• Aucun résultat trouvé

Continuous dependence of the entropy solution of general parabolic equation

N/A
N/A
Protected

Academic year: 2022

Partager "Continuous dependence of the entropy solution of general parabolic equation"

Copied!
11
0
0

Texte intégral

(1)

ANNALES

DE LA FACULTÉ DES SCIENCES

Mathématiques

MOHAMEDMALIKI

Continuous dependence of the entropy solution of general parabolic equation

Tome XV, no3 (2006), p. 589-598.

<http://afst.cedram.org/item?id=AFST_2006_6_15_3_589_0>

© Annales de la faculté des sciences de Toulouse Mathématiques, 2006, tous droits réservés.

L’accès aux articles de la revue « Annales de la faculté des sci- ences de Toulouse, Mathématiques » (http://afst.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://afst.cedram.

org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du

(2)

Annales de la Facult´e des Sciences de Toulouse Vol. XV, n3, 2006 pp. 589–598

Continuous dependence of the entropy solution of general parabolic equation

()

Mohamed Maliki(1)

ABSTRACT.— We consider the general parabolic equation :

ut∆b(u)+div F(u) =finQ=]0, T[×IRN, T >0 with u0L(IRN), for a.e t]0, T[, f(t)L(IRN) and

T

0

f(t)L(IRN)dt <. We prove the continuous dependence of the entropy solution with respect toF, b, f and the initial datau0of the associated Cauchy problem.

This type of solution was introduced and studied in [MT3]. We start by recalling the definition of weak solution and entropy solution. By applying an abstract result (Theorem 2.3), we get the continuous dependance of the entropy solution. The contribution of the present work consists of considering the equation in the whole space IRn instead of a bounded domain and considering a bounded data instead of integrable data.

R´ESUM´E.— On consid`ere l’´equation parabolique g´en´erale :

ut∆b(u) +div F(u) = f dans Q =]0, T[×IRN, T > 0 avec u0 L(IRN), fL1Loc(Q) pourp.p t]0, T[f(t)L(IRN),

et

T 0

f(t)L(IRN)dt <.

On montre la d´ependance continue de la solution entropique du probl`eme de Cauchy associ´e, par rapport aux donn´eesF,b f et la donn´ee initiale u0. Ce type de solution a ´et´e introduit et ´etudi´e dans [MT3].

On commence le travail par un rappel de la d´efinition de la solution faible et entropique ainsi que les r´esultats importants obtenus dans [MT3]. En- suite on montre le r´esultat principal du travail en utilisant le lemme ab- strait (Th´eor`eme 2.3). La contribution du travail est de traiter le probl`eme dans IRNainsi que de consid´erer des donn´ees born´ees au lieu des donn´ees int´egrables utilis´ees dans la litt´erature.

(∗) Re¸cu le 7 d´ecembre 2004, accept´e le 20 janvier 2006

(1) Universit´e Hassan II, F.S.T. Mohammedia, B.P. 146 Mohammedia, Maroc.

E-mail: mohamedmaliki@yahoo.fr

(3)

1. Introduction and notations

We consider the Cauchy Problem (CP) = (CP)(b, F, f, u0) :



ut∆b(u) +div F(u) =f in Q

u(0, .) =u0 in IRN,

(CP)

whereF ∈C(IR,IRN) ,b∈C(IR), bsuch thatF(0) = 0 and b(0) = 0.

We denote byQ=]0, T[×IRN with T >0, and:















1) u0∈L(IRN),

2) f ∈L1Loc(Q) for a.e t∈]0, T[ f(t)∈L(IRN), 3)

T 0

f(t)L(IRN)dt <∞.

(H1)

(CP)(b, F, f, u0) is a degenerate second order problem. It is known there is no classical solution and the weak solution is not unique. A vast literature exists on the degenerate parabolic equation we consider. In this literature, many results are proved about existence of weak solution, and uniqueness under various additional conditions [AL], [BG], [BT1], [BW], [BT2], [DT]

and [YJ].

In our first work [MT3] while studying the existence and the uniqueness of the entropy solution, we introduced sufficient conditions on the continu- ity modulus of b and F to insure this uniqueness. This type of conditions appears basically in [BK] where the authors gave optimal conditions for uniqueness of entropy solution for the first order problem.

In this paper, we achieve the study of the problem (CP) by giving a result for continuous dependence of the entropy solution. The contribution of this work consists of considering (CP)(b, F, f, u0) on I Rn instead of a bounded domain. This is done by considering the same type of conditions as in [MT3] and [BK]. Our main result is based on the theory and theorems we have developed and proved in [MT1], [MT2] and [MT3].

In section 2 we recall the definitions of the types of solutions we use (weak solution, entropy solution) and the main result presented in [MT3].

In section 3, we state and prove the main result (Theorem 6).

(4)

Continuous dependence of the entropy solution of general parabolic equation

2. Preliminaries

First of all we introduce the definitions of solution types used below.

Definition 2.1 (Weak solution of (CP)(b, F, f, u0)). — Let u0 and f be such that (H1) is fulfilled. A weak solution of (CP) is a function u∈L(Q) such that:

ut∈L2((0, T), Hloc1(IRN)) +L1((0, T), L(IRN)), (2.1) b(u)∈L2((0, T), Hloc1 (IRN)) (2.2) ut∆b(u) +divF(u) =f in D(Q)

and u(0, x) =u0 in IRN. The last condition is taken in the sense that

T 0

< ut, ξ > dt=

Q

u ξtdx dt−

IRN u0 ξ(0)dx, (2.3) for any ξ ∈L2((0, T);D(IRN))∩W1,1((0, T);L(IRN)) so thatξ(T) = 0 and<, >represents the duality product betweenH1(IRN) and H1(IRN).

It is well known, that we do not have uniqueness of weak solution in general. In order to get uniqueness, we introduce entropy solution following the notion of entropy introduced by S.N. Kruzkhov for conservation law [KA], [C1], [C2] and their references

Definition 2.2 (Entropy solution of (CP) (b, F, f, u0)). — Letu0and f verifying (H1). An entropy solution uof (CP) (b, F, f, u0)is a weak so- lution of (CP)such that:

Q

H0(u−s){∇b(u)∇ξ−(F(u)−F(s))∇ξ−(u−s)ξt−f ξ}dx dt

IRN(u0−s)+ξ(0) dx0

(2.4) and

Q

H0(s−u){∇b(u)∇ξ−(F(u)−F(s))∇ξ−(u−s)ξt−f ξ}dx dt +

IRN(s−u0)+ξ(0) dx0

(2.5) for any s∈IR and ξ∈ D(Q), ξ0.

(5)

Let recall at first some important results from [MT3]. The first one is the technical Lemma (cf Theorem 17 in [MT3]), it is the main tool in the proof of the uniqueness of the entropy solution of (CP), in fact in this lemma we can see the origin of conditions on the continuity modulus ofbandF.

The second result is existence and uniqueness of the entropy solution of (CP) (cf Theorem 14, Theorem 15 and Theorem 16 in [MT3]).

On the other hand, ifu0∈L1(IRN) and f ∈L1(Q),by the semi-group theory, one knows that we have the existence and the uniqueness of the mild solution of (CP) which is an entropy solution, moreover it depends continuously in the data u0, f, b and F (cf Theorem 9, Theorem 10 in [MT3]) (cf also [C1], [BCP]and their references).

Theorem 2.3 (The technical Lemma). — Let ω be non negative func- tion





lim0

ω()

= +∞; lim

0ω() = 0, there is l such that2< lN lim inf

0

ωl()

l−1 <+∞ if N >2, and lim inf

0

ω2()

= 0 if N = 2, (H2) Let h∈ L1loc(Q) such that h+ =max(h,0) L1(Q). Let W0 L1(IRN), W ∈L1loc(Q), W 0, W ∈L(Q), and letλ >0 so that:

Q

W∂ξ

∂t + l j=1

(W +)ω() [| 2ξ

∂xj∂xj|+| ∂ξ

∂xj|] +

N j=l+1

λW(| 2ξ

∂xj∂xj|+|∂ξ

∂xj|) +h ξ dx dt0,

(2.6)

for any >0et ξ∈ D(Q), ξ 0.

Set also that (W(t, .)−W0)+ −→ 0 in L1loc(IRN), when t −→ 0 essentially; thenh∈L1(Q), W∈L(0, T, L1(IRN))and

IRNW(τ, x)dx

IRNW0(x)dx+

Qτ

h dx dt, for a.e.τ∈(0, T), with Qτ=]0, τ[×IRN.

(6)

Continuous dependence of the entropy solution of general parabolic equation

Remark 1. —

1. Theorem 2.3 is a particular case of Theorem 17 in [MT3] withωj = ηj =ω forj= 1...l.

2. Letg be a continuous function, we denote byω a non negative con- tinuous function which is non-decreasing such that ω(0) = 0 and

|g(x)−g(y)|ω(x−y).

In general we have lim

0

ω()

= +∞. In the particular case where g is Lipschitz continuous, we have ω()

λ where λ is a positive constant.

Theorem 2.4 (Existence theorem) (cf. Theorem 14 in [MT3]). — For allu0 andf verifying(H1).There exists an entropy solution of the problem (CP)(b, F, f, uo).

Remark 2. — Proceeding if necessary to coordinate change, we can sup- pose that:

fori= 1...lthe functionsFiare continuous but not Lipschitz contin- uous.

Fori=l+ 1...N the functionsFiare Lipschitz continuous, we denote byλa constant such that |Fi(x)−Fi(y)|λ|x−y|.

We may suppose thatl >2,we replace if necessaryλby ˜λ=λ+N+11 .

In the case where the functionbis not Lipschitz continuous, we may supposel=N.

Fori= 1...lwe denote byω the continuity modulus of Fi andb .

Theorem 2.5 (Comparison principle). — Let (u01, f1), (u02, f2) verifying (H1), and let u1, u2 be entropy solution with respect to (CP) (b, F, f1, u01)), and(CP) (b, F, f2, u02)). If (H2) holds, then:

IRN(u1(t)−u2(t))+dx

IRN(u01−u02)+dx+

Qt

ν(f1−f2)dx dt. (2.7) forν ∈H(u1−u2)a.e so that:

u1(t)−u2(t)L1(IRN)u01−u02L1(IRN)+ t

0

f1−f2L1(IRN) ds;

which gives uniqueness of entropy solution.

(7)

3. The main result

Our main result is:

Theorem 3.1. — Let be(Fn, bn, fn, u0,n)∈ C(IR)× Cm(IR)×L1loc(Q)× L(IR),given functions such that:













Fin→Fi for i=1...N bn →b in C(IR)

(fn, u0,n) converges to(f, u0) in L1loc(Q)×L1loc(IRN) u0,nL(IRN)+

T 0

fn(t)L(IRN) dtC,

(3.1)

and we suppose that forn large enough we have





|Fin(x)−Fin(y)|ω(x−y) fori= 1...l,

|Fin(x)−Fin(y)|λ|x−y| fori=l+ 1...N,

|bn(x)−bn(y)|ω(x−y) and (H2) hold.

(H3)

then un converges to u in C([0, T], L1loc(IRN)), where un, uare respec- tively the entropy solutions of(CP)(Fn, bn, fn, u0,n)and (CP)(F, b, f, u0).

Proof. — Let X be the set of ( ˆf ,uˆ0) L1(Q)×L1(IRN), such that (H1) is satisfied and

uˆ0L(IRN)+ T

0

fˆ(t)L(IRN)dtC

LetK be a compact in IRN, andδ∈IR+, there exist ( ˆf ,uˆ0)∈X such

that

K

|u0−uˆ0|+ T

0

K

|f−fˆ|dx ds < δ

3; (3.2)

furthermore, since ( ˆf ,uˆ0) is inX,by the semi group theory inL1the Cauchy problem (CP)(F, b,f ,ˆuˆ0), has a unique mild solution ˆu(cf [BCP], [MT2], [MT3]), which depends continuously on the data (F, b,f ,ˆuˆ0), and one has

sup

t[0,T]

K|u(t)−u(t)|ˆ dx < δ

3, (3.3)

whereuis the unique entropy solution of the Cauchy problem (CP)(F, b, f, u0).

(8)

Continuous dependence of the entropy solution of general parabolic equation

Set ˆun the entropy solution of the Cauchy problem (CP)(Fn, bn,f ,ˆuˆ0).

by the same arguments as before one has

n→∞lim sup

t∈[0,T]

IRN|uˆn(t)−u(t)|ˆ dx= 0. (3.4) Moreover

K|un(t)−u(t)|dx

K|un(t)−uˆn(t)|dx +

K|uˆn(t)−u(t)ˆ |dx+

K|u(t)ˆ −u(t)|dx.

(3.5)

By inequality (3.3), (3.4), and (3.5) a sufficient condition to get the result of theorem 7 which can be written as:

nlim→∞ sup

t[0,T[

K|un(t)−u(t)|dx= 0, is to prove that there existn0IN,such that fornn0

sup

t∈[0,T]

K|un(t)−uˆn(t)|dx < δ 3.

By Theorem 16 in [MT3] for allξ∈ D(IR), ξ0 et 0< tT the “kato”

inequality applied to (CP)(Fn, bn, fn, u0,n) and (CP)(Fn, bn,fˆn,uˆ0,n) leads

to:

IRN|un(t)−uˆn(t)|ξ dx

IRN|u0,n−uˆ0,n|ξ dx +

N j=1

Q

|bn(un)−bnun)|| 2ξ

∂xj∂xj| +

N j=1

Q

|Fin(un)−Finun)|| ∂ξ

∂xj| +

IR|fn−fˆ|ξ dx ds,

(3.6)

In order to use Theorem 2.3 we set

Wn(t) =|un(t)−uˆn(t)|; W0,n=|u0,n−uˆ0,n|; hn =|fn−fˆ|.

(9)

By using the two first inequalities in (H3), one obtain fornn0

IRNWn(t)ξ dx

IRNW0,n ξ dx+

IRhn ξ dx ds +2

l j=1

t

0

IRN(Wn+)ω() (| 2ξ

∂xj∂xj|+| ∂ξ

∂xj|)dx ds +2

N j=l+1

t 0

IRNλWn(| 2ξ

∂xj∂xj|+|∂ξ

∂xj|)dx ds, (3.7) withW0,n0 dansL1loc(IRN), hn0 dansL1loc(Q),andWnL(Q)C,

By the proof of Theorem 16 of [MT3] one has 1

2 sup

τ(0,T)

ess

IRNWn(τ)ξ dx

IRNW0,nξ dx+ τ

0

IRNhnξ dt dx + Λ() (3.8) where

1)ξis a particular test function which tends to 1 whentends to 0.

2) 0Λ()M ωl()

1lηl2, M is a constant.

3)η is a parameter assigned to go to +∞.

From (3.8) one has that fornlarge enough:

1 2 sup

τ(0,T)

ess

K

W(τ)ξ dx δ 3+δ

3 + Λ() (3.9)

Then

IfN >2 we letη goes to +∞andgoes to 0 to get the result.

IfN = 2 then l = 2 and Λ()2()

so we let going to 0 to get the result.

IfN = 1 there is no condition onω.

(10)

Continuous dependence of the entropy solution of general parabolic equation

Bibliography

[ABK] Andreianov(B.P.),enilan(Ph.),Kruskhov(S.N.). —L1 theory of scalar conservation law with continuous flux function, J. Funct. Anal 171 p. 15-33 (2000).

[AL] Alt (H.W.), Luckhauss (S.). — Quasi-linear elliptic-parabolic differential equations, Math.Z., 183, p. 311-341 (1983).

[BCP] enilan(Ph.),Crandall(M.G.),Pazy(A.). — Evolution Equation governed by Accretive operators (book to appear).

[BG] enilan(Ph.), Gariepy(B.). — Strong solutionL1 of degenerate parabolic equation. J. of Diff. Equat., 119, p. 473-502 (1995).

[BK] enilan(Ph.),Kruskhov(S.N.). — Quasilinear first order equations with con- tinuous non linearities, Russian Acad. Sci. Dokl. Math. Vol 50 N3, p. 391-396 (1995).

[BT1] enilan(Ph.),Tour´e(H.). — Sur l’´equation g´en´eraleut=ϕ(u)xxψ(u)x+v, C.R. Acad. Sc. Paris, serie 1, p. 299, 18 (1984).

[BT2] enilan(Ph.),Tour´e(H.). — Sur l’´equation g´en´eraleut =a(., u, ϕ(., u)x)x dans L1 I. Etude du probl`eme stationnaire, in Evolution equations, Lecture Notes Pure and Appl. Math Vol. 168, (1995).

[BT3] enilan(Ph.),Tour´e(H.). — Sur l’´equation g´en´eraleut =a(., u, ϕ(., u)x)x

dans L1 II. Le probl`eme d’´evolution, Ann. Inst. Henri Poincar´e, vol. 12, 6, p.

727-761 (1995).

[BW] enilan (Ph.), Wittbold (P.). — On mild and weak solution of elliptic- Parabolic Problems. Adv. in Diff. Equat. Vol. 1 (6), p. 1053-1072 (1996).

[C1] Carrillo(J.). — On the uniquness of the solution of the evolution DAM prob- lem, Nonlinear Analysis, Vol 22, N5, p. 573-607 (1999).

[C2] Carrillo(J.). — Entropy solutions for nonlinear degenerate problems. Arch.

Ratio. Mech. Anal. 147, p. 269-361 (1999).

[C3] Carrillo(J.). — Unicit´e des solutions du type Kruskhov pour des probl`emes elliptiques avec des termes de transport non lin´eaires, C. R. Acad. Sc. Paris, t 33, Serie I, N5 (1986).

[CW] Carrillo(J.),Wittbold(P.). — Uniqueness of renormalized solutions of de- generate elliptic-parabolic problems. J. Diff. Equation 156, p. 93-121 (1999).

[DT] Diaz(J.I.),Thelin(F.). — On a nonlinear parabolic problem arising in some models related to turbulent flows, SIAM. J. Math. Anal. ; 25 p. 1085-1111 (1994).

[GT] Gagneux(G.), Tort(M.M.). — Unicit´e des solutions faibles d’´equations de diffusion convection, C. R. Acad. SC. Paris, t 318, S´erie I, (1994) 919-924. N3, p. 365-387 (1969).

[KA] Kruskhov(S.N.),Panov(E. Yu.). — Conservative quasilinear first order law in the class of locally sommable functins, Dokl. Akad. Nauk. S.S.S.R. 220, 1 pp.233-26; english traduction in soviet Math. Dokl. 16 (1985).

[LSU] Ladyzenskaja(O.A.),Solonnikov(V.A.) etUral’ceva(N.N.). — Linear and quasilinear equations of parabolic type, Transl. of Math. Monographs 23 (1968).

[MT1] Maliki (M.), Tour´e (H.). — Solution g´en´eralis´ee locale d’une ´equation parabolique quasi lin´eaire d´eg´en´er´ee du second ordre. Ann. Fac. Sci. Toulouse.

Vol. VII 1, p. 113-133 (1998).

[MT2] Maliki (M.),Tour´e( H.). — D´ependence continue de solutions g´en´eralis´ees locales, Ann. Fac. Sci. Toulouse. Vol. X 4, p. 701-711 (2001).

(11)

[MT3] Maliki(M.),Tour´e( H.). — Uniqueness entropy solutions for nonlinear de- generate parabolic problem, Journal of Evolution equation 3, No. 4, p. 602 (Birkhauser).

[KP] Kruskhov(S.N.),Panov(E.Yu.). — Conservative quasilinear first order laws with an infinite domain of dependence on the initial data, Soviet. Math. Dokl.

Vol. 42, 2, p. 316-321 (1991).

[YJ] Yin(J.). — On the uniqueness and stability of BV solutions for nonlinear dif- fusion equations, Comm. Part. Diff. Equat. 15, 12, p. 1671-1683 (1990).

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

l’utilisation d’un remède autre que le médicament, le mélange de miel et citron était le remède le plus utilisé, ce remède était efficace dans 75% des cas, le

Finally we describe our approach. In Subsection 4.1, using the comparison of the solutions at u = b, and following ideas in [16,17], we study the behavior of the solutions in

sult on the existence and uniqueness of the solution processes in Mc- Shane’s stochastic integral equation systems of the type (1), in order. to consider and to

Necessary and sufficient conditions for the Poincar´e lemma to hold have been object of investigation by many authors; we refer the reader, among others, to the important

In this exercise sheet, we work out some of the details in the proof of the Poincar´ e Duality Theorem..

The group SO(n), as well as other groups of linear transformations, is usually not defined in abstract by characterizing its elements g, but specifying the properties of one

The objects of each theories are fellows: to the compact sets in the Brunn-Minkowski theory correspond the random vectors in the Information theory, the Gaussian random vectors play