• Aucun résultat trouvé

BRAIN GLYCEROPHOSPHOLIPIDS AND CHOLESTEROL IMAGING BY MASS SPECTROMETRY

N/A
N/A
Protected

Academic year: 2021

Partager "BRAIN GLYCEROPHOSPHOLIPIDS AND CHOLESTEROL IMAGING BY MASS SPECTROMETRY"

Copied!
1
0
0

Texte intégral

(1)

700 750 800 850 900

0

10

20

30

40

50

60

70

890.7

888.7

885.7

834.7

In te n si ty

m/z

766.7

806.7

790.7

774.7

747.6

857.7

878.7

760 780 800 820 840

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

In te n si ty

m/z

804.5

769.6

848.6

782.6 826.6

798.6

760 780 800 820 840

0.00

0.05

0.10

0.15

0.20

0.25

0.30

In te n si ty

m/z

798.6

782.6

772.6

760 780 800 820 840

0

10

20

30

40

50

60

70

80

90

100

In te n si ty

m/z

798.8

788.8

844.8

822.8 828.8

779.7

778.7

804.7 806.7

760 780 800 820 840

0

2

4

6

8

840.7

822.7

824.7

In te n si ty

m/z

844.7

826.7 828.7

806.7

798.8

772.8

751.6

700 750 800 850 900

0

2

4

6

In te n si ty

m/z

888.7

885.6

766.7 834.6 857.6 878.7

806.6

790.6

774.6

747.5

700 750 800 850 900

0

5

10

15

20

25

30

35

40

844.5

726.6

806.6 874.7 878.7 876.7

890.7

888.7

In te n si ty

m/z

BRAIN GLYCEROPHOSPHOLIPIDS AND

CHOLESTEROL IMAGING BY MASS SPECTROMETRY

C1

A. Héron 1 *, V. Petit 2 , A. Seyer 2 , F. Benabdellah 2 , D. Touboul 2 , A. Brunelle 2 , O. Laprévote 1

1 Laboratoire de Chimie-Toxicologie Analytique et Cellulaire, EA 4463, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, 4 avenue de l’Observatoire 75006 Paris, France

2 Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse 91198 Gif-sur-Yvette, France

* Auteur correspondant/présentateur du poster anne.heron@parisdescartes.fr

m/z 798.8

PC 34:1+K

I : 0-200

MALDI-TOF Positive ion mode

PHOSPHATIDYLCHOLINES

I : 0-30

m/z 885.6

PI 38:4

I : 0-600

I : 0-80

m/z 774.7

PE (O-40:6)

I : 0-100

m/z 726.6

PE (O-36:2)

I : 0-200

MALDI-TOF Negative ion mode

PHOSPHATIDYLETHANOLAMINES

m/z 798.6

PC 34:1+K

Lipids are the most abundant biomolecules found in the brain,

following water, representing up to 50% of its dry weight. These

compounds are structural components of cell membranes, and

have various functions of precursors, biomessengers, and signal

transduction. Marked alterations in their composition have been

reported to occur during neurological disorders.

Until now, many studies have been interested in brain lipid

content. However, the methods used to identify lipids always

involve extraction prior to analysis, which destroys any

information relevant to tissue localization. Lipid staining in

tissues is possible with fluorescent or classic histological dyes

but is not specific. Rare are the specific molecular probes such

as immunohistochemical tools able to detect lipids in tissue.

Therefore, brain tissue lipidomic imaging is crucial to precise

anatomic localization of lipid species in cerebral structures.

In this study, we used two powerful mass spectrometry imaging

methods, MALDI-TOF/TOF 1 (matrix-assisted laser desorption

/ionization) and TOF-SIMS 2 (time-of-flight secondary ion mass

spectrometry), in order to detect and localize lipid species in rat

brain and human temporal cortex, both at regional and cellular

levels. The first method can perform in situ structural

identifications by MS/MS, while the second is able to localize

species with a spatial resolution of less than 1 µm 3 .

We focused on cholesterol and on the most quantitatively

relevant glycerophospholipids (PC, PE, PS, PI) described in

literature, their composition greatly altering neural membrane

stability, fluidity and permeability. The results showed differential

repartition of these lipids in cell bodies or dendrites of grey

matter, and in myelinated axons.

PHOSPHATIDYLSERINES

PHOSPHATIDYLINOSITOLS

cerebellum

striatum

TOF-SIMS

Positive ion mode

CHOLESTEROL

Species Localization and abundance

Grey

Matter

(GM)

White

Matter

(WM)

Structures

Cholesterol

[M+H-H

2

O]

+

m/z 369.35

[M-H]

-

m/z 385.35

38±2% of total lipids in rat brain cortex

6

14-16 mg/g brain ww

11

PC

PC 34 :1

16 :0/18 :1

[M+K]

+

m/z 798.54

20-23 mg/g brain ww

7,8,9,10

20±1% of total lipids in brain cortex

6

30-40% of PC in cortex

(PlsPC 34:0 :1-2% of PC)

5,6

PE

PE 40 :6

(18 :0/22 :6)

[M-H]

-

m/z 790.54

15-20 mg/g brain ww

7,8,9,10

22±2% of total lipids in brain cortex

6

20-35% of PE in cortex

6

PE O-40:6

(p18 :0/22 :6)

[M-H]

-

m/z 774.54

PE O-36 :2

(p18 :1/18 :1)

[M-H]

-

m/z 726.54

10-20% of PE in cortex

4,5,6

8-15% of PE in cortex

4,5,6

PS

PS 40:6

(18:0/22:6)

[M-H]

-

m/z 834.53

4-8 mg/g brain ww

7,8,9,10

35-50% of PS in cortex

5,6

PI

PI 38:4

(18:0/20:4)

[M-H]

-

m/z 885.55

1-2 mg/g brain ww

7,8,910

50-70% of PI in cortex

5,6

Cholesterol represents 40% of total lipids in brain, Glycerophospholipids : 36%, Sphingolipids : 15%, Plasmalogens : 9.5%

6

Total amount of PL in rat brain = 42±1mg/g brain, wet weight

9

PC and PE represent 80% of total glycerophospholipids

HO

Rat brain sagittal sections Human brain sections :Temporal cortex 

Maldi imaging

WM

GM

Spatial resolution : 1 µm

m/z 1 to 2000 M/M  8000

Electron flood

gun

Time of flight

Detector

Reflectron

Liquid Metal Ion

Gun Bi

3+

25 keV

Spectrum

4000 5000 6000 7000

0 20 40 60 80 100

m/z

% intensité

Fixation of the

inox plaque on

support

Matrix

deposit

Image

acquisition

MALDI-TOF/TOF TOF-SIMS

SAMPLES

 Thanks to Charles Duyckaerts GIE-Neuroceb

m/z 834.6

PS 40:6

I : 0-400

I : 0-20

Corpus callosum

Cortical Layer I

Str

Cx Hi

Thal Cb

Hy

Mes

Pons Bulb

TOF-SIMS

Negative ion mode

10000 µm Image 1

Image 7

2000 µm

1

2

3

4

5

6

7

M:385.38 [Cholesterol – H]- mc:97 tc:3.504e+8 WM GM

I : 0-20

5 mm

5000 µm

2500 µm

m/z790.6

PE 40:6

I : 0-400

5 mm

1225 µm

5 mm

5 mm

5 mm

Region of interest

GM WM GM WM

5 mm

5 mm

1225 µm

1225 µm 1225 µm

GM GM

m/z 726.6

m/z 774.7

5 mm

700 750 800 850 900

0

200

400

600

800

1000

1200

1400

1600

1800

2000

834.7

788.7

728.7

726.7

806.7

862.8

878.8

890.8

888.8

In te n si ty

m/z

Plasmalogens

WM WM

O

O O O P O

OH

O O

N

O

O O O P O

OH

O O

H2N

O O O P O

OH

O O

H2N

O O O P O

OH

O O

H2N

O O O P O

OH

O O

HN

HO O

O

O

O O O P O

OH O

O HO

HO HO OH

OH

0

mc = maximal number

of counts in a pixel

Color scale for TOF-SIMS

imaging

tc = total number of counts

for the whole image

REFERENCES :

1. Stoeckli M., Chaunrand P., Hallahan D.E., Caprioli R. M. Imaging mass spectrometry: A new technology for the analysis of protein expression in mammalian tissues. Nat. Med. 2001, Vol. 7: 493-496.

2. Brunelle A., Laprévote O. Recent Advances in Biological Tissue Imaging with Time-of-Flight Secondary Ion Mass Spectrometry: Polyatomic Ion Sources, Sample Preparation, and Applications. Curr. Pharm. Design 2007 Vol.13 : 3335-3343.

3. Benabdellah F., Seyer A., Quinton L., Touboul D., Brunelle A., Laprévote O. Mass spectrometry imaging of rat brain sections: nanomolar sensitivity with MALDI versus nanometer resolutionby TOF–SIMS. Anal. Bioanal. Chem. 2010 Vol. 396 :151-162.

4. Han X., Holtzman D.M., McKeel D.W. Plasmalogen deficiency in early Alzheimer's disease subjects and in animal models : molecular characterization using electrospray ionization mass spectrometry. J. Neurochem. 2001, Vol. 77 : 1168-1180.

5. Käkelä R., Somerharju P, Tyynelä J. Analysis of phospholipid molecular species in brains from patients with infantile and juvenile neuronal-ceroid lipofuscinosis using liquid chromatography-electrospray ionization mas spectrometry. J. Neurochem. 2003, vol. 84 : 1051-1065.

6. Little S.J., Lynch M.A., MankuM., Nicolaoua A. Docosahexaenoic acid-induced changes in phospholipids in cortex of young and aged rats: A lipidomic analysis. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2007 Vol. 77 : 155-162.

7. Lutzke BS, Braughler JM. An improved method for the identification and quantitation of biological lipids by HPLC using laser light-scattering detection. J Lipid Res. 1990 Vol. 31(11) : 2127-2130.

8. Metz KR, Dunphy LK. Absolute quantitation of tissue phospholipids using 31P NMR spectroscopy. 1996 Vol. 37(10) : 2251-2265

9. Norris C, Fong B, MacGibbon A, McJarrow P. Analysis of phospholipids in rat brain using liquid chromatography-mass spectrometry. Lipids. 2009 Vol. 44(11):1047-1054.

10. Wells MA, Dittmer JC. A comprehensive study of the postnatal changes in the concentration of the lipids of developing rat brain. Biochemistry. 1967 Vol. 6(10) : 3169-3175.

11. Dietschy J.M. and Turley S.D. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J. Lipid Res. 2004 Vol. 45 : 1375-1397.

Two colors overlay

1 ère Journée de l’Institut Médicament-Toxicologie-Chimie-Environnement, Paris 2010, France

Références

Documents relatifs

We tested different protein extraction protocols based on previous applications of MALDI-TOF MS to fungi to produce mass spectra of 34 viable single-spore isolates belonging to

Another technique, mostly used with low resolving power MS analyzers, is differential ion mobility spectrometry (DMS), where analytes are gas-phase separated according to

In conclusion, our results indicate that acute intra- venous FO lipid emulsion administration was rapidly incorporated into cell membrane and downregulated the neuroendocrine

Addition Avec Les Chiffres Romains (A) Réponses Répondez à chaque question en chiffres

A first assessment of matrix properties was performed on various chemically diverse lichen metabolites including depsides (perlatolic acid and erythrin), depsidones (physodic

focused on MSA and PSP and investigated this problem un- der the constraint of small dataset machine learning. Using FDA, we ended up defining a new scalar variable which can

Quantitative accuracy and reproducibility of MALDI-TOF/TOF as well as the aptitude of the data pre-processing the data processing and the data analysis procedures to select

The impulse surge voltages in the primary and secondary windings of 110 kV nominal voltage transformers which can operate either with insulated neutral or with grounded neutral