e s y s t e m a r o u n d Po such t h a t Jf(0) - - 1. T h e o r e m 3.11 implies t h a t

f

can be d e f i n e d o n l y in a b o u n d e d d o m a i n a n d this c o n t r a d i c t i o n finishes t h e proof.

(8)

66 B J O R ~ D A H L B E R G

Proof of Theorem 3.11. W e wish to each t > 0 construct a positive infinitely differentiable f u n c t i o n V, in B"(t) w i t h t h e following properties:

(a) A log V, < V~/~,

(b) tim V,(z) = oo for all zo 60Bm(t),

z - + z o

(c) lira Vr(z) = V,(z) for each fixed z e Bin(r),

r ~ t

(d) lim Vt(O) = O.

t-+o0

I f t > 0 is given, t h e n we p u t g t ( r ) = n l o g ( 8 n ( m + 1 ) ) + l o g ( t 2 ~ ( t 2 - r 2 ) - 2 " ) , 0 < r < t. We construct t h e f a m i l y { E } b y p u t t i n g

W e n o w have

V,(~) = e x p g,(r), I l z l / = r.

)

A log Vdz) = r -2"+1 - - dr (g&)) = d

r r 2 m - - 1

2m(t ~ - r 2) @ 2r u

--- 4n -4 8n(m + 1)te(t 2 -- r2) -2 = (Vt(z)) l/n, (t 2 -- r2)2

a n d hence the f a m i l y { Vt} satisfies (a). The rest is s t r M g h t f o r w a r d verification.

N e x t we consider t h e f u n c t i o n uf as c o n s t r u c t e d in T h e o r e m 3.3. F r o m the assump- tions a b o u t f, it follows t h a t there exists a n u m b e r B > 0, such t h a t

uf(O) > B, for all f E ~e (3.13)

where T is the set of all holomorphie m a p p i n g s f: Bm(~) --~ N ~ [ D / , satisfying f(0) ----P0 a n d Jr(O) _> 1. L e t 9 ( be t h e set of all n o n d e g e n e r a t e holomorphie mappings f: B"(~) - ~ N ~ IDFI. W e w a n t t o show, t h a t there exists a n u m b e r A > 0, such t h a t for all Q > 0 a n d all f C g ~ we have

uf < AV~. (3.14)

W e prove relation (3.14) w i t h the aid of a classical trick due to Ahlfors [1]. F r o m p r o p e r t y (c) of Vt a n d the c o n t i n u i t y of uf, it follows t h a t to each t < ~, there exists a point ~ E B'~(t), such t h a t

uf(~)/Vt(~) -- sup {uf(z)/V,(z): z e Bin(t)}.

Since f is nondegenerate, we m u s t h a v e t h a t uf(~) > O, a n d hence uf is infinitely differentiable in a neighbourhood of ~. Moreover, since ~ is a local m a x i m u m for log (uf/V,), we have

A log (ugV,)(~) <_ O.

Now we have f r o m T h e o r e m 3.3 t h a t

(9)

I t O L O M O R P H I C l V [ A P P I N G S I N T O S M O O T H 1 ) I ~ O J E C T I V E V A R I E T I E S 67 (u:(~)) :/" <_ CA log uf(~) <_ CA log V,(~) _< C(V,(~)) ,/~,

and hence uf(~) < A V~(~). Therefore, we have for all z E B~(~) uf(z) <_ A lim V,(z) = A V~(z).

This proves relation (3.14). I n particular, we have from (3.13) t h a t if f C ~o, then B < uf(O) <_ AV(O) = A{8n(m + 1)}~ -2~,

and this gives

~_ (A/B):/2~8n(m ~- 1), which completes the proof of Theorem 3.11.

From the proof of Theorem 3.11 we have the following corollary.

COROLLARY 3.15. To each m >_ n there exists a constant K > 0 with the following property: For all domains M in C m and all holomorphic mappings f: M --> N ~ IDoL the inequality

uf(z) < K(d(z, M)) -2~ (3.15)

holds, where d(z, M) = dist {z, aM} and f is nondegenerate.

Proof. We continue using the notation of the proof of Theorem 3.11. I t is sufficient to treat the case z = 0. For each Q < d(0, M) we have f C 9(~ and from (3.14) we have

u2(0 ) < A V~(O) = A{Sn(m + 1 ) } n ( 2n.

Letting ~ --~ d(0, M) we have (3.16), and this finishes the proof.

I t is possible to prove Theorem 3.11 along different lines.

Second proof of Theorem 3.11. We continue using the notation of the previous proof of Theorem 3.11. Let G be the Green function of B'~(r) with pole at 0.

This function is given by

log if m = 1

G(z)

= g(llzLI) = I ~

{[lz[] 2 - : ~ - r : - : ~ if m > 2 .

We have from the Ricsz representation formula applied to the subharmonic function log uf t h a t there exists a positive measure /~f on Bm(~), such t h a t for all r, 0 < r < ~,

u (o) = <, f l o g - .fa(z)d j(z). (a.16)

log

0B"(:) Bin(r)

(10)

6 8 B J O R N D A H L B E R G

H e r e da is t h e area m e a s u r e o n 0B'~(1), ~,~ t h e area o f 0Bin(l), fil = (271;) - 1 a n d fin --~ { % ( 2 m - - 2)} -1 if m > 2. F r o m T h e o r e m 3.3 we h a v e dlq > c(uf)~/nV m.

P u t Pf(r) = fB~(0 (uf)l/'~V~" H e n c e we h a v e

r

Bin(r) 0

A p a r t i a l i n t e g r a t i o n gives t h a t

r

~., f P)(t)g(t)dt

0

= ~,., fP+(t)t~-:"~dt,

0

w h e r e ~m is a c o n s t a n t . Recalling (3.13) a n d (3.16) we h a v e

r

o OB~O)

Arguing as in K o d a i r a [7], one can f r o m i n e q u a l i t y (3.17) finish t h e proof. W e o m i t t h e a r g u m e n t .

4. The generalized Pieard Theorem L e t B = {z e C: [zl < 3}, B* = B ~ {0},

D - - B • 2 1 5 W e n e x t p r o v e T h e o r e m 1.2.

D* = B* x B • . . . • B a n d

m ~ l

Proof of Theorem 1.2. Since t h e set o f singular p o i n t s o f S are o f c o d i m c n s i o n

> 2, we m a y a s s u m e t h a t S is nonsingular. Localizing, we can a s s u m e t h a t f is d e f i n e d in D*. W e h a v e to show t h a t t h e pull b a c k o f t h e r a t i o n a l f u n c t i o n s o n N c a n be e x t e n d e d t o m e r o m o r p h i c f u n c t i o n s on D. T h e r e exists b y K o d a i r a [6]

a positive line b u n d l e E on N , such t h a t if {s ~ . . . , s q} is a basis o f H~ E), t h e n t h e m a p p i n g F : N - + Pq, d e f i n e d b y

v : z - ~ [s~ . .: sq(z)] ( 4 . 1 3

is a n i m b e d d i n g . L e t s

eH~ E),

s r

0,

a n d p u t G =f-l(JDs]). W e s t a r t b y d e m o n s t r a t i n g t h a t 0 is an a n a l y t i c s u b s e t of D. W e m a y assume t h a t IIs]] < 1.

I t follows f r o m B i s h o p ' s T h e o r e m ( T h e o r e m F o f S t o l z e n b e r g [8]), t h a t it is s u f f i c i e n t t o show t h a t t h e r e exists a n e i g h b o u r h o o d U o f {z E D: zj = 0}, such t h a t

j V real < o9. (4.2)

* s N U

(11)

I I O L O M O R P I I I C M A P P I N G S I N T O S M O O T K P R O J E C T I V E v A R I E T I E S 69 I t follows f r o m t h e p r o o f o f T h e o r e m 3.3, t h a t t h e r e exists a ($ > 0, such t h a t t h e f u n c t i o n

vf =

log II s o

fllsuf

is p l u r i s u b h a r m o n i c in D*. W i t h o u t loss o f general- ity, we m a y a s s u m e t h a t t h e r e exists a zl, such t h a t

vf(zl,

0 . . . 0) > - - oo, other~

wise we change o u r c o o r d i n a t e system. W e can also assume, possibly a f t e r a change of t h e c o o r d i n a t e system, t h a t if IzlL = l, lz21 _< 1 , . . . , Iz,n[ <__ 1, t h e n

vf(zl, z2,...,z~)

> - - ~ . L e t Bin_ 1--{~6Gm-1:11~11 < 1} a n d

n(r,~)

be t h e n u m b e r of roots, c o u n t e d w i t h multiplicity, of t h e e q u a t i o n

8(f(%, ~))= 0 in

{ Z l : r < [Zl] < 1 } . F i x ~ 6 B .... 1 a n d p u t

v~(z)

= v f ( z ,

~).

W e can f i n d a sequence {v/}~l of twice c o n t i n u o u s l y differentiable s u b h a r m o n i c f u n c t i o n s in B*, such t h a t vj \ %. F o r each j, an a p p l i c a t i o n of G r e e n ' s f o r m u l a gives

2 z 2:r

fo 3rr v/(e/-~'~)dv~ -- r ~r vj(re/~)dvQ 4 f 0z105~ vj(zl)dV(zl) .

0 0 r < [ % ] < l

H e r e d V is t h e p l a n a r Lebesgue m e a s u r e on G. Dividing b y r a n d t h e n i n t e g r a t i n g , we h a v e

2 z 2~

f vj(re/-~i<>) d o - f v j ( e / - ~ ) dv~ +

0 0

2~ 1 (4.3)

fo f

@ (log

r 1) 3r vj(eV-~'~)dO ~ 4t-1 aZl~l vj(zx)dV(zl).

0 r t < l z ~ l < l

I t is clear t h a t t h e r e exists a c o n s t a n t K , such t h a t if lZll = 1, t h e n [vj(zl) I < K for all j . Moreover, this c o n s t a n t can be chosen i n d e p e n d e n t of ~ 6 B~_~. T h e f u n c t i o n s

vj

can be t a k e n as i t e r a t e d m e a n values. F r o m t h e explicit r e p r e s e n t a t i o n of t h e d e r i v a t i v e s o f such functions, see H e l m s [4, p. 20], it is clear t h a t t h e r e exists a c o n s t a n t K , also i n d e p e n d e n t of ~ E B b _ l , such t h a t if ]Zll = 1, t h e n

iOvj(zi)/~rl < K.

L e t t i n g j t e n d to oo in such a w a y t h a t t h e measures

(a2/OziOgl)VflV

t e n d w e a k l y t o t h e Riez m e a s u r e o f v~, we f i n d t h a t

1 2~ 2~ ( 4 . 4 )

f t-ln(t,.~)dt- f

log

Hsof(re/-~,9, $),,dO ~_ f

log

uf(re 1/-~, ~)d~ + K

log r - k

r 0 0

One c o n s e q u e n c e of (4.4) s h o u l d be n o t e d here. I f we t a k e ~ = 0, t h e n an i n t e g r a t i o n gives

I t follows f r o m Corollary 3.15, t h a t i n d e p e n d e n t of ~ 6 Bin_l,

1

f v+(=l, 0) v+ >_ - f t l o g t - l d t ~ -- K.

(4.5)

r < ]%1 < 1 r

log

us(ref-~'~, ~) < K

log r - t , w i t h K a n d h e n c e we h a v e f r o m (4.4)

(12)

70 B J O R N D A H L B E E G

1 2 ~

f t-in(t, ~)dt -- ~ f

log [[so

f(re l/-~'~,

~)][dv ~ < K log r -1. (4.6)

r 0

W e g e t f r o m (4.6) t h a t

n(t, ~) < K

f o r all ~ E

B,n_ 1.

(4.7) W e m a y t h e r e f o r e a s s u m e t h a t

vf(z 1,0)

> - - oo f o r 0 < ]zl[ _< 1. I f z C B * , t h e n w e d e f i n e vz(~ ) =-

v/(z, ~), ~ E Bin_ 1.

L e t A,n_ 1 b e t h e L a p l a c e o p e r a t o r o n C ~-1. Since v~ is s u b h a r m o n i c in Bin_l, w e h a v e b y t h e R i e s z r e p r e s e n t a t i o n f o r m u l a

vo(o) = f vo(t)d m_l(t) -- f

( 4 . 8 )

0 B m _ 1 B m - - 1

w h e r e d % _ 1 is t h e s u r f a c e m e a s u r e o n ~B ~-1, n o r m a l i z e d so

fos,~_da.._l = 1, dVm_l

is t h e L e b e s g u e m e a s u r e o n

cm--l,g,,(~)

= [~l 4 - 2 ' n - i , n ~ >__ 3,92(~ ) =

= log l~i 1 a n d c% = ( 2 m - - 4 ) ( 2 m - - 2)

fB,=_l d V ~ - I

f o r m >_ 3 a n d ~2 =

= (2~) -1. L e t /t(z) b e t h e 2 ( m - - 2 ) - v o l u m e o f G [3 {z} X {~ E C~-1: II~ll < 1/2}.

S i n c e g~(~) > ~ 1 > 0 if ]l~]] < 1/2, w e h a v e f r o m (4.8) t h a t /~(z) < K l o g Iz1-1 - -

~m2mV(Z, 0).

I f w e n o w m a k e u s e o f (4.5), t h e n a n i n t e g r a t i o n g i v e s

f # ( z ) d V ( z )

<

K

f o r all T, 0 < < 1. (4.9) r<!~[<l

NOW t h e r e l a t i o n s (4.7) a n d . (4.9) e s t a b l i s h B i s h o p ' s c o n d i t i o n (4.2).

P i c k a n y t w o s e c t i o n s s I a n d s 2 o f E , s 2 r 0. T o c o m p l e t e t h e p r o o f , it is s u f f i c i e n t t o s h o w t h a t t h e m e r o m o r p h i c f u n c t i o n

h = (s 1 ofl)/(s2 o f)

h a s a m e r o - m o r p h i e e x t e n s i o n t o D . I n v i e w o f (4.2), w e m a y a s s u m e t h a t

f-~(ID,~I) c {z e D: z~ - - 0}.

H e n c e w e m a y a s s u m e t h a t h is a n a l y t i c in D * . L e t g h a v e t h e L a u r e n t e x p a n s i o n

g(z, z2 . . . . , zm) = zlAj(z2, 9 9 zm).

j ~ - c o

F i x ~ e B ~ _ 1. W e n o t e t h a t ]h I = l[sl

~ ~

a n d since w e m a y a s s u m e t h a t IIs~l I _< 1, i = 1, 2, w e h a v e t h a t (log+ = m a x (0, log))

2zr 2,~

flog+ tg(re d ~ , <

-

[ log IIs o f(re ~ 1 ~ , )ll ,a _< log K

r - 1 ,

(4.10)

0 0

(13)

H O L O M O I ~ P H I C ~ A : P I ~ I N G S II~ITO S M O O T H I ~ I ~ O J E O T I V E V A R I ~ 3 T I E S 71

where t h e last i n e q u a l i t y follows f r o m i n e q u a l i t y (4.6). F r o m t h e N e v a n l i n n a t h e o r y it n o w follows t h a t t h e r e exists a n u m b e r k ~ 0 such t h a t A j ( ~ ) = 0 for all j ~ - - k . I f we for r C Z + p u t H ( r ) = { ~ C B m _ ~ : A j ( $ ) = 0 for all j G - - r } , t h e n we h a v e j u s t s h o w n t h a t [J, H(r) - - B,~_I. Since t h e sets H ( r ) are closed, a t least one, H(r2) say, c o n t a i n s a n o p e n subset o f Bm_~. Since t h e f u n c t i o n s Aj are analytic, we h a v e t h a t A i ~ 0 for j ~ r 0 a n d this p r o v e s T h e o r e m 1.2.

P r o o f of Corollary 1.3. L e t H be t h e h y p e r p l a n e b u n d l e of P~ a n d K t h e canonical b u n d l e o f P~. Since K = H , - 1 it is easily seen t h a t if R C Z + a n d R > ( n + 1)/d, t h e n R has p r o p e r t y P w i t h r e s p e c t to H 4.

References

1. AHLFORS, L., An extension of Schwartz's lemma. Trans. Amer. Math. Soc. 43 (1938), 359-- 364.

2. CARLSOn, J., & GRI~FI~HS, P., A defect relation for equidimensional holomorphie mappings between algebraic varieties. Ann. of Math. 95 (1972), 557--584.

3. GRIFFITItS, P., I-Iolomorphie mappings: Survey of some results and discussion of open problems. Bull. Amer. Math. Soc. 78 (1972), 374--382.

4. I-IE~MS, L. L., Introduction to potential theory. Wiley-Interscienee, 1969.

5. I-IoRMANDER, L., A n introduction to complex analysis in several variables. Van Nostrand, 1966.

6. ](ODAmA, K., On ]~iihler varieties of restricted type. Ann. of Math. 60 (1954), 28--48.

7. -- ~-- I-Iolomorphie mappings of polydiscs into compact complex manifolds. J. Differential Geometry 6 (1971), 33--46.

8. STOLZE~BERG, G., Volumes, limits, and extensions of analytic varieties. Lecture Notes in Math, ematics, Vol. 19 (1966), Springer-Verlag.

Received November 10, 1972;

in revised form June 30, 1973

Bj6rn Dahlberg

Department of Mathematics University of G6teborg G6teborg, Sweden

Références

Documents relatifs

Natural and exotic orders on the composition group of transseries. Alongside its natural order , the group ET admits a non-countable infinity of exotic orders

ifolds under a double reflection condition which generalizes the classical single reflection. A complete study of various double reflection conditions illustrated by simple

One of the fundamental properties of mappings of bounded distortion is the remarkable result by Reshetnyak [21] that such a mapping is either constant or both discrete and open..

D ( respectively E ) is equipped with the canonical system of approach re- gions ( respectively the system of angular approach regions ).. Our approach here avoid completely

non-degeneracy property for extremal mappings near a strongly pseudoconvex point (Theorem 2), which enables us to prove the smooth extendibility of holomorphic

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » ( http://www.sns.it/it/edizioni/riviste/annaliscienze/ ) implique l’accord

Furthermore, there is another phenomenon which is due to the principle of analytic continuation and which is quite well known (cf. [16]): the local and the global CR-orbits

In this section we will focus our attention to positive functions defined on a complete manifold which satisfy a certain class of differential inequalities.. THEOREM