• Aucun résultat trouvé

Size effects on the mechanical behavior and the compressive failure strength of concrete: an extensive dataset

N/A
N/A
Protected

Academic year: 2021

Partager "Size effects on the mechanical behavior and the compressive failure strength of concrete: an extensive dataset"

Copied!
19
0
0

Texte intégral

(1)

HAL Id: hal-03014322

https://hal.archives-ouvertes.fr/hal-03014322

Submitted on 19 Nov 2020

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons

Attribution - NoDerivatives| 4.0 International License

Size effects on the mechanical behavior and the compressive failure strength of concrete: an extensive

dataset

Chi-Cong Vu, Jérôme Weiss, Olivier Plé, David Amitrano

To cite this version:

Chi-Cong Vu, Jérôme Weiss, Olivier Plé, David Amitrano. Size effects on the mechanical behavior and the compressive failure strength of concrete: an extensive dataset. Data in Brief, Elsevier, 2020,

�10.1016/j.dib.2020.106477�. �hal-03014322�

(2)

ContentslistsavailableatScienceDirect

Data in Brief

journalhomepage:www.elsevier.com/locate/dib

Data Article

Size effects on the mechanical behavior and the compressive failure strength of concrete:

an extensive dataset

Chi-Cong Vua,, Jérôme Weissb, Olivier Pléc, David Amitranob

aNational University of Civil Engineering (NUCE), 55 Giai Phong, Hanoi, Vietnam

bUniv. Grenoble Alpes, CNRS, IRD, IFSTTAR, ISTerre, 380 0 0 Grenoble, France

cUniv. Savoie Mont Blanc, CNRS, LOCIE, 730 0 0 Chambéry, France

a rt i c l e i n f o

Article history:

Received 23 September 2020 Revised 22 October 2020 Accepted 28 October 2020 Available online 2 November 2020 Keywords:

Concrete

Compressive strength Mechanical behavior Size effects Elastic modulus Quasi-brittle materials

a b s t r a c t

Thisdataarticleprovidesaseriesof492stress-straincurves and compressivestrengthvaluesobtainedunderthe uniax- ial compression of concrete samples fabricated from three differentnormal-weightconcrete mixtureswithfourdiffer- ent cylindrical sample sizes ranging from 40×80 mm to 160×320mm.Thesedataarerelatedtotworesearcharti- cles:“Revisitingstatisticalsizeeffectsoncompressivefailure ofheterogeneousmaterials,withaspecialfocusonconcrete”

(Vuetal.,2018)[1] and “Revisitingthe conceptof charac- teristic compressive strength ofconcrete” (Vu etal., 2020) [2]. In those papers, the strength values were used to (i) analyzeand interpretstatistical sizeeffects oncompressive strengthofconcrete(inref.[1]), and(ii)discussandevalu- atethe genuinecharacteristic compressive strengthofcon- cretewhen sizeeffects onstrength aretakenintoaccount (inref.[2]).Thisdatasetcouldbereusedforotherstatistical analysesonthemechanicalbehaviorofconcrete(e.g.elastic andstrengthproperties)andassociated possiblemixtureor sizeeffects. Inaddition,the characteristicproperties ofthe hardenedconcretesamplessuchastheapparentdensity,the moisturecontent,themodulusofelasticityaswellasthein- ternalmicrostructuresarealsoprovided.

DOI of original article: 10.1016/j.conbuildmat.2020.120126

Corresponding author.

E-mail address: congvc@nuce.edu.vn (C.-C. Vu).

https://doi.org/10.1016/j.dib.2020.106477

2352-3409/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

(3)

© 2020TheAuthors.PublishedbyElsevierInc.

ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/)

SpecificationsTable

Subject Engineering

Specific subject area Mechanics of Materials, Civil engineering

Type of data Tables

Figures Text (.txt) files

How data were acquired Uniaxial compression tests were carried out under a load-control protocol on 527 concrete samples by compression machines certified by the French Accreditation Committee (COFRAC). For 492 of these loading tests, the axial displacement during loading was measured by using one LVDT attached on the frame of the

compression machine. The effect of the elastic deformation of the loading frame as a function of the applied load was corrected, using calibration tests on reference samples of known elastic moduli (aluminum and stainless steel).

Image analysis of microstructures was performed from scanned images of internal sections of 12 hardened concrete samples (one sample for each concrete mixture and sample size). This scan procedure was done by using a flatbed scanner.

An Acoustic Emission (AE) system manufactured by Physical Acoustics Corporation (PAC) was used to measure the P-wave velocity within a selection of 36

undamaged concrete specimens (three samples for each size and type of concrete), which was then used to determine the dynamic elastic properties (dynamic Young’s modulus). The AE pulses were generated by breaking a pencil lead on one end of the concrete cylinder, and then captured by AE piezoelectric sensors of type PICO.

Data format Raw

Analyzed

Parameters for data collection For large sample sizes (concrete cylinders of 70 mm,110 mm, and 160 mm in diameter), a compression machine with a loading capacity of 30 0 0 kN was used, with a stiffness 2.9 times larger than that of the largest samples. The other machine, with a loading capacity of 300 kN, was used for the smallest samples (concrete cylinders of 40 mm in diameter). Its stiffness was 3.5 times larger than these small samples. A loading speed of 0.5 MPa/s was applied for all the tests and kept constant up to failure. During loading, force and displacement (hence, stress and strain) were recorded and monitored. All compression tests were performed after a minimum concrete’s age of 28 days.

To capture the images of concrete microstructure, a resolution of 1200dpi (corresponding to a 21.17 μm pixel size) was used for scanning the internal sections of the concrete samples.

For the Acoustic Emission measurements, a gain of 40 dB for the preamplifier and a detection threshold of 30 dB were applied in all the tests.

Description of data collection A series of 492 stress-strain records and compressive failure strength values of concrete cylindrical samples fabricated from three different concrete mixtures and four different sample sizes were collected from uniaxial compression tests. An additional set of 35 failure strength values were collected for 160 mm-diameter samples of one type of concrete (i.e. C-concrete mixture): as the LVDT measurements were not correctly recorded for those tests due to a technical problem, the corresponding stress-strain records for these 35 samples are not provided.

A pair of mean value and its standard deviations of the following parameters:

apparent density, moisture content, P-wave velocity, dynamic elastic moduli, porosity, as well as the characteristic parameters of the internal microstructure for an individual concrete mixture and sample size is presented in this data article.

The mean value of each parameter for a given sample size and type of concrete is calculated by averaging all the corresponding data of this parameter over its number of data. For a total, twelve (12) pairs of these two values above for a specified parameter of all concrete groups and all sample sizes

( continued on next page )

(4)

are reported. The number of data is: 527 for the apparent density (about 43 values for each concrete mixture and sample size); 120 for the moisture content (10 values for each sample size and concrete mixture); 360 for the P-wave velocity and the dynamic elastic modulus (30 values for an individual concrete group and sample size); 72 for the porosity as well as the characteristic parameters of the internal microstructure of hardened concrete samples (6 values for each sample size and each concrete group).

Data source location The dataset presented in this paper was collected from two locations:

- Institut des Sciences de la Terre (ISTerre), 1381 rue de la Piscine, 38610 Gières, France;

- IUT Chambéry, Univ. Savoie Mont Blanc (USMB), Savoie Technolac, 73376 Le Bourget du Lac Cedex, France.

Data accessibility Repository name: Mendeley Data

Data identification number: 10.17632/rnjnjvb3ph.1

Direct URL to data: https://data.mendeley.com/datasets/rnjnjvb3ph/draft?a=

0df5c6e5- d3d2- 4330- 8274- 14059b70e16e

Related research article C.C. Vu, J. Weiss, O. Plé, D. Amitrano, D. Vandembroucq, Revisiting statistical size effects on compressive failure of heterogeneous materials, with a special focus on concrete, J. Mech. Phys. Solids. 121 (2018) 47–70.

https://doi.org/10.1016/j.jmps.2018.07.022 .

C.C. Vu, O. Plé, J. Weiss, D. Amitrano, Revisiting the concept of characteristic compressive strength of concrete, Constr. Build. Mater. 263 (2020) 120126.

https://doi.org/10.1016/j.conbuildmat.2020.120126 .

ValueoftheData

This dataset on compressive strength, of unprecedented size (527 mechanical tests) has a practicalimportancefortheanalysisofstatisticalsizeeffectsoncompressivestrengthofcon- crete,atypicalquasi-brittlematerialoftremendousimportanceincivilengineering.

These data can serve as a reference strength dataset for normal-weight concrete, which could be usedtogether withstrength dataforother typesof concretesuch aslightweight, high-strength, self-compacting concrete foran analysisof the influence of microstructures onstrength,associatedsizeeffects,ormechanicalbehavior.

These datacan be used for analyzingthe probability distributionof compressive strength, whichise.g. ofupmostimportancetodeterminethe characteristiccompressivestrengthof concrete.

Thesedatacanbe usedforinvestigatingtheeffectofconcretemixandsamplesizeonthe elasticpropertiesofconcrete.

Thesedatacanbeusedtogether withother similarexperimentalcampaignsperformedun- derdifferenttestingconditions(temperature,humidity,etc.)toexploretheinfluenceofthe moisturecontentonelasticproperties,strength,andassociatedsizeeffects.

1. DataDescription

Thisdata articlepresentsthedataset obtainedduringtheexperimental campaignthat was used in: [1]to analyze the statisticalsize effectson the compressive failure strength f) of concrete intermsof meanstrength,associated variability,andprobability distribution; andto investigatetheinfluenceofmicrostructuraldisorderonthesizeeffectsofstrength;andin[2]to discussandevaluatethegenuinecharacteristiccompressivestrengthofconcretebytakinginto accountthesizeeffectsonstrength.

Threetypesofdataare providedandgiveninthepresentpaper.Thefirstone containsthe analyzeddataof:(i)differentcharacteristicpropertiesofhardenedconcretesamples(i.e.appar- entdensity,moisturecontent,modulusofelasticity);and(ii)themicrostructuralcharacteristics ofourundamagedconcretesamples.Thedataofpoint (i)arereportedinTable1,whilethose

(5)

Table 1

Density, moisture content, P-wave velocity, dynamic elastic moduli of different sample sizes and different concrete mixtures.

Density, ρ(kg/m 3)

Moisture content, w c(%)

P-wave velocity, V p

(m/s)

Dynamic elastic modulus, Y d

(GPa) Concrete

mixture

Sample size, φ×h

(mm x mm) Mean SD Mean SD Mean SD Mean SD

F 40 ×80 2204.1 20.7 5.4 0.5 3798.0 164.5 29.4 2.6

70 ×140 2201.1 11.0 5.4 0.4 3808.1 142.6 28.9 2.2

110 ×220 2177.7 25.0 5.2 0.5 3823.7 121.7 28.6 2.1

160 ×320 2153.1 25.3 5.0 0.2 3782.4 135.5 27.9 2.0

M 40 ×80 2415.3 16.5 3.4 0.3 4343.9 211.2 42.0 4.3

70 ×140 2397.4 11.4 3.4 0.3 4337.0 134.4 40.9 2.6

110 ×220 2386.3 18.6 3.0 0.1 4268.6 225.7 39.5 4.4

160 ×320 2366.4 12.4 2.9 0.3 4283.0 187.9 39.1 3.5

C 40 ×80 2415.1 25.2 3.4 0.4 4168.7 293.9 38.1 5.3

70 ×140 2421.6 11.7 3.4 0.4 4476.2 166.0 43.8 3.2

110 ×220 2393.9 17.6 3.0 0.2 4359.4 262.4 41.0 5.0

160 ×320 2384.6 18.0 3.1 0.2 4365.5 252.3 40.5 4.9

Table 2

The values of the microstructural characteristics length scales, ξgand ξp, integral ranges X 0,gand X 0,p, diameter of pore ( d pand d p,max), and porosity averaged over all sections of each size of sample, for the 3 different concrete mixtures.

ξg(mm) Xo,g(mm) ξp(μm) Xo,p(mm)

Meanpore diameter, d p(mm)

Maximum pore diameter,

dp,max (mm)

Porosity,po Concrete (%)

mixture

Samplesize, φ×h

(mmxmm) Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

F 40×80 0.5 0.1 5.1 0.8 21.6 9.0 4.2 3.8 0.31 0.25 3.9 0.9 5.3 1.2

70×140 0.6 0.1 5.7 0.6 27.4 3.4 5.2 4.1 0.34 0.30 3.7 0.5 6.2 0.5

110×220 0.6 0.0 6.3 0.8 26.0 8.8 6.7 3.7 0.31 0.18 6.5 1.8 3.7 0.9

160×320 0.6 0.0 11.1 5.8 30.6 6.0 11.3 5.7 0.37 0.25 6.9 1.2 3.9 0.7

M 40×80 2.0 0.4 9.7 2.5 9.0 7.5 2.7 0.7 0.28 0.21 3.1 0.5 1.6 0.2

70×140 2.0 0.1 14.0 7.0 9.5 6.8 3.3 0.6 0.29 0.20 4.5 0.9 1.9 0.6

110×220 2.3 0.3 15.1 3.3 13.3 3.3 6.1 2.1 0.34 0.22 6.7 1.2 1.9 0.5

160×320 2.4 0.2 16.1 4.1 7.4 3.2 5.4 2.7 0.31 0.23 5.2 1.1 1.1 0.3

C 40×80 3.5 0.8 10.0 1.1 6.1 3.3 5.5 4.2 0.23 0.21 2.5 0.6 1.1 0.4

70×140 3.5 0.3 15.9 3.9 8.6 4.4 4.5 1.7 0.27 0.18 4.1 1.0 1.7 0.6

110×220 3.2 0.3 22.5 11.1 8.9 4.7 6.9 3.5 0.33 0.23 5.4 1.3 1.4 0.5 160×320 3.8 0.5 27.8 6.7 10.5 4.9 7.1 3.4 0.29 0.19 5.3 1.0 1.6 0.3

ofpoint(ii)arereportedinTable2.Inthesetables,thevaluesforagivensamplesize,foreach concretemixture,wereaveragedoverallconcretesamplesofthisexaminedsize.(iii)Thethird datasetprovidesthedimensions,themass,thedensityaswellastheuniaxialcompressivefail- urestrengthfor527concrete samples(allsamplesizesandconcretemixtures);see Table3to Table14.Finally,amongthese527tests,weprovide492stress-strainrecords.Thecorresponding datafiles(.txt)canbefoundintheSupplementarymaterials(SM)ofthispaper.Fortheremain- ing35compressiontestsofonetype ofconcrete(i.e.160mm-diametersamplesofC-concrete mixture),a technicalproblemdidnot allowto recordthe LVDT data,hencethestrain records arenotprovided.

Thevalues oftheelastic propertiesandseveral characteristicparameters ofhardened con- cretesamples,aswellasthevaluesofthecompressivestrengthfailurestrengthforallconcrete samplesarepresentedin14(fourteen)tablesasfollows:

(6)

Table 3

The details of dimensions, mass, density, and the compressive failure strength for different cylindrical ( φ× h = 40 ×80 mm) concrete samples of F-concrete.

Sample Sample dimensions Height, Mass of Density, Peak load, Compressive failure No. ID Diameter, φ(mm) h (mm) sample (g) ρ(kg/m 3) F max(kN) strength, σf (MPa)

1 F4-B1-1 39.0 81.0 213.0 2201.3 66.5 55.7

2 F4-B1-2 39.0 81.0 216.0 2232.3 81.0 67.8

3 F4-B1-3 39.0 81.0 214.0 2211.6 67.9 56.8

4 F4-B1-4 39.0 81.0 216.0 2232.3 72.2 60.4

5 F4-B1-5 39.0 81.0 214.0 2211.6 66.5 55.6

6 F4-B1-6 39.0 81.0 216.0 2232.3 70.7 59.2

7 F4-B1-7 39.0 81.0 215.0 2222.0 76.0 63.7

8 F4-B1-8 39.0 81.0 214.0 2211.6 60.3 50.4

9 F4-B1-9 39.0 80.5 208.0 2163.0 68.6 57.4

10 F4-B1-10 39.0 80.5 207.0 2152.6 80.5 67.4

11 F4-B1-11 39.0 81.0 211.0 2180.6 85.0 71.2

12 F4-B1-12 39.0 81.0 212.0 2190.9 70.4 59.0

13 F4-B1-13 39.0 81.0 212.0 2190.9 65.6 54.9

14 F4-B1-14 39.0 80.5 214.0 2225.4 77.6 64.9

15 F4-B1-15 39.0 81.0 210.0 2170.3 70.2 58.8

16 F4-B1-16 39.0 81.0 214.0 2211.6 66.4 55.6

17 F4-B1-17 39.0 80.5 213.0 2215.0 61.9 51.8

18 F4-B1-18 39.0 81.0 214.0 2211.6 67.2 56.3

19 F4-B1-19 39.0 81.0 215.0 2222.0 85.2 71.3

20 F4-B1-20 39.0 81.0 214.0 2211.6 60.8 50.9

21 F4-B1-21 39.0 81.0 214.0 2211.6 71.8 60.1

22 F4-B1-22 39.0 80.5 213.0 2215.0 70.3 58.9

23 F4-B1-23 39.0 81.0 215.0 2222.0 70.5 59.0

24 F4-B1-24 39.0 81.0 214.0 2211.6 72.6 60.8

25 F4-B1-25 39.0 80.5 213.0 2215.0 71.0 59.5

26 F4-B1-26 39.0 81.0 214.0 2211.6 59.3 49.6

27 F4-B1-27 39.0 81.0 213.0 2201.3 74.7 62.5

28 F4-B1-28 39.0 81.0 214.0 2211.6 76.2 63.8

29 F4-B1-29 39.0 81.0 212.0 2190.9 76.3 63.9

30 F4-B1-30 39.0 81.0 213.0 2201.3 75.1 62.9

31 F4-B1-31 39.0 81.0 215.0 2222.0 80.9 67.8

32 F4-B1-32 39.0 81.0 215.0 2222.0 71.7 60.0

33 F4-B1-33 39.0 80.5 211.0 2194.2 69.0 57.8

34 F4-B1-34 39.0 80.5 205.0 2131.8 72.3 60.5

35 F4-B1-35 39.0 80.5 209.0 2173.4 69.5 58.2

36 F4-B1-36 39.0 81.0 213.0 2201.3 61.3 51.3

37 F4-B1-37 39.0 81.0 213.0 2201.3 60.8 50.9

38 F4-B1-38 39.0 81.0 214.0 2211.6 56.7 47.4

39 F4-B1-39 39.0 81.0 215.0 2222.0 55.4 46.4

40 F4-B1-40 39.0 81.5 215.0 2208.3 54.0 45.2

41 F4-B1-41 39.0 81.0 213.0 2201.3 53.3 44.6

42 F4-B1-42 39.0 81.0 213.0 2201.3 53.0 44.4

43 F4-B1-43 39.0 81.0 213.0 2201.3 52.2 43.7

44 F4-B1-44 39.0 81.0 211.0 2180.6 51.0 42.7

45 F4-B1-45 39.0 81.0 214.0 2211.6 50.4 42.2

46 F4-B1-46 39.0 81.0 214.0 2211.6 50.6 42.3

Table1representsthevaluesofdensity,moisture content,P-wavevelocity,dynamicelastic modulusofdifferentsamplesizesanddifferentconcretemixtures.Whilethevaluesofden- sityandmoisturecontenthavebeenpresentedinFig.3ofref.[2],thoseofP-wavevelocity anddynamicelasticmodulushavebeendisplayedinFig.11ofref.[1].

Table2representsthevaluesofthemicrostructuralcharacteristicslength scales,ξgandξp, integral ranges X0,g andX0,p,diameter of pore, andporosity averaged over all sectionsof each size of sample, forthe three concrete mixtures. While the values ofξg andξp have

beenshowninFig.6andFig.9brespectivelyofref.[1],thediameterofporeandporosity forthethreedifferentconcretemixtureshavebeenpresentedinTableA1ofref.[2].

(7)

Table 4

The details of dimensions, mass, density, and the compressive failure strength for different cylindrical ( φ× h = 70 ×140 mm) concrete samples of F-concrete.

Sample dimensions No. Sample ID

Diameter, φ(mm)

Height, h (mm)

Mass of sample (g)

Density, ρ(kg/m 3)

Peak load, F max

(kN)

Compressive failure strength, σf (MPa)

1 F7-B1-1 69.5 139.0 1156.0 2192.2 184.9 48.7

2 F7-B1-2 69.5 140.0 1173.0 2208.6 185.6 48.9

3 F7-B1-3 69.5 139.5 1166.0 2203.3 183.7 48.4

4 F7-B1-4 69.5 140.0 1165.0 2193.5 214.3 56.5

5 F7-B1-5 69.5 140.0 1170.0 2202.9 200.9 52.9

6 F7-B1-6 69.5 140.0 1174.0 2210.4 154.0 40.6

7 F7-B1-7 69.5 139.0 1165.0 2209.3 171.1 45.1

8 F7-B1-8 69.5 140.0 1171.0 2204.8 160.9 42.4

9 F7-B1-9 69.5 140.0 1173.0 2208.6 175.1 46.2

10 F7-B1-10 69.5 139.5 1168.0 2207.0 167.1 44.1

11 F7-B1-11 69.5 140.0 1181.0 2223.6 216.6 57.1

12 F7-B1-12 69.5 139.5 1169.0 2208.9 167.2 44.1

13 F7-B1-13 69.5 140.0 1173.0 2208.6 220.3 58.1

14 F7-B1-14 69.5 140.0 1170.0 2202.9 209.8 55.3

15 F7-B1-15 69.5 139.0 1171.0 2220.7 211.9 55.9

16 F7-B1-16 69.5 140.0 1175.0 2212.3 172.1 45.4

17 F7-B1-17 69.5 139.0 1164.0 2207.4 191.4 50.4

18 F7-B1-18 69.5 140.0 1172.0 2206.7 163.9 43.2

19 F7-B1-19 69.5 140.0 1175.0 2212.3 221.7 58.4

20 F7-B1-20 69.5 139.5 1177.0 2224.0 187.9 49.5

21 F7-B1-21 69.5 140.0 1169.0 2201.0 216.8 57.1

22 F7-B1-22 69.5 139.0 1160.0 2199.8 189.2 49.9

23 F7-B1-23 69.5 139.5 1164.0 2199.5 218.8 57.7

24 F7-B1-24 69.5 140.0 1167.0 2197.3 152.2 40.1

25 F7-B1-25 69.5 140.0 1171.0 2204.8 170.0 44.8

26 F7-B1-26 69.5 140.0 1160.0 2184.1 174.0 45.9

27 F7-B1-27 69.5 140.0 1159.0 2182.2 209.0 55.1

28 F7-B1-28 69.5 140.0 1175.0 2212.3 202.3 53.3

29 F7-B1-29 69.5 140.0 1163.0 2189.7 162.7 42.9

30 F7-B1-30 69.5 140.0 1171.0 2204.8 172.4 45.4

31 F7-B1-31 69.5 139.5 1155.0 2182.5 175.0 46.1

32 F7-B1-32 69.5 140.0 1160.0 2184.1 171.2 45.1

33 F7-B1-33 69.5 139.0 1165.0 2209.3 208.1 54.8

34 F7-B1-34 69.5 140.0 1163.0 2189.7 197.7 52.1

35 F7-B1-35 69.5 140.0 1166.0 2195.4 166.8 44.0

36 F7-B1-36 69.5 139.5 1155.0 2182.5 193.5 51.0

37 F7-B1-37 69.5 139.5 1161.0 2193.8 168.4 44.4

38 F7-B1-38 69.5 140.0 1160.0 2184.1 193.5 51.0

39 F7-B1-39 69.5 140.0 1175.0 2212.3 204.4 53.9

40 F7-B1-40 69.5 140.0 1169.0 2201.0 182.2 48.0

41 F7-B1-41 69.5 140.0 1173.0 2208.6 211.6 55.8

42 F7-B1-42 69.5 141.0 1169.0 2185.4 176.8 46.6

43 F7-B1-43 69.5 140.0 1167.0 2197.3 199.5 52.6

44 F7-B1-44 69.5 140.0 1168.0 2199.2 204.8 54.0

45 F7-B1-45 69.5 140.0 1167.0 2197.3 181.0 47.7

46 F7-B1-46 69.5 139.5 1162.0 2195.7 211.3 55.7

Table 3 represents the details of dimensions, mass, density, and the compressive failure strengthfordifferentcylindrical(φ× h=40 × 80 mm)concretesamplesofF-concrete.

Table 4 represents the details of dimensions, mass, density, and the compressive failure strengthfordifferentcylindrical(φ× h=70 × 140 mm)concretesamplesofF-concrete.

Table 5 represents the details of dimensions, mass, density, and the compressive failure strengthfordifferentcylindrical(φ× h=110 × 220 mm)concretesamplesofF-concrete.

(8)

Table 5

The details of dimensions, mass, density, and the compressive failure strength for different cylindrical ( φ× h = 110 ×220 mm) concrete samples of F-concrete.

Sample dimensions No. Sample ID

Diameter, φ(mm)

Height, h (mm)

Mass of sample (kg)

Density, ρ(kg/m 3)

Peak load, F max

(kN)

Compressive failure strength, σf (MPa)

1 F11-B1-1 111.7 215.2 4.6 2193.6 423.3 43.2

2 F11-B1-2 111.8 216.0 4.6 2184.0 422.7 43.1

3 F11-B2-3 111.9 211.2 4.5 2184.8 429.3 43.7

4 F11-B2-4 112.0 211.5 4.6 2191.8 474.9 48.2

5 F11-B2-5 112.1 211.2 4.5 2167.0 432.9 43.9

6 F11-B2-6 111.9 213.2 4.6 2176.7 420.5 42.8

7 F11-B2-7 111.5 216.0 4.6 2173.5 422.6 43.3

8 F11-B2-8 111.9 219.0 4.6 2120.5 473.0 48.1

9 F11-B2-9 112.1 211.0 4.5 2180.1 450.5 45.6

10 F11-B2-10 111.9 213.8 4.6 2187.8 432.4 44.0

11 F11-B2-11 111.8 212.0 4.5 2178.1 440.3 44.8

12 F11-B2-12 112.2 207.3 4.5 2195.0 491.0 49.7

13 F11-B2-13 111.8 215.0 4.6 2189.9 421.7 43.0

14 F11-B2-14 112.0 215.0 4.6 2176.9 439.8 44.6

15 F11-B2-15 112.0 211.0 4.6 2196.0 477.0 48.4

16 F11-B2-16 111.8 213.0 4.6 2212.8 469.1 47.8

17 F11-B2-17 111.8 216.5 4.7 2188.3 390.0 39.7

18 F11-B2-18 112.0 214.0 4.6 2168.1 387.5 39.3

19 F11-B3-19 111.7 218.7 4.7 2172.1 4 4 4.7 45.4

20 F11-B3-20 112.0 216.0 4.6 2175.7 417.3 42.4

21 F11-B3-21 111.6 216.7 4.7 2213.5 457.4 46.8

22 F11-B3-22 111.8 219.0 4.6 2161.0 434.1 44.2

23 F11-B3-23 111.8 215.0 4.6 2165.7 453.5 46.2

24 F11-B3-24 111.8 213.7 4.6 2184.6 462.6 47.1

25 F11-B3-25 112.0 212.0 4.6 2183.2 450.1 45.7

26 F11-B3-26 111.8 217.3 4.6 2170.0 424.7 43.3

27 F11-B3-27 111.8 215.0 4.6 2195.1 436.3 44.4

28 F11-B3-28 111.6 217.8 4.6 2174.2 451.4 46.1

29 F11-B3-29 112.0 213.0 4.6 2183.5 441.5 44.8

30 F11-B3-30 112.0 216.0 4.6 2157.4 438.6 44.5

31 F11-B3-31 111.8 218.0 4.6 2135.0 447.0 45.5

32 F11-B3-32 111.8 211.5 4.6 2218.4 468.7 47.7

33 F11-B3-33 111.8 215.0 4.6 2192.2 421.1 42.9

34 F11-B3-34 111.8 217.0 4.8 2238.7 453.3 46.2

35 F11-B4-35 111.8 214.7 4.6 2179.2 421.0 42.9

36 F11-B4-36 112.0 215.0 4.5 2136.3 429.1 43.6

37 F11-B4-37 111.8 214.7 4.6 2180.6 429.9 43.8

38 F11-B4-38 112.2 217.8 4.6 2156.1 423.6 42.8

39 F11-B4-39 111.7 217.2 4.7 2186.1 406.5 41.5

40 F11-B4-40 111.8 210.8 4.6 2201.6 432.5 44.1

41 F11-B4-41 111.8 221.8 4.5 2084.2 415.7 42.3

42 F11-B4-42 111.8 213.3 4.5 2166.7 421.2 42.9

43 F11-B4-43 111.5 215.8 4.6 2176.4 376.7 38.6

44 F11-B4-44 111.6 217.0 4.6 2171.8 387.8 39.6

45 F11-B4-45 111.8 212.0 4.5 2157.4 434.2 44.2

Table 6 represents the details of dimensions, mass, density, and the compressive failure strengthfordifferentcylindrical(φ× h=160 × 320 mm)concretesamplesofF-concrete.

Table 7 represents the details of dimensions, mass, density, and the compressive failure strengthfordifferentcylindrical(φ× h=40 × 80mm)concretesamplesofM-concrete.

Table 8 represents the details of dimensions, mass, density, and the compressive failure strengthfordifferentcylindrical(φ× h=70 × 140mm)concretesamplesofM-concrete.

Table 9 represents the details of dimensions, mass, density, and the compressive failure strengthfordifferentcylindrical(φ× h=110 × 220mm)concretesamplesofM-concrete.

Références

Documents relatifs

For the volumes graphs (third column), a white color means that the difference of mean volumes is small whereas the blue, pink and yellow colors are used when the mean volume of

In the second case, no finite population size is assumed, but the gain from future patients is geometrically discounted, so that the gain from patient j if they receive treatment i is

In this paper, we have presented a 3D inverse problem to evaluate dielectric parameters according to the depth, in reinforced concrete samples, by using radar measurements.. First,

In [15], from a large number (527) of uniaxial compression tests, conducted on concrete specimens with three different mixtures (mean aggregate size and

In this section the numerical DEM model is validated by simulating masonry structures for which experimen- tal results are available in the literature. Two experi- mental

The G- and K-type stars of NGC 2547 follow the same relationship between X-ray activity and Rossby number established in older clusters and field stars, although most of the

Keywords: Equivalent reinforced concrete model; Framework method; Continuum damage mechanics; Dynamic shear

Unit´e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex Unit´e de recherche INRIA Rhˆone-Alpes, 655, avenue de l’Europe, 38330 MONTBONNOT ST