• Aucun résultat trouvé

The magnetic structure of CoPt

N/A
N/A
Protected

Academic year: 2021

Partager "The magnetic structure of CoPt"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00205836

https://hal.archives-ouvertes.fr/jpa-00205836

Submitted on 1 Jan 1964

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The magnetic structure of CoPt

B. van Laar

To cite this version:

B. van Laar. The magnetic structure of CoPt. Journal de Physique, 1964, 25 (5), pp.600-603.

�10.1051/jphys:01964002505060001�. �jpa-00205836�

(2)

Dr Lovi;. - Je dois rappeler que le moment sur les atomes Fe proches voisins des impuretes appa- rait en fait diminu6, tandis que I’augmentation

semble s’appliquer seulement aux voisins plus

éloignés. Ainsi, toute explication théorique de ces

résultats doit tenir compte des deux perturbations

aussi bien positives que negatives de la distri-

bution des moments magnétiques.

REFERENCES

[1] Low (G. G. E.) and COLLINS (M. F.), J. Appl. Physics, 1963, 34, 1195.

[2] ARROTT (A.) and NOAKES (J. E.), Iron and its dilute solid solutions, Spencer C. W. and Werner F. E.

editors, Interscience Publishers, 1963.

[3] SHULL (C. G.) and WILKINSON (M. K.), Phys. Rev., 1955, 97, 304.

[4] CRANSHAW (T. E.) and RIDOUT (M. S.), Private com-

munication.

THE MAGNETIC STRUCTURE OF CoPt

By B. VAN LAAR

Reactor Centrum Nederland, Petten (N. H.), the Netherlands.

Résumé. 2014 Les résultats en diffraction de rayons X montrent que CoPt est quadratique,

a = 2,677 Å, c = 3,685 Å avec Co0,92Pt0,08 en (000) et Co0,08Pt0,92 en

(1/2, 1/2, 1/2)

pour l’échan- tillon étudié.

Les moments magnétiques sont dirigés suivant l’axe c. Co en (0 0 0) et Pt en

(1/2, 1/2, 1/2)

sont

couplés ferromagnétiquement. On montre que le moment magnétique total se partage entre les

deux éléments constituants et on estime la grandeur des moments localisés sur Co et Pt.

Abstract. 2014 X-ray diffraction data show that CoPt is tetragonal, a = 2.677 Å, c = 3.685 Å, with, for the sample under investigation, Co0.92Pt0.08 at (0 0 0) and Co0.08Pt0.92

at (1/2 1/2 1/2).

The magnetic moments point along the c-axis. The Co at (0 0 0) and the Pt

at (1/2 1/2 1/2)

are coupled ferromagnetically. It is shown that the total magnetic moment is divided between the constituent elements and an estimate is made of the magnitude of the moments localized on Co and Pt.

LF; JOURNAL DE PHYSIQUE TOME 25, MAI I 1964,

Introduction. - CoPt has a tetragonal unit cell.

The space group is P4 /mmm. From X-ray data,

taken on a Philips diffractometer, the cell dimen- sions were determined : a = 2 . 677 ui, c = 3 . 685 ui.

In the ideal case there is one Co-atom at (0 0 0)

and one Pt-atom at

I I I

In the investigated

222 g

sample, provided by Philips Research Labora- tories, Eindhoven, some disorder was observed.

The disorder parameter, the probability of a Co-

site being occupied by a Pt-atom is :

r = ~0.076 ,T 0.008).

The distribution of the atoms over the two sites

TABLE 1

OCCUPANCY OF POSITIONS IN UNIT CELL

is given in table 1. At room temperature CoPt

has ferromagnetic properties. From measurement of the saturation magnetization, carried out by

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:01964002505060001

(3)

Philips Research Laboratories, the total moment

per unit cell was determined as (1.90 z 0.0:1)

The neutron diffraction investigation was under-

taken to reveal the distribution of the magnetic

moment over the constituent elements.

Experimental. - For the unpolarized neutron

work the powder sample was mounted on the

diffractometer at the Petten High Flux Reactor.

The sample was contained in a cylindrical alu-

minium sampleholder of 0.05 mm wall thickness and 20 mm diameter.

The monochromatic radiation with a wavelength

of 1.093 A was obtained from a copper (200) plane.

Soller-slit systems with an angular divergence

of 30’ were mounted between the monochromator

crystal and the sample and in front of the BF3

detector.

The intensities were obtained in about one week with the reactor operating at 20 MW.

The observed intensities were brought on an

absolute scale by comparing with the intensities from a nickel powder diagram obtained under identical conditions.

Neutron diffraction results - Because of the

rapid dropping off of the magnetic form factors most of the information concerning the magnetic

structure will be obtained from the first reflections which have small intensities. The peak-to-back- ground ratio of the first two reflections is about 1.

FIG. 1. - Neutron difraction pattern of CoPt.

Due to the relatively high intensity, available at

the Petten reactor it was possible to obtain an acceptable accuracy (probable errors due to coun- ting statistics less than 1 %). The observed inten-

sities are shown in the last column of table 2. By comparison of these intensities with the calculated nuclear part of the intensities it is seen that the

(0 0 I)-reflection can be fully explained by the

nuclear scattering, which means that the magnetic spins are aligned along the c-axis. In the calcu-

lation of the nuclear structure factors it is neces-

sary to realize that there exists a probable error

TABLE 2 .

COMPARISON OF OBSERVED AND CALCULATED INTENSITIES

TABLE 3

CALCULATION OF SPIN QUANTUM NUMBERS

(4)

of J~ 0.01 X 10-12 cm in the tabulated scattering lengths:

and

Therefore the nuclear structure factor, derived

from the observed (0 0 1) intensities was used in the calculation of the magnetic contribution in the remaining odd reflection.

The magnetic structure f actors are shown in the second column of table 3.

It was possible to choose the proper sign because

other choices would lead to sets of spin values

which are highly improbable. To find out how

the total magnetic moment is distributed over the two sites in the lattice, the following quantities are

introduced :

So = total effective, spin quantum number at ( 0 )

= total effective spin quantum number at

(111)

222

A form factor f is assigned to these spin num-

bers.

Then :

Using these expressions, and taking f or f the magnetic form factor given by Nathans and Pao- letti [1] for cubic cobalt, one arrives at the values

f o Sn + and So - given in the third and fourth column of table 3.

The measured saturation magnetization of

41.8 erg Oe-I gr-l results in

assuming a g-f actor of 2.

Combination of this results gives :

Total effective spin quantum number at (0 0 0) :

Total effective spin quantum number at

(111) :

222

First it was assumed that an eff ective spin is

connected to the cobalt atoms only, with different

spin values for the cobalt atoms at the (0 0 0) and

(111)

222

sites. With this model 1L follows that the effective spin value of the cobalt atoms at the

(111) -sites is about 2.3 which is very unlikely.

Obviously

222

the platinum atoms are carrying a magnetic moment too.

The same moment can then be assigned to the

same kind of atoms at different sites.

Since both elements are present at both sites,

two possibilities should be considered. In the one

the spins of one element in the two positions are f erromagnetically coupled, in which case :

In the other case they are antif erromagnetically coupled,

Here 8co and 8Pt are the spin components of

Co at (0 0 0) and of Pt at

(1 1 1) 222

along the posi-

tive c-axis.

Then one obtains in the f erromagnetic case :

and in the antif erromagnetic case :

The most important conclusion is that both Sco and SPt are positive, so that the two possibilities

are as shown in table 4. In both arrangements

TABLE 4

DIRECTION OF SPINS FOR TWO POSSIBLE ARRANGEMENTS

the Co at (0 0 0) is coupled ferromàgnetically with

the Pt

at (111), 222

which means that apart from

minor details both arrangements are the same. Jut should be emphasized that the quoted probable

errors do only include the uncertainties due to

counting statistics and the tabulated nuclear scat-

tering lengths. There are large probable errors

introduced in the calculations by using the cobalt magnetic f orm factor for the platinum and this

will certainly influence the result for the spin quantum numbers. Though there are no data

available for the form factor of platinum it is

certain that this form factor drops off more rapidly

with sin 0 /x than the one of cobalt. This does not change the overall conclusion, because a de-

crease in the f orm-f actor values of platinum causes

(5)

an increase of the platinum spin quantum numbers and a decrease of the cobalt spin quantum num-

bers. The conclusion that a magnetic moment is

localized on the platinum would still hold.

Comparison with related investigations. - In

the CoPt-sample under examination a disorder

parameter r - (0.076 ~ 0.08) is observed.

There is a definite indication that the total ma-

gnetic moment is divided between the constituent elements. Though it is difficult to determine the exact value of the magnetic moments localized

on the different kind of atoms, it is possible to

say that in CoPt the moment on the Pt-atoms

can be given as : > 0 . 3 whereas for the mo-

ment of the Go-atoms : 1.6 yB (again assuming

a g-f actor of 2).

The existence of localized magnetic moments on

Pt-atoms in the CU3Au-type alloys Mnpt3 and CrO.3PtO.7 is reported by Pickart and Nathans [2].

Bertaut et al. [3, 4, 5] found that in FeRh,

which is ot the CsCl-type, and thus related to the CoPt-structure, Rh has a small moment in the f erromagnetic region.

Discussion

Dr PICKART. - Comment avez-vous prepare

votre 6chantillon ? Avez-vous not6 des eff ets d’orientation préférentielle ?

Dr VAN LAAR. - L’6ehantillon, fourni par les laboratoires Philips, a été prepare par frittage de

CoPt (CN)6. Nous avons utilise un 6ehantillon

cylindrique de 20 mm de diametre, aussi une

orientation préiéientielle était tr6s improbable et

en fait n’a pas été observée.

Dr CABLE. - J’aimerais faire remarquer qu’a

Oak Ridge nous avons f ait des mesures de diffusion

magnétique sur un alliage de CoPt. Nous trouvons

aussi que le platine a un moment (environ 0,25

et que le moment de Co est à peu près 1,6

VAN LAAR. - Ceci confirme les conclusions de la présente 6tude.

Dr IBERS. - Puisque vous avez des intensit6s nucleaires precises, pouvez-vous en déduire des

valeurs, des longueurs de diffusion nucleaire pour Co et Pt meilleures que celles de la littérature et utilisées par vous ?

VAN LAAR. - Une fois que l’on sait que les spins

sont align6s selon I’axe c il est possible de calculer a partir de la reflection (0 01)

bc, - bPt = (0,71 ± 0,01) 10-12 cm.

Du fait que la reflection (0 0 2) ne peut etre séparée

de (1 1 0) on ne peut évaluer la valeur de bca + bm.

En acceptant la valeur

6pt = (0,95 ~ 0,01) X 10-12 cm,

on arrive a bco = (0,24 ~ 0,02) X 10-12 cm ce qui

est proche de la valeur mentionn6e par Dr Roth.

Dr ROTH. - La longueur de diffusion nuel6aire utilisée dans ce travail pour le cobalt est celle que

j’ai obtenue pour CoO. Dans un travail recent sur

C03O4, nous avons mesure (0,23 ~ 0,02) X ~0-12 cm

en accord aux erreurs expérimentales pr6s avec la

valeur précédente.

REFERENCES .~

[1] NATHANS (R.) and PAOLETTI (A.), Phys. Rev. Letters, 1954, 2, 254.

[2] PICKART (S. J.) and NATHANS (R.), J. Appl. Physics, Suppl., 1962, 33, 1336-1338.

[4] BERTAUT (E. F.) et al., J. Appl. Physics, Suppl., 1962, 33, 1123-1124.

[3] BERTAUT (E. F.) et al., C. R. Acad. Sc. 1963, 256, 1688.

[5] BERGEVIN (F.) et al., J. Chem. Physics, 1961, 35, 1904

Références

Documents relatifs

[3] O.Osagiede Beyond GDPR Compliance – How IT Audit Can Move from Watchdog to Strategic Partner, isaca.org [4] Regulation (EU) 2016/679 on the protection of natural persons

I  could  be  labeled  a  heretic  for  suggesting  that  dis- ease  does  not  exist  or  that  perhaps  disease  and  the  human  spirit  are  even  somehow  2 

Consider an infinite sequence of equal mass m indexed by n in Z (each mass representing an atom)... Conclude that E(t) ≤ Ce −γt E(0) for any solution y(x, t) of the damped

In the first part, by combining Bochner’s formula and a smooth maximum principle argument, Kr¨ oger in [15] obtained a comparison theorem for the gradient of the eigenfunctions,

Given a classification problem D, we use our algorithm and the genetic algorithm to search the feature f with high- est fitness λ D (f ) and we compare the sets of features ex-

They show that second-order cosmological per- turbations necessarily generate magnetic fields that are of the right order to be amplified by the dynamo mechanism into the

Just like the speed of light stops to be a fundamental constant when we express durations in meters, the constant b stops to be a fundamental constant if we use it to define a

As against the growth of non- magnetic planes number (t Pt increases) leads to a decreasing magnetization and exchange integrals for a fi xed magnetic layer thickness, which is