• Aucun résultat trouvé

Birth of a planet

N/A
N/A
Protected

Academic year: 2021

Partager "Birth of a planet"

Copied!
2
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Skygazing: Astronomy through the seasons, 2018-10-30

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/23004780

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Birth of a planet

Tapping, Ken

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=e2cf312e-6d55-4ddc-9766-53d1dfb0766f https://publications-cnrc.canada.ca/fra/voir/objet/?id=e2cf312e-6d55-4ddc-9766-53d1dfb0766f

(2)

Birth of a planet

Ken Tapping, 30thOctober, 2018

Although we have a pretty good idea how stars and planets form, we have only now got our first image of a newborn planet. This image was obtained by astronomers using the Very Large Telescope, in Chile. It shows a star surrounded by a disc of gas and dust, with a gap in the disc, and sitting in that gap is a planet. It is a big one, 5 to 14 times the mass of Jupiter, the largest planet in our Solar System. The large size of this planet is probably why it could be detected. Getting this image was a tremendous challenge.

When we point a telescope or binoculars at a star in the sky, we see something twinkling, flashing different colours and dancing around. What we are seeing is beautiful but has little to do with the star. The huge distances stars are from us mean that even through our biggest telescopes they would appear as mere points of light; at least they would if there were no atmosphere. Putting telescopes in space bypasses the atmosphere problem, but at the moment the only telescopes we can deploy in space are in the small to moderate size range, with mirrors maybe up to three or four metres. The Very Large Telescope consists of four telescopes, each with a mirror 8.2 metres in diameter. In order to minimize the atmosphere problem, it is located on a high plateau. This helps, but is not a total cure. To image a star and its planets requires an ability to resolve extremely fine detail, and to see

something extremely dim – a planet – very close in the sky to something extremely bright – a star. Even on that high plateau, the shimmering in the image due to the atmosphere is still enough to wipe out fine details in what we try to observe. If this were the end of the story, then there would have been no point in making this telescope, because the atmosphere would prevent the

instrument ever reaching its true imaging potential. What made the project worthwhile is a technique known as adaptive optics. This is easy to visualize but technically extremely challenging to actually make happen.

If we are looking at a star in the sky, we can predict what its image should look like through our telescope. However, the turbulence in the

atmosphere makes it look like something else altogether. So we add a very flexible mirror to the telescope, which has a lot of computer-controlled actuators on the back of it. The computer then rapidly adjusts the actuators to correct that star image to make it look the way it should, and in the process, the rest of the image is corrected too. If there is no suitable reference star, we shine a laser into the Earth’s upper atmosphere to emulate one. In order to make the planet visible despite being close to its “sun”, a blocking disc was used to block out the starlight, rather like using our hands to block out the Sun’s glare on a sunny day. The image shows a planet that has swept out a clearing in the disc of material around the path of its orbit. From how far it has got in doing this suggests the planet is no more than about 5 million years old. Our Earth is about 4.5 billion years old. This very young system supports an idea that astronomers have been discussing for a while, namely that when giant planets form, they slow down and ultimately limit the growth of their star. They do this by taking up material that would have become part of the star, and then gravitationally interfering with the spiralling in of material the star would otherwise have captured.

That young planet is already much bigger than Jupiter and is still growing. An interesting question is whether it will grab enough more material for it to get promoted from giant planet to red dwarf star. However, we won’t find out for at least a million years or so.

Saturn lies low in the southwest after dark and Mars is still conspicuous in the southern sky overnight. The Moon will reach Last Quarter on the 31stand be New on the 7th.

Ken Tapping is an astronomer with the National Research Council's Dominion Radio Astrophysical Observatory, Penticton, BC, V2A 6J9.

Tel (250) 497-2300, Fax (250) 497-2355

Références

Documents relatifs

Cigarette smokers who inhale the smoke or breathe it in can (develop –lead –damage) lung cancer more than non-smokers. Other smokers (which- who –when) only take the smoke into

1365–8050 c 2015 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France.. The main purpose of this paper is to introduce a new family of posets, defined from

Similarly, the transfer of negative electric charges from the Material Individual Consciousnesses of human bodies to the Human Consciousnesses, which they are incorporated, it

Energy releases are observed in numerous dynamic phenomena (e.g. solar flares, coronal mass ejections, solar energetic particle events) where mea- surements provide signatures of

As will be shown in Section 5, the evaluation of the objective function for impulsive planet-to-planet transfers involves the solution of the implicit equations appearing in

In particular I argue against the notion that methodological weakness is unique to ethnoarchaeology, that the questions under study ignore the complexity of the

To introduce programming skills, we explain programing language with Code- Combat [8] with python language to solve a Loop problem.. CodeCombat as Blockly games, uses methods to

I include both externally visible attributes of differentiation and internal areas of difference commonly associated with different ethnicity, and evaluate their association