• Aucun résultat trouvé

Critical Observations on the German Specifications for the Calculation of the Supporting Beams of Two-Way Slabs and Proposals for a New Method of Calculation

N/A
N/A
Protected

Academic year: 2021

Partager "Critical Observations on the German Specifications for the Calculation of the Supporting Beams of Two-Way Slabs and Proposals for a New Method of Calculation"

Copied!
42
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Technical Translation (National Research Council of Canada), 1962

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20331397

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Critical Observations on the German Specifications for the Calculation

of the Supporting Beams of Two-Way Slabs and Proposals for a New

Method of Calculation

Dischinger, F.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=6fa48528-263d-4d81-8d24-93829210493d https://publications-cnrc.canada.ca/fra/voir/objet/?id=6fa48528-263d-4d81-8d24-93829210493d

(2)

PREFACE

The D i v i s i o n of B u i l d i n g Research of t h e N a t i o n a l Research Council has t h e p r i v i l e g e of a s s i s t i n g t h e A s s o c i a t e Committee on t h e N a t i o n a l B u i l d i n g Code w i t h i t s s e c r e t a r i a l and t e c h n i c a l work i n r e l a t i o n t o t h e N a t i o n a l B u i l d i n g Code of Canada. A new e d i - t i o n of t h e Code was published d u r i n g 1960 and t h i s c o n t a i n s a n e n t i r e l y new S e c t i o n on r e i n f o r c e d c o n c r e t e .

During t h e p r e p a r a t i o n of t h i s S e c t i o n ( 4 . 5 ) on P l a i n ,

Reinforced and P r e - s t r e s s e d Concrete, t h e "luIarcusM method f o r t h e d e s i g n of two-way. s l a b s was adopted because i t was considered t o be one of t h e b e s t a v a i l a b l e . It was p o i n t e d o u t t o t h e Revision Committee t h a t a p a p e r i n German by F. Dischinger showed t h a t a l t h o u g h t h i s method r e s u l t s i n s a t i s f a c t o r y s l a b d e s i g n s , i t does n o t lead t o t h e p r o p e r d e s i g n of s u p p o r t i n g beams.

Accordingly t h e assumptions f o r beam l o a d i n g c o n t a i n e d i n t h e 1953 e d i t i o n of t h e Code were r e t a i n e d i n t h e 1960 e d i t i o n because t h e y were known t o lead t o more a c c u r a t e r e s u l t s . The Revision Committee, under t h e chairmanship of P r o f e s s o r M . W . Huggins, recommended t o t h e D i v i s i o n t h a t M r . D i s c h i n g e r ' s p a p e r be t r a n s l a t e d

.

T h i s h a s now been done by M r . E.M. Rensaa of Rensaa and

Minsos, Edmonton, A l b e r t a . The D i v i s i o n r e c o r d s i t s a p p r e c i a t i o n t o M r . Rensaa f o r t h i s t r a n s l a t i o n . The p u b l i c a t i o n of t h i s t r a n s l a t i o n i s i n d i c a t i v e of t h e way i n which DBR/NRC i s a b l e t o assist t h e A s s o c i a t e Committee on t h e N a t i o n a l B u i l d i n g Code w i t h i t s important work.

Ottawa R.F. Legget

(3)

Title :

NATIONAL RESEARCH COUNCIL OF

CANADA

Technical Translation 1048

Critical observations on the German specifications for the calculation of the supporting beams of two-way slabs and proposals for a new method of calculation

(~ritische Betrachtungen zu den deutschen Bestlmmungen far die

Berechnvg der ~r8~erroste kreuzweis gespannter Platten und

~orschlh~e fur eine neue ~erechnungsweise)

Author:

F.

Dischinger

Reference : Beton und Eisen, 41: 86-91, 103-108, 127-130, 1942

(4)

CRITICAL OBSERVATIONS ON

THE

GERMAN SPECIFICATIONS FOR THE CALCULATION OF THE SUPPORTING BEAMS OF TWO-WAY SLABS AND

PROPOSALS FOR A NEW METHOD OF CALCULATION Foreword

With t h e i n t r o d u c t i o n of equation (10) of A r t i c l e 23 ( t h e Marcus Method) of t h e German s p e c i f i c a t i o n s f o r r e i n f o r c e d concrete dated 1932 a very simple method of a n a l y s i s of two-way s l a b s was introduced. This method is s u f f i c - i e n t l y a c c u r a t e f o r p r a c t i c a l purposes and has proved i t s e f f i c a c y in every r e s p e c t . Paragraph

5

of A r t i c l e 23 a l s o e s t a b l i s h e d t h e s p e c i f i c a t i o n s f o r c a l c u l a t i n g t h e s u p p o r t i n g beams. According t o t h i s paragraph, t h e load t r a n s f e r r e d from t h e uniformly loaded r e c t a n g u l a r s l a b t o t h e beams o r

p e r i p h e r a l w a l l s could be assumed t o be uniformly d i s t r i b u t e d a l o n g t h e beam o r w a l l . This l a t t e r assumption, however, does n o t a t a l l correspond t o a c t u a l c o n d i t i o n s and i s c o n t r a r y t o t h e o r e t i c a l p r i n c i p l e s . Even with

square, f r e e l y supported s l a b s t h e a c t u a l bending moments in t h e beams, a l s o f r e e l y supported, a r e 61% g r e a t e r than c a l c u l a t e d a c c o r d i n g t o t h e 1932 s p e c i f i c a t i o n , and t h e e r r o r increased by a m u l t i p l e f o r t h e s h o r t marginal beams in elongated s l a b s . Thus, in t h e case of a f r e e l y supported s l a b of

1

a span r a t i o E = 2 = 2, e x a c t c a l c u l a t i o n s g i v e s bending moments about

8.3

x

times g r e a t e r f o r t h e beams of t h e s h o r t e r span than a r e obtained by t h e s p e c i f i e d method of c a l c u l a t i o n .

This conventional method of c a l c u l a t i n g t h e s u p p o r t i n g beams i s n o t o n l y extremely i n a c c u r a t e , but i s a t t h e same time cumbersome because f o r continuous beams d i f f e r e n t dead and l i v e load e f f e c t s a r e obtained from each type of a d j a c e n t s l a b s .

A s a r e s u l t of my r e p r e s e n t a t i o n s , t h e new German r e i n f o r c e d c o n c r e t e s p e c i f i c a t i o n (1943) w i l l , t h e r e f o r e , b e arnmended. In t h e p r e s e n t paper t h e b a s i s f o r t h e s e changes a r e discussed and proposals a r e made f o r more cor- r e c t c a l c u l a t i o n s adapted t o a c t u a l c o n d i t i o n s .

A t t h e same time, new t a b l e s of bending moments f o r two-way s l a b s a r e published. It i s w e l l known t h a t i t is p o s s i b l e t o reduce t h e support con- d i t i o n s t o s i x and U s e r ' s book c o n t a i n s t a b l e s f o r t h e e e c o n d i t i o n s . Every d e s i g n e r probably knows how d i f f i c u l t i t i s t o use t h e s e t a b l e s in p r a c t i c e both f o r o r i g i n a l c a l c u l a t ' i o n s and f o r checking of work done by o t h e r s . It i s e a s y t o g e t conmsed because of t h e n e c e s s i t y of changing

x

and y c o o r d i n a t e s which depend on t h e boundary c o n d i t i o n s of t h e s l a b . G s e r B. Bemessungsverfahren, 7. Auflage (30. u. 31. ~ a u s e n d ) . Wilheim E r n s t & Sohn. B e r l i n , 1941.

(5)

E r r o r s from t h i s source can be e l i m i n a t e d by always u s i n g

I x

f o r t h e s h o r t span of s l a b and t o make a l l bending moments i n t h e s l a b a f u n c t i o n of t h i a l e n g t h . T h i s r e s u l t s , as w i l l be shown in S e c t i o n B, i n n i n e s l a b t y p e s i n - s t e a d of six. Only t h e range of s l a b r a t i o s from 6 = 1 . 0 0 t o & = 2.00 needs

t o be taken i n t o account, s o t h a t t h e t o t a l number of f i g u r e s r e q u i r e d i s l e s s .

In S e c t i o n A we s h a l l f i r s t show t h a t t h e e r r o r s involved in t h e con- v e n t i o n a l method of c a l c u l a t i o n a r e i n a d m i s s i b l e , while in S e c t i o n B new t a b l e s f o r c a l c u l a t i n g bending moments i n two-way s l a b s w i l l be i n t r o d u c e d . S e c t i o n C w i l l show how simple b u t v e r y a c c u r a t e c a l c u l a t i o n s of t h e sup- p o r t i n g beams can be c a r r i e d o u t .

A . I n v e s t i g a t i o n s of Bending Moments i n S u p p o r t i n g Beams

1. The s u p p o r t i n g beams f o r a f r e e l y supported two-way s l a b a e shown on F i g . 1

Let u s assume t h a t t h e p e r i p h e r a l beams a r e supported in such a manner a s t o r o t a t e f r e e l y (and i n d e p e n d e n t l y ) a t t h e f o u r c o r n e r s and t h u s have no t o r s i o n a l r e s i s t a n c e t o s l a b r o t a t i o n . We nay t h e n d i s r e g a r d t h e dead load- i n g a s t h i s does n o t i n f l u e n c e o u r i n v e s t i g a t i o n s .

Unlike t h e s p e c i f i c a t i o n s , we denote t h e bending moments i n t h e s l a b w i t h t h e small l e t t e r s (mx and

%)

because we wish t o u s e t h e c a p i t a l l e t t e r s f o r t h e beam moments. In what f o l l o w s , t h e bending moments of two p a r a l l e l beams w i l l be taken t o g e t h e r as one member.

( a ) Beam moments by t h e e a r l i e r method of c a l c u l a t i o n . The bending moments of two p a r a l l e l beams a r e c a l c u l a t e d on basis o f t h e uniformly d i s - t r i b u t e d l o a d s q, and qy by means of t h e f o l l o w i n g e q u a t i o n s :

1

From t h i s , f o r v a r i o u s values of span r a t i o s & =

2

we o b t a i n :

l x

(6)

A l l beam moments, both in t h e x and t h e y d i r e c t i o n r e f e r t o t h e u n i t t o t a l load on t h e width of t h e s t r u c t u r e . In t h e y d i r e c t i o n we t h e n have

=

ox.

( b ) Considerably more a c c u r a t e r e s u l t s a r e o b t a i n e d by d i s t r i b u t i n g t h e loads t o marginal Foams in t h e manner i n d i c a t e d i n F i g . 2. The bending moment in t h e s h o r t beam span by t h i s load d i s t r i b u t i o n w i l l n o t depend on

l Y The equations f o r t h e beam moments w i l l then be:

The bendlng moments ( f o r two p a r a l l e l beams taken t o g e t h e r ) f o r d i f f e r -

rent

:wan

r a t i o s w i l l then be:

F o r a square s l a b t h e bending moment f r o m ( b ) i s

3356

g r e a t e r t h a n t h a t found by t h e conventional method o f c a l c u l a t i o n ( a ) For s = 2 t h e moments

M

a r e about s i x times g r e a t e r than f r o m ( a ) b u t even t h e v a l u e s from ( b ) a r e -x

l e s s t h a n t h e a c t u a l ones. I n t h e conventional method of c a l c u l a t i o n t h e bending moments

Ex

d e c r e a s e s very r a p i d l y with i n c r e a s i n g spans, whereas in method(b) t h e y remain c o n s t a n t . S t r i c t l y speaking, according t o t h e r i g o r o u s s l a b equation, t h e y must even i n c r e a s e somewhat with i n c r e a s i n g c; f u r t h e r - more, t h e t r u e bending moments a r e a l l g r e a t e r t h a n t h o s e developed above.

( c ) The c o r r e c t bending moments in t h e s u p p o r t i n g beams a r e o b t a i n e d

r 2 L

rhen from t h e t o t a l bending moments i n t h e p a n e l

Ex

= ( q l y )

-8

a n d H =

1 -Y

( q I X ) we deduct, t h e bending moment t a k e n by t h e s l a b i t s e l f i n t h a t d i r e c t i o n ( ~ 1 ~ .

3 ) .

I n o r d e r t o d i s t i n g u i s h t h e bending moments o f t h e whole system from t h o s e of t h e beams we w r i t e t h e i r symbols w i t h a dash on

t o p . Wen t h e complete system becomes s t a t i c a l l y indeterminate, t h e c o r r e - sponding bending moments

%

and

H

r e p l a c e t h e s t a t i c a l l y determinate

Y

moments

Ex

and and t h e s t a t i c a l l y i n d e t e r m i n a t e beam moments Mx and M

-Y'

Y

r e p l a c e t h e s t a t i c a l l y determinate beam moments

Ex

and M The e q u a t i o n s

-Y

(7)

Here m(x) and m ( y ) a r e t h e s l a b moments which v a r y a l o n g t h e y and x

a x e s r e s p e c t i v e l y , mx a n d m a r e t h e maximum s l a b moments on rrhich t h e Y

calculation i s based i n accordance with e q u a t i o n ( 1 0 ) o f t h e German r e i n f o r c - ed c o n c r e t e s p e c i f i c a t i o n s of 1932. F u r t h e r QX and $ a r e f a c t o r s which a r e

Y

t o be determined on t h e b a s i s of a r i g o r o u s s o l u t i o n of t h e s l a b e q u a t i o n . The bendlmg moments mx a l o n g y and t h e bending moments

%

a l o n g x can, w i t h s u f f i c i e n t accuracy, be assumed t o v a r y . p a r a b o l i c a l l y f o r a l l t y p e s of s l a b s s o t h a t we may p u t Jrx = $Y

-

-

7 -

S i n c e i n a l l c a s e s by f a r t h e g r e a t e r p a r t

-

o f t h e t o t a l moments a r e c a r r i e d by t h e beams, I& and

W

a s c a l c u l a t e d from

-Y

2

e q u a t i o n s ( 3 ) a r e r e l a t i v e l y u n a f f e c t e d by t h e assunlptio~l of

-

f o r t h e v a l u e 3

o f

qX

and $ The r i g o m u s s o l u t i o n s of t h e , s l a b e q u a t i o n given i n S e c t i o n

Y ' n L

( d ) show t h a t t h e f a c t o r Jr = 7 i s q u i t e a c c u r a t e .

J

The above e q u a t i o n s f o r a s l a b f r e e l y supported on a l l s i d e s w i l l now be e v a l u a t e d . The valuqs mx and m can be o b t a i n e d from g s e r f s t a b l e s o r

Y

from t h e numerical t a b l e s of s e c t i o n B. For moments in two p a r a l l e l beams we o b t a i n :

The beam moments ( c ) o b t a i n e d by means of e q u a t i o n

( 3 )

a r e s t i l l c o n s i d e r a b l y g r e a t e r than t h o s e determined from t h e t r i a n g u l a r and t r a p e z o i d a l l o a d s . The reason f o r t h i s l i e s i n t h e t o r s i o n a l e f f e c t s which have n o t been taken

i n t o account i n ( b ) . The t o r s i o n a l moments c r e a t e n e g a t i v e f o r c e s Z ( t e n s i l e f o r c e s ) a t t h e c o r n e r s of t h e f r e e l y supported s l a b and corresponding e q u a l

(8)

p o s i t i v e r e a c t i o n s ( o u t on t h e beam) and t h e l o a d s on t h e p e r i p h e r a l beams a r e i n c r e a s e d by t h e v a l u e s of t h e s e . A s shown on F i g . 4, we o b t a i n f o r a s q u a r e s l a b and w i t h P o i s s o n l s r a t i o v = 0 . 3 ( s t e e l ) , Z = -0.2375 qa2 f o r t h e s e t e n s i l e f o r c e s . The t o t a l load on a p e r i p h e r a l beam w i l l t h e r e f o r e be I n c r e a s e d from A = q a 2 t o A = 1.2375 q a 2 . The s l a b moments c o r r e s p o n d i n g t o

2 "

t h i s value of P o i s s o n l s r a t i o w i l l be mx = m = q

.

-

Y 21.2 ' A c t u a l l y , however

t h e bending moments i n o u r s p e c i f i c a t i o n s a r e based on t h e v e r y f a v o u r a b l e c o n d i t i o n of P o i s s o n l s r a t i o e q u a l zero, whereby t h e t o r s i o n a l e f f e c t i s

i n c r e a s e d and t h e s l a b moments a r e reduced t o mx = m = q

.

1'

Y 27,iJ3' T h i s in-

c r e a s e d t o r s i o n a l e f f e c t corresponds t o a g r e a t e r t e n s i l e f o r c e of t h e o r d e r of Z = -0.34 qa2, whe,reby t h e l o a d on each p e r i p h e r a l beam i s t h e i n c r e a s e d t o A = 1 . 3 4 q a 2 .

F i g u r e 4a shows t h e d i s t r i b u t i o n of t h e beam l o a d i n g f o r t h e t h r e e c a s e s ( a ) , ( b ) and ( c ) . I n c a s e ( a ) t h e load on a p e r i p h e r a l beam i s con- s t a n t o v e r t h e e n t i r e beam l e n g t h and i s 0 . 5 qa per u n i t l e n g t h : t h e c o r r e - sponding beam moment M = ?$ 0.0625 q 1 2 . I n c a s e ( b ) , which i s Inore I n

conformity with f a c t s , t h e beam l o a d i n g h a s a t r i a n g u l a r shape w i t h o u t any change of t h e t o t a l load A = q a 2 . T h i s load d i s t r i b u t i o n g i v e s a c o n s i d e r - a b l y l a r g e r beam moment M =

$

*

0.0833

q 1 2 .

In

r e a l i t y , however, t h e beam l o a d i s d i s t r i b u t e d approximately a c c o r d i n g t o t h e c u b i c p a r a b o l a w i t h a maximum o r d i n a t e of 0.903 qa t o which corresponds a t o t a l load A = 1 . 3 4 q a 2 . The r e a s o n f o r t h i s i n c r e a s e i s b t h e a d d i t i o n a l l o a d of 0.34 q a 2 caused by t h e c o r n e r f o r c e . ( I t should be noted t h a t a t e n s i l e f o r c e a c t i n g a t t h e end of t h e beam would n e c e s s i t a t e

a

corresponding compressive f o r c e f a r t h e r o u t on t h e beam because t h e a l g e b r a i c sum of such f o r c e s must be z e r o . The c o r n e r f o r c e Z i t s e l f does n o t cause any bending in t h e beam b u t t h e oppo- s i t e l y d i r e c t e d f o r c e f a r t h e r o u t on t h e beam d o e s . ) A s

a

r e s u l t of t h i s c o n d i t i o n t h e bending moments In t h e p e r i p h e r a l bearns a r e f u r t h e r i n c r e a s e d t o M =

5

0.1007 q12. T h i s c o n d i t i o n a l s o g i v e s a v e r y simple e x p l a n a t i o n

1" 12 of why t h e s l a b moments a r e n o t merely reduced from q

-

t o q

8 due t o

two way d i s t r i b u t i o n of t h e load b u t r a t h e r t o a value of q

&

owing t o t h e supplementary t o r s i o n e f f e c t . The u n i f o r m l y d i s t r i b u t e d l o a d i n d i c a t e d on F i g .

5

would have a moment l e v e r arm of d

= $ = a

and

a

s l a b moment f o r

a

a

t h e vridth a of m = qa2

.

3 = q o r f o r a u n i t l e n g t h of s t r i p a moment o f

a2 1

m = q a 7 = q - z .

On account of t h e p a r a b o l i c shape of t h e load d i s t r i b u t i o n , i n combina- t i o n w i t h t h e n e g a t i v e c o r n e r f o r c e 2, t h e l e v e r a r m d of t h e i n t e r n a l f o r c e s in F i g . 5a h a s a l e n g t h of o n l y

58s

of t h e l e v e r a r m i n F i g .

5,

t h u s r e d u c i n g t h e s l a b moment t o q

.

0 . 5 8 = q

m.

12 T h i s r e d u c t i o n o f t h e s l a b moments, however, must l e a d t o a c o r r e s p o n d i n g i n c r e a s e i n t h e beam moments

(9)

from t h o s e o b t a i n e d from c a s e ( a ) t o t h o s e o f c a s e ( c ) .

Going from t h e f r e e l y supported s l a b t o a s l a b f i x e d on a l l s i d e s , t h e t o r s i o n moments a t t h e p e r i m e t e r o f t h e s l a b v a n i s h and hence a l s o t h e t e n - s i l e f o r c e s a t t h e c o r n e r s . The r e l i e f of t h e s l a b r~ioments from t o r s i o n i s t h e r e f o r e much s m a l l e r i n a continuous s l a b t h a n i n a s l a b f r e e l y s u p p o r t e d .

q 1"

The s l a b moments d e c r e a s e o n l y from

2

= q T1 C ~ ~ O I" ~ P .We should t h e r e f o r e e x p e c t t h a t w i t h a s l a b f i x e d a t t h e s u p p o r t s in accordance w i t h S e c t i o n 2, t h e l a r g e d i f f e r e n c e between t h e c o r r e c t beam moments ( c ) and t h o s e o f ( b ) w i l l be s m a l l e r . ( d ) Comparison of t h e v a l u e s o b t a i n e d w i t h t h e r e s u l t s of t h e r i g o r o u s s o l u t i o n by means of t h e ( m a t h e m a t i c a l l y c o r r e c t ) s l a b e q u a t i o n

%

=

PIN.

( a ) F o r a s q u a r e s l a b w i t h I = l y = 1 we o b t a i n e d a c c o r d i n g t o ( c ) t h e x- beam moments

Ex

= M =

M

= 0.1007 q 1 2 . On t h e b a s i s of t h e ( e x a c t ) s l a b -Y

-

e q u a t i o n w i t h v = 0, we o b t a i n

M

= 0.1012 c12, which a g r e e s v e r y c l o s e l y w i t h t h e v a l u e found from ( c ) ( d i f f e r e n c e

%).

7 L ( P ) I n t h e c a s e of a l o n g r e c t a n g u l a r s l a b w i t h E = = 2 we g e t X

a c c o r d i n g t o ( c ) t h e beam mornents x! = 0.1238 81x2, and M = 0.121.0

ql

2 .

-Y Y On t h e b a s i s o f t h e ( e x a c t ) s l a b e q u a t i o n and v = 0 we o b t a i n

Ex

= 0.1233 ?Ix* and M = 0.1222 5 1 2. -Y Y I n t h e f o l l o w i n g i n v e s t i g a t i o n s i t i s assumed t h a t t h e p e r i p h e r a l beams a r e a l s o f i x e d a t t h e i r ends. We s h a l l a g a i n denote t h e s t a t i c a l l y d e t e r - minate beam moments by

-

M and t h e s t a t i c a l l y i n d e t e r m i n a t e p o s i t i v e and nega- t i v e moments by M.

( a ) Beam moments a c c o r d i n g t o c o n v e n t i o n a l c a l c u l a t i o n . The l o a d i n g qx and qy a r e t h e same f o r a f i x e d s l a b a s f o r a simply supported one. The bending moment

M

f o r a simply supported beam a c c o r d i n g t o 1 ( a ) i s i n t h e

7

c a s e o f a bean1 w i t h f i x e d s u p p o r t s d i s t r i b u t e d w i t h as p o s i t i v e moments i n 2

t h e span and

-

3 a s n e g a t i v e moments a t t h e s u p p o r t s .

7

( b ) Detemnination o f t h e beam moments by t r a p e z o i d a l and t r i a n g u l a r l o a d i n g . The s t a t i c a l l y d e t e r m i n a t e moments from t r i a n g u l a r and t r a p e z o i d a l

Mx = -0.0417 -0.0325 -0.0241 -0.0177 -0.0131 -0.0099 ( I 1 [M = - 0 . 1 -0.0563 -0.0662 -0.0723 -0.0760 -0.0785 Y <Ix 2 ELI $- o a o 8lY2]4$& 03

(10)

l o a d i n g w i l l now be d i s t r i b u t e d i n t o p o s i t i v e and n e g a t i v e moments ( a c t i n g a t mid-span and a t s u p p o r t s ) .

I

Mid-span

I

Supports

-

T r i a n g u l a r load: -x M = q

. -

1 2 T r a p e z o i d a l l o a d . 1

+

')

4E

=

E 2 The s t a t i c a l l y d e t e r m i n a t e momen~s of t h e t o t a l s y s t e ~ c o n s i s t i n g of 1 L -

-

-

X

-

s l a b and beams ( F i g . 3 ) :

M

= q

-

* -x 12 e and -Y = q

-

8

(1

-

$)

a r e d i s t r i b u t e d Fn accordance with t h e boundary c o n d i t i o n s ( f u l l f i x i t y ) between t h e p o s i t i v e and n e g a t i v e zones I n t h e manner I n d i c a t e d . I n o r d e r t o save .space w e s h a l l omit t h i s simple procedure.

The v a l u e s o b t a i n e d by means o f t h e s e e q u a t i o n s a r e shown i n t h e f o l l o w i n g t a b l e :

( c ) Determination of bending moments i n t h e edge beams from t h o s e of t h e whole system. Bending moments of t h e s t a t i c a l l y i n d e t e r m i n a t e t o t a l system a r e denoted by i n p l a c e of i n e q u a t i o n ( 3 ) . For t h e beam moments we now o b t a i n t h e f o l l o w i n g e q u a t i o n s which a p p l y f o r mid-span and a t t h e s u p p o r t s . Mid-span The f a c t o r s

Ix

and

ly

o b t a i n e d on b a s i s of t h e r i g o r o u s s o l u t i o n s f o r t h e s l a b f i x e d a t a l l edges a r e $,

-

2

-

JIY

= $ =

-5

and t h i s h o l d s b o t h f o r t h e A t s u p p o r t s =

W

-

m 1 $ h e r e i s X x Y Y' =

W

-

m I

p

h e r e i s Y y X x' Ix2

-

nx

= ( q l y ) = q

.

E 1 = ( q l x )

&

= q

.

Y 2

-

-

IX . E Mx = -q

.

-

1 2

-

-

1 2 ( 5 ) M = - q . + Y

(11)

p o s i t i v e and n e g a t i v e moments, because t h e bending moments mx a l o n g t h e y a x i s and a l o n g t h e x a x i s can a g a i n w i t h s u f f i c i e n t a c c u r a c y be considered

'%

t o vary p a r a b o l i c a l l y . N e v e r t h e l e s s , t h e f a c t o r s

Jr

w i l l need a c o r r e c t i o n because i n o u r r e i n f o r c e d c o n c r e t e s p e c i f i c a t i o n s we do n o t f i g u r e with t h e maximum n e g a t i v e bending moment o b t a i n e d from t h e e x a c t s l a b t h e o r y . T h i s n e g a t i v e f i x i n g moments on t h e l o n g s i d e o f a r e c t a n g u l a r s l a b a r e , of c o u r s e , 1L 2 X c a l c u l a t e d by t h e e q u a t i o n mx = -qx

-

-12

while t h o s e a l o n g t h e s h o r t s i d e s 1 2 a r e given by m = -q

.

.x Y

x.

For t h e s q u a r e s l a b ( I x l2 = L Y = I , qx =

4

q )

and t h e same value mx = m = -q

.

3

i s o b t a i n e d from both e q u a t i o n s .

Y

According t o t h e r i g o r o u s - t h e o r y , however, t h e maximum f i x i n g moment f o r P o i s s o n ' s r a t i o v = 0 i s mx = m = -0.0474 qL2r 1 . e . 14% g r e a t e r t h a n t h e

Y

f i x i n g moment we a c t u a l l y s p e c i f y . In F i g .

6,

t h e a c t u a l f i x i n g moment mx

a l o n g y i s shown a s a curve w h i l e t h e t r a p e z o i d l i n e r e p r e s e n t s t h e moment which we a c t u a l l y u s e i n d e s i g n . A s i m i l a r d i f f e r e n c e i s encountered w i t h

t h e l o n g s l a b shown i n F i g . 7 which a l s o shows t h e d i f f e r e n c e between e x a c t n e g a t i v e f i x i n g moments and t h o s e we use a c c o r d i n g t o o u r s p e c i f i c a t i o n s . The t r u e maximum n e g a t i v e f i x i n g moment a c c o r d i n g t o t h e r i g o r o u s s l a b equa- t i o n i s mx = -0.0905 qLx2, whereas we u s e i n o u r c a l c u l a t i o r ~ s a maximum

I x '

. - -

x2

value of mx = -qx

-

-0.941 q

-

=

1 2 -0.0784 q L x 2 The t r u e f i x i n g moment i s a c c o r d i n g l y 15% g r e a t e r . A s i m i l a r differ.ence i s a l s o found f o r . t h e maximum f i x i n g moment m on t h e s h o r t e r s i d e of t h e r e c t a n g l e .

Y

These d i f f e r e n c e s between t h e a c t u a l n e g a t i v e moments and t h e average moments from t h e s i m p l i f i e d e q u a t i o n s a r e t a k e n i n t o c o n s i d e r a t i o n by u s i n g

2

1

=

7

f o r t h e p o s i t i v e moments in t h e s u p p o r t i n g beams as b e f o r e , b u t f i g u r e

3

with

Jr

= f o r t h e n e g a t i v e moments in t h e beams.

1,

=

qy

=

'5

( f o r p o s i t i v e moments)

3

I

qX = qy = ( f o r n e g a t i v e moments).

We s h a l l now e v a l u a t e e q u a t i o n s

( 5 )

and

( 5 a )

f o r s l a b s of d i f f e r e n t span r a t i o s f i x e d a t t h e s u p p o r t s . The maximum p o s i t i v e bending moments can be o b t a i n e d from G s e r l s d e s i g n manual o r from t a b l e s in S e c t i o n B of t h i s paper, while t h e n e g a t i v e bending moments i n t h e s l a b a t t h e s u p p o r t s a r e

1 2 A c a l c u l a t e d a c c o r d i n g t o t h e above-mentioned e q u a t i o n s mx = -qx

12

and 1 2 m = - q . Y

*.

We t h e n o b t a i n t h e f o l l o w i n g v a l u e s :

(12)

A s might be expected, t h e d i f f e r e n c e s i n t h e beam moments between t h o s e corresponding t o t h e e x a c t s l a b t h e o r y ( c ) and t h o s e obtained by means of t r i a n g u l a r and t r a p e z o i d a l l o a d i n g s a r e o n l y s l i g h t . Contrary t o t h i s we f i n d t h a t t h e conventional method of c a l c u l a t i o n a c c o r d i n g t o ( a ) ,

as

allowed by t h e r e i n f o r c e d c o n c r e t e s p e c i f i c a t i o n s , i s q u i t e a s unusable as w i t h

f r e e l y supported s l a b s s i n c e i n t h e l i m i t i n g c a s e s t h e y r e s u l t i n v a l u e s about seven times t o o small.

3 . S l a b s w i t h a r b i t r a r y boundary c o n d i t i o n s

Here method ( c ) , i n which t h e beam moments were determined from t h e whole system, always g i v e s very a c c u r a t e v a l u e s . Method ( b ) of c a l c u l a t i n g

t h e beam moments from t h e t r i a n g u l a r and t r a p e z o i d a l loads, on t h e o t h e r hand, becomes r a t h e r u n c e r t a i n because d i f f e r e n t boundary c o n d i t i o n s w i l l change t h e load d i s t r i b u t i o n i n d i c a t e d in F i g . 2 . A t f r e e l y supported s l a b c o r n e r s t h e r e w i l l be

a

t e n s i l e f o r c e ( w i t h a corresponding i n c r e a s e d load on t h e beam i t s e l f ) . It i s shown i n S e c t i o n C, however, t h a t d e s p i t e t h i s r e d i s t r i - b u t i o n of t h e s l a b r e a c t i o n s on t h e beanls

a

c a l c u l a t i o n by means of t r i a n g u -

l a r and t r a p e z o i d a l loads i s s u f f i c i e n t l y a c c u r a t e .

The r e d i s t r i b u t i o n of t h e s l a b r e a c t i o n s , because of d i f f e r e n t boundary c o n d i t i o n s and t h e l a c k of a s u i t a b l e method of c a l c u l a t i o n which could t a k e c a r e of such v a r i a t i o n s , were probably t h e reason why t h e p r e s e n t day (1942) c o n v e n t i o n a l method ( a ) of c a l c u l a t i n g bean moments by use of uniformly d i s t r i b u t e d l o a d s was adopted i n t h e s p e c i f i c a t i o n s of 1932. This, however, a s shown i n t h e foregoing, l e a d s t o i n a d m i s s i b l y i n a c c u r a t e beam moments. Despite t h e s e s e r i o u s e r r o r s i n d e s i g n c a l c u l a t i o n s f o r s u p p o r t i n g beams f o r

(13)

t h e s h o r t e r spans o f t h e s l a b s no a c c i d e n t s have occured o r have become known. This i s probably because t h e bending moments d e r i v e d from t h e dead

load of t h e s e beams and t h e l i v e l o a d s coming d i r e c t l y upon them a r e added t o t h e l o a d s from t h e s l a b , and a l s o because i n most c a s e s d e s i g n e r s h3ve employed l a r g e r s t e e l p e r c e n t a g e s i n view of t h e small amount of r e i n f o r c e - ment d e r i v e d from t h e c a l c u l a t i o n s .

A more complete p r e s e n t a t i o n of t h e method of c a l c u l a t i o n f o r c o n t l n u - ous s u p p o r t i n g beams in s l a b systems, b o t h f o r t h e c a s e where a l l and t h a t where o n l y some o f t h e p o i n t s of beam i n t e r s e c t i o n s a r e supported by columns,

i s given f o r b o t h methods o f c a l c u l a t i o n i n S e c t i o n C . F i r s t , however, a s was mentioned i n t h e Foreword, t h e n e x t s e c t i o n w i l l c o n t a i n t a b l e s f o r

c a l c u l a t i o n of bending nloinents i n two-way s l a b s i n a simple and c l e a r manner. B. Tables of Bending Moments f o r Two-rray S l a b s

1. Development of e q u a t i o n s f o r d i f f e r e n t t y p e s o f s l a b s

The r e l e v a n t e q u a t i o n s from t h e s p e c i f i c a t i o n of s l a b bending moments a r e :

. .

-

[ m y = m v Y Y' h e r e i s v Y =

Contrary t o t h e specifications, s m a l l l e t t e r s a r e used f o r t h e s l a b moments t o d i f f e r e n t i a t e them from t h e beam moments, i n accordance with what

i s done i n t h e g e n e r a l t h e o r y of e l a s t i c i t y . mx and m a r e t h e maximum

Y

moments, mox and m mean t h e moments i n a simply supported s l a b i n which t h e O Y

t o t a l uniform load i s c a r r i e d i n one d i r e c t i o n o n l y ( m o x = q

'$

1 2 ,

-

T

J

OY

m

=

q

%)

,

mx and

iii

a r e t h e bending moments i n t h e two-way s l a b t a k i n g i n t o

Y

account t h e kind of s u p p o r t s p r e s e n t a s shown i n F i g . 8 b u t without t a k i n g i n t o account t h e e f f e c t of t o r s i o n a l moments. The t h r e e p o s s i b l e k i n d s o f s u p p o r t c o n d i t i o n s , with t h e corresponding bending moments and d e f l e c t i o n s , a r e shown on F i g .

8.

qx and qy a r e t h e load components of t h e t o t a l l o a d q

c a r r i e d i n t h e x d i r e c t i o n and y d i r e c t i o n , r e s p e c t i v e l y . In o r d e r t o

determine t h e s e components, t h e t o t a l uniformly d i s t r i b u t e d load q

i s

d i v i d - ed i n such a way t h a t t h e c e n t r e s t r i p s shown i n F i g .

9

have e q u a l d e f l e c t i o n

a t c e n t r e f o r t h e two component l o a d i n g s . In c a l c u l a t i n g d e f l e c t i o n s t h e kind o f s u p p o r t c o n d i t i o n s a s shovm on F i g .

8

must be c o n s i d e r e d . In t h e g e n e r a l form t h e s e d e f l e c t i o n s may be w r i t t e n :

(14)

In view of t h e e q u a l s l a b t h i c k n e s s i n b o t h t h e x and y d i r e c t i o n s , and d i s r e g a r d i n g t h e d i f f e r e n c e i n amount of r e i n f o r c e m e n t , t h e moments of i n e r t i a a r e Ix = I ( p e r u n i t w i d t h ) . Since qx + q~ = q and 6, = 6 we ob- Y Y t a l n t h e f o l l o w i n g v a l u e s f o r load components:

The bending moments

lx

and

iii

a r e t h u s

Y

The c o n s t a n t s

Bx

and

P

which c h a r a c t e r i z e t h e magnitude of t h e bending

Y 1

moments f o r t h e t h r e e k i n d s of s u p p o r t c o n d i t i o n s of F i g . 6 a r e

a,

-&

and The s l a b rnornents

Ex

and

ii

a r e reduced due t o t h e t o r s i o n a l r e s i s t a n c e

FT-

Y

t o t h e v a l u e s mx and m The r e d u c t i o n i s c h a r a c t e r i z e d by t h e c o e f f i c i e n t s Y '

vx and v Y '

I n F i g . 10 a r e shown t h e c l a s s i f l c a t i o n of s l a b s i n t o s i x k i n d s now used and F i g . 10a shovls t h e proposed new c l a s s i f i c a t i o n i n t o n i n e t y p e s . This l a t t e r c l a s s i f i c a t i o n enable3 u s t o r e s t r i c t t h e span r a t i o s between

s = 1 t o E = 2 and t o e x p r e s s a l l moments only h terms of t h e span 'Lx where

1, always i s t h e s h o r t e r span. Confusion between spans i s no l o n g e r p o s s i b l e w i t h t h i s method. (This c l a s s i f i c a t i o n i s a l s o t h e b a s i s f o r t h e t a b l e s of vx and v i n t h e c o n c r e t e c a l e n d e r * which d i d n o t , however, make Y use of t h e p o s s i b i l i t y of r e s t r i c t i n g t h e E v a l u e s t o t h e range from E = 1 t o s = 2 . )

We s h a l l now e x p r e s s a l l v a l u e s given by e q u a t i o n

( 6 )

i n terms of t h e parameter E and t h e r e b y a r r i v e a t d e f i n i t e e q u a t i o n s f o r t h e n i n e k i n d s of

s l a b .

(15)

In Table I t h e v a l u e s f o r mx, m and vx, v a r e developed a s a f u n c t i o n Y Y of e , and we t h u s o b t a i n t h e f o l l o w i n g e q u a t i o n s f o r t h e n i n e k i n d s of s l a b : 6 1 tS . q I 2

(

I - - .

-

my

-

my lVY = 8 '

-

5 6 l + r 4 1

+

t' . q 1 , 2 '

(

1-

-. -

ti 1 + t 4 t I 45 r ? my .= Ilr 1 9 -

-

.

-

'-128 5 + 2 r 4 .(I/,?

(

I--.- 32 5 + 2 C 6 p4 1 5 = ,.* --.

- .

-

.

8 5 + r 4 1

The above e q u a t i o n s a r e e v a l u a t e d i n Table I1 f o r a l l v a l u e s from e = 1 . 0 0 t o E = 2.00, w i t h t h e s m a l l i n t e r v a l s of Ae = 0.02, s o t h a t i n t e r p o l a - t i o n can e i t h e r be dispensed w i t h o r e a s i l y e s t i m a t e d .

According t o t h e Reinforced Concrete S p e c i f i c a t i o n s A r t i c l e 23,

paragraph 2, t h e corresponding t o r s i o n moments need n o t be checked and i t i s n o t n e c e s s a r y t o i n c l u d e any a d d i t i o n a l t o r s i o n a l reinforcement a c c o r d i n g t o F i g . 12 of t h e s p e c i f i c a t i o n s i f t h e s l a b i s m o n o l i t h i c w i t h t h e p e r i p h e r a l beams o r t h e a d j a c e n t s l a b . If t h e r e i s no such j o i n i n g t h e n a d d i t i o n a l t o r s i o n reinforcement can o n l y be omitted i f t h e r e d u c t i o n c o e f f i c i e n t v i n t h e above e q u a t i o n s ( 6 ) i s r e p l a c e d by t h e c o e f f i c i e n t

-

+ whereby l a r g e r

2

s l a b moments a r e o b t a i n e d . This a p p l i e s , a s t h e f i g u r e s and t a b l e s show, o n l y t o s l a b t y p e s 1 t o 4, where two f r e e l y r o t a t a b l e edges meet, t h u s r e s u l t i n g i n c o n s i d e r a b l e t e n s i l e f o r c e s due t o t h e t o r s i o n moment f o r t h e f r e e c o r n e r s in q u e s t i o n , t h e non-absorption of t h e a e f o r c e s producir,g a n i n c r e a s e i n t h e s l a b moments. I n o r d e r t o f a c i l i t a t e t h e work of c a l c u l a t i o n f o r t h i s c a s e a s well, t h e s e i n c r e a s e d bending moments a r e given i n Table 111 f o r t h e s l a b t y p e s 1 t o 4 in q u e s t i o n .

A l l bending moments mx and

$

of T a b l e s I1 and I11 a r e given as func-

1 2 ' x t i o n s of t h e s h o r t e r span

Ix

= I , e . g . i n t h e form o f mx = q

- -

n l m y

-

2 3

Ix where t h e i n d i c e s 3 x and 3y show t h a t t h e moments mx and m of s l a b

q.,

3Y Y

(16)

2. The c a l c u l a t i o n o f c o n t i n u o u s s l a b s

The problems a r i s i n g f o r c o n t i n u o u s s l a b s and c o r r e s p o n d i n g s u p p o r t i n g beams a r e e x t r e m e l y d i f f i c u l t because a d j a c e n t s l a b s and beams i n f l u e n c e each o t h e r a s a r e s u l t o f t h e c o n t i n u i t y c o n d i t i o n s . The bending s t i f f n e s s of t h e beam, however, i s c o n s i d e r a b l y g r e a t e r t h a n t h a t o f t h e s l a b s , s o t h a t f o r l o a d i n g on a l l s l a b s we can s t a r t from t h e assumption, i n c l o s e approximation t o t h e r i g o r o u s t h e o r y , t h a t t h e i n d i v i d u a l s l a b s do n o t i n f l u - ence one a n o t h e r . T h i s w i l l be s t i l l c l o s e r t o r e a l i t y i f t h e t o r s i o n a l s t i f f n e s s o f t h e beams i s a l s o t a k e n i n t o a c c o u n t . Accordingly a t e v e r y t r a n s i t i o n from one s l a b t o a n o t h e r complete f i x i t y can be assumed s o t h a t

-

g i v e n uniform l o a d i n g o f a l l s l a b s

-

t h e new e q u a t i o n s ( 6 a ) , which were d e r i v e d w i t h o u t t a k i n g i n t o a c c o u n t t h e c o n t i n u i t y , a r e v a l i d f o r t h e i n d i - v i d u a l s l a b s .

In t h e c a s e of a l i v e l o a d v a r y i n g from s l a b t o s l a b , however, a r e c i - p r o c a l i n f l u e n c e i s p r e s e n t . I n o r d e r t o t a k e t h i s i n t o a c c o u n t we d i s t r i - b u t e t h e l i v e l o a d on t h e s l a b system i n a checker-board f a s h i o n as shown on F i g . 11. In t h i s way t h e maximum and minimum p o s i t i v e moments a r e determined f o r a uniform c o n t i n u o u s load o f

+

$

and a n a n t i m e t r i c l o a d o f f

5.

Thus from dead l o a d and l i v e load we o b t a i n f i r s t a c o n t i n u o u s l o a d and t h e n an

a n t i m e t r i c a l t e r n a t i n g one from s l a b t o s l a b w i t h v a l u e s o f

F o r t h e uniform load q t t h e s l a b s may be c o n s i d e r e d a s c o m p l e t e l y f i x e d a t

t h e s u p p o r t s i n accordance w i t h t h e above c o n s i d e r a t i o n s , s o t h a t f o r d e t e r - mining t h e maximum p o s i t i v e s l a b moments from q t t h e s l a b t y p e s o f F i g . 11

can be used. In computing t h e a n t i m e t r i c l o a d , on t h e o t h e r hand, s l a b t y p e

1 i s always a p p l i c a b l e , because i n t h i s l o a d i n g c a s e t h e i n d i v i d u a l s l a b s do n o t i n f l u e n c e one a n o t h e r , a s i s e v i d e n t from t h e c o r r e s p o n d i n g moment and bending c u r v e s . The i n d i v i d u a l s l a b s may t h e r e f o r e be regarded a s f r e e l y s u p p o r t e d f o r t h e l o a d 2

$?.

S t r i c t l y s p e a k i n g t h i s i s o n l y c o r r e c t on t h e assumption t h a t a l l s l a b s a r e o f e q u a l s i z e and t h a t t h e t o r s i o n a l s t i f f n e s s of t h e beams i s n e g l e c t e d . However, s i n c e t h e p o s i t i v e moments of t h e s l a b a r e reduced f o r t h e a n t i m e t r i c l o a d k

5

because o f t h e t o r s i o n a l s t i f f n e s s o f t h e beams, we a r e on t h e s a f e s i d e i n t h i s assumption and can t h e r e f o r e a c c e p t i n a c c u r a c i e s t h a t may r e s u l t from t h e p r e s e n c e o f s l a b s o f d i f f e r e n t s i z e s .

The c a l c u l a t i o n of t h e n e g a t i v e moments a l o n g t h e l o n g s i d e s of t h e r e c t a n g u l a r c o n t i n u o u s s l a b s i s c a r r i e d o u t in t h e same way as f o r one-way s l a b s e x c e p t t h a t t h e l o a d component qx i s p u t i n p l a c e o f load q . The

(17)

following equations a r e t h u s obtained f o r t h e s u p p o r t moments of t h e s l a b s .

,

( a ) mx = -qx

.

12

IX2 = -*xq '

12

IX2

a t t h e common support o f two s l a b s f i x e d on both long s i d e s according t o F i g . 12a;

( b mx a -qx '

-

'x2

8

= -Xx9 •

7

IX2

a t t h e common support of two s l a b s f i x e d on one s i d e accord-

i n g t o F i g . 12b; ( 8 )

( c m = -qx

.

1

Ix2

0

= -xXq

. -

I&

X 1 0

a t t h e common support between a s l a b f i x e d one a i d e and a s l a b f i x e d on two s i d e s according t o Fig. 12c.

Equation ( 8 b ) i s obtained a s a mean value o f e q u a t i o n ( 8 ) and e q u a t i o n ( 8 a ) s o t h a t t h e x x value i s a l s o taken a s

a

mean value of t h e xx f i g u r e s of e q u a t i o n s ( 8 ) and ( 8 a ) . The load component qx o r t h e a s s o c i a t e d xx v a l u e s can be taken from Table

IV.

However, t h e above e q u a t i o n s cannot be used t o c a l c u l a t e t h e support moments on t h e s h o r t s i d e s , a s t h e r i g o r o u s t h e o r y shows. In t h e i r p l a c e we use t h e following e q u a t i o n s ( 8 ) , i n which t h e support moments

s e n t e d a s a f u n c t i o n of t h e span 1, and load q = g

+

p: are repre-

a t t h e i n t e r i o r support of two s l a b s f i x e d on both s h o r t s i d e s according t o Fig. 12d;

1 2

a t t h e i n t e r i o r s u p p o r t of two s l a b s f i x e d one s i d e accord- i n g t o F i g . 12e;

r 2 (8)

x

2 0

% = - q ' -

a t t h e i n t e r i o r support of one s l a b fFxed one s i d e and one s l a b f i x e d two s i d e s according t o F i g . 12f a s a mean of e q u a t i o n s ( 8 d ) and ( 8 e ) .

I n t h e c a s e of square s l a b s w i t h s i n i i l a r boundary c o n d i t i o n s ( s l a b types 1,4,9) e q u a t i o n s ( 8 d ) t o ( 8 f ) change t o t h e corresponding e q u a t i o n s ( 8 a ) t o ( 8 c ) .

Accordingly, we d i s c e r n two groups of t h r e e f i x i n g moments each, t h e

f i r s t group r e l a t i n g t o t h e long s i d e s and t h e second t o t h e s h o r t s i d e s of t h e r e c t a n g l e . Each group i s f u r t h e r . s u b d i v i d e d i n t o t h r e e I n d i v i d u a l c a s e s , depending on t h e boundary c o n d i t i o n s of t h e edges s i t u a t e d o p p o s i t e t h e s i d e s i n q u e s t i o n , while t h e boundar'y c o n d i t i o n s of t h e edges p e r p e n d i c u l a r t o t h e s i d e s in q u e s t i o n a r e d i s r e g a r d e d . To t h i s e x t e n t e q u a t i o n s

(8)

a r e o n l y a n

(18)

approxlmatlon, and moreover t h e moments mx run a l o n g y and t h e moments m Y a l o n g x approximately p a r a b o l i c a l l y i n accordance w i t h F i g .

6

and 7, whereas we based t h e i r dimensioning on t h e trapezium a s shown i n t h e s e f i g u r e s . D e s p i t e t h i s 15$ underdimensioning, however, a reinforcement based on t h e s e

t r a p e z i a a f f o r d s adequate s a f e t y , because t h e overdimensioned s l a b s t r i p s compensate f o r t h e ur~dcrdimensioned s u p p o r t ends of t h e s t r i p and t h e r e b y e s t a b l i s h f u l l s a f e t y . F i n a l l y , we a g a i n s t a t e t h a t t h e (maximum) p o s i t i v e moments of t h e n i n e s l a b t y p e s 1 t o 9 a r e t o be c a l c u l a t e d by means o f t h e continuous load q 1 = g

+

5

and t h e a n t i m e t r i c checker-board l i v e load q" =

f

2

while t h e n e g a t i v e moments of t h e s i x d i f f e r e n t s l a b edges

a

t o f a r e 2

c a l c u l a t e d from t h e t o t a l load q = g

+

p .

C . The C a l c u l a t i o n of t h e Supporting Beams of Two-way S l a b s

The s u p p o r t i n g beams can be c a l c u l a t e d b o t h from t h e d i f f e r e n c e between t h e moments of t h e whole system and t h e s l a b moments ( c a s e c ) , o r by means of t h e t r i a n g u l a r and t r a p e z o i d a l l o a d s ( c a s e b ) . The method of c a s e ( c ) is

of course t h e more a c c u r a t e one, because i t i s based on t h e r i g o r o u s s o l u - t i o n of t h e s l a b problem. D i f f e r e n c e s i n t h e r e s u l t s a r e found especially

when s l a b t y p e s 1 t o 4 a r e used w i t h t o r s i o n e f f e c t , i n which c a s e as shown I n S e c t i o n A, t h e c a l c u l a t i o n by means o f t r i a n g u l a r and t r a p e z o i d a l l o a d s

is based on s l a b r e a c t i o n s t h a t a r e t o o small. However, even when s l a b t y p e s 5 t o

8

a r e employed, and where no a d d i t i o n a l t o r s i o n reinforcement is pro- vided, beam moments c a l c u l a t e d from t r a p e z o i d a l and t r i a n g u l a r l o a d s are t o o

small. Only w i t h s l a b type 9 which i s f i x e d on a l l s i d e s a r e beam moments a c c o r d i n g t o c a s e ( b ) and ( c ) s u f f i c i e n t l y a c c u r a t e . The d i f f e r e n c e o b t a i n e d with t h e two methods of c a l c u l a t i o n w i l l be shown w i t h an example.

I. C a l c u l a t i o n of t h e bend in^ moments i n t h e s u p p o r t i n g beams from t h e t o t a l moments The e q u a t i o n s f o r t h i s a r e t h e same a s f o r t h e f i x e d s l a b , e q u a t i o n ( 5 ) . f o r t h e p o s i t i v e momenta

-

2

tx

-

Py

=

5.

I

f o r t h e s u p p o r t rnoriients

(19)

-

However, now Mx and

F

l

a r e t h e bending moments of t h e continuous t o t a l system Y

i n c l u d i n g beanis and s l a b s .

From t h e bending moments of t h e beams we g e t t h e corresponding s h e a r loads from equations

Here t h e v a r i a t i o n of t h e moments

Mx

and

M

can be taken a6 p a r a b o l i c

Y

with s u f f i c i e n t accuracy, whereby a s t r a i g t h l i n e v a r i a t i o n i s obtained f o r t h e t r a n s v e r s e s h e a r a s a d i f f e r e n t i a x curve of t h e moment l i n e .

According t o A r t i c l e 18, paragraph 3 , of t h e s p e c i f i c a t i o n s t h e support r e a c t i o n s t r a n s f e r r e d t o t h e beam may be t r a n s f e r r e d without t a k i n g i n t o account any c o n t i n u i t y t h a t may e x i s t , so t h a t i n c a l c u l a t i n g t h e t o t a l moments in t h e beam in t h e x d i r e c t i o n we would have t o use a loading width

I and I n c a l c u l a t i n g t h e beam In t h e y d i r e c t i o n a loading width

Ix.

Y'

In

t h e following example we s h a l l t r y t o determine whether t h i s s p e c i f i c a t i o n , which o f f e r s a considerable f a c i l i t a t i o n of t h e c a l c u l a t i o n work f o r s l a b s of equal s i z e , i s i n f a c t p e r m i s s i b l e .

1. The s l a b system

In

two rows a s i n Fig. 13 a s a numerical example

We have chosen t h i s s l a b system of two rows because t h e maximum loading width w i l l r e s u l t f o r t h e c e n t r a l beam

In

t h e x d i r e c t i o n because of t h e c o n t i n u i t y of t h e two-span s l a b I n t h e y d i r e c t i o n .

We use t h e following values f o r spans and loading:

q 1 I x 2 =

6 2

0.625 = 22.5 t m ; q1'Ix2 = 24.5 t m .

The dead weight of t h e beams

i s

neglected, s i n c e t h i s i s of no h p o r t a n c e i n o u r i n v e s t i g a t i o n s .

( a ) Calculation of continuous load q l . This Is determined from s l a b types 4 and 7. The s l a b moments a r e found t o be

P o s i t l v e moments : 1

S l a b type 4 m, =

m-

q ' I, = 37.2 = +0.605 t m

1

(20)

F i x i n g moments: I,' Edge a mx = -qx

.

12

= -%Xqt

.

-

IX2 1 2 = -0.667

a

= -1.25 t r n L L X . - = X Edge c mx = -qx -%xqt

-

10 =

-

0.667

+

2 0.500

22.5

1 0 & x Edge e m = - q t

-

= - q t 1 0.0625 ( d a l x = Y 16 Y I y )

From

%

we g e t t h e l o a d width of t h e c e n t r e beam of x d i r e c t i o n as I

Y

(1

+

2 0.0625) = 1.125 I while f o r t h e o r d i n a r y continuous beam w i t h two Y

spans t h e r e a c t i o n a t t h e c e n t r e s u p p o r t i s 1.25 p l

.

We now c a l c u l a t e t h e t o t a l moment f o r t h e row two s l a b s wide, t h e load- i n g of which p e r l i n e a l metre i s

-

q = q t 21y = 0.625

.

12 = 7 . 5 t,

-

qIx2 = 7.5

36

= 270 t m ,

-

M = = 33.75. t m .

-

According t o t h e t a b l e s f o r continuous beams of f i v e spans t h e s u p p o r t moments a r e

R,

= -0.105

.

270 = -28.35 t m

-

M 2 = -0.079 270 = -21.25 t m .

The moment of t h e f r e e l y supported span was

Pf

= 33.75 t m . Thereby we o b t a i n t h e bending moments a t t h e c e n t r e of t h e span as

From t h i s it i s n e c e s s a r y t o deduct t h e s l a b moments of t h e two s l a b s

a c c o r d i n g t o t h e f o l l o w i n g t a b l e , where f o r t h e p o s i t i v e moment I)

-

-

,

f o r t h e s u p p o r t moment I) y - 3

(21)

I n the second l a s t l i n e of the above t a b l e the moments f o r a l l the

supporting beams of x d i r e c t i o n a r e taken together, while the l a s t l i n e gives only the moments of t h e c e n t r e beam, and from the moments of a l l t h r e e beams, according t o the load w i d t h of 1.125 1 found above,

Y 100 = 56.25% i e

c a r r i e d by the c e n t r e beam. The moments i n the c e n t r e beam a r e given I n t h e l a s t l i n e .

( b ) Calculation f o r t h e a n t i m e t r i c load q = f0.125 t / m 2 according t o Fig. 13a.

,In

the f i g u r e the s l a b s have superimposed loads of +0.125 t / m and -0.125 t / m

,

r e s p e c t i v e l y . The determining kind of s l a b i s t h e r e f o r e type 3. 1 Slab type 3 mx = q " l x 2

-

=

3

= 0.122 t m . 36.8 36.8 The t o t a l moment i s I X 2 - I t =

-

- C "

. -

x 8 ' 12

.

0.125 = 1.5 t/m, M, = 26.75 t m .

Accordingly, the moment f o r a l l t h r e e p a r a l l e l beams t o g e t h e r is Mx = 6.75

-

1 2 0.122 = f5.77 t m .

7

The load w i d t h i s the same a s f o r ( a ) , so t h a t on t h e c e n t r e beam t h e r e devolves

( c ) The bending moments of the c e n t r e beam a t mid-span from dead weight and l i v e load a r e found from load cases ( a ) and ( b ) a s

( a ) :

+

8.30 +2.73 +4.69 t m

( b ) :

+

3.24 i-3.24 i-3.24 t m Mx = ( a )

+

( b ) : +11.54 +5.97 +7.93 t m

2 . For comparison we now c a l c u l a t e a s l a b s t r i p of t h e same type, but assume t h a t It i s fixed a t the upper and lower boundaries

Here the load w i d t h of a c e n t r e beam i n the x direction i s only 1

Y instead of 1.125 1 ( F i g . 1 4 ) .

Y

( a ) Calculation f o r the continuous load q l . In place of s l a b type 4

(22)

P o s i t i v e moments:

Slab type 8

mx =

+s6

=

+0.444

t m

50

Slab type 9

m =

+

X

3

55.7

=

+o.

403

t m ;

Fixing moments

:

E d g e a

m = - q x . r =

Ix2

Ix2

x

-%s1

12

=

-0.5

22.5

12 =

-0.937

t m lX2

Edge c

mx =

-

qx

1

0

= -"xq'

1

0

0.5

+

0.333

=

-

2 '

a

10 =

-0.938

t m .

The t o t a l moments which a c t on a c e n t r e beam

in

the

x

d i r e c t i o n a r e t h e r e f o r e

h a l f a s g r e a t a s f o r ( l a ) , since we a r e now required t o load only a

s t r i p

of

w i d t h ly.

According t o the subsequent t a b l e , we t h e r e f o r e obtain the

following moments

:

Mx

=

+8.01

-

9.95

+2.84

-

6.45

+4.59

trn

( b )

Calculation f o r t h e a n t i m e t r i c load'

q" =

f0.125

t/m2

( ~ i g .

14a).

For

t h i s

the p e r t i n e n t s l a b type i s No.

6.

+

4

.

5

=

20.081

t m . mx =

-

55.7

The t o t a l moment f o r the load width

1 is

h a l f a s g r e a t a s f o r ( l b ) , there-

Y

fore

From t h i s t h e s l a b moment

m 1 $ =

f0.081

-

6

.

J =

t o .

32

t m i s

deducted,

s o

X Y Y

t h a t f o r the beam the moment

Mx =

3.37

-

0.32

=

3.05

t m

remains.

( c ) The a d d i t i o n of load cases

(a)

and ( b ) r e s u l t s In:

0 -1 1-2 2-3

(a) : -!- 8.01 $ 2,W ?- 4 3 9 tm

(23)

3.

The c o n c l u s i o n s t o be drawn frorn numerical examples 1 and 2

We s h a l l now compare t h e bending moments i n t h e c e n t r e beam f o r c a s e 1 and 2 , f o r t h e d e t e r m i n i n g l o a d i n g c a s e s

( a )

p l u s ( b ) made up o f dead weight and l i v e load.

0- 1 1 1-2 2 2-3

Case 1

Mx

= +11.54 -9.32 +5.97 -5.68 +7.93 t m Case 2 Mx = +11.06 -9.95 +5.89 -6.45 +7.64 t m

D e s p l t e t h e g r e a t e r load width of t h e c e n t r e beam o f example 1, 1.125 Ly a s compared with 1.00 1 o f example 2, t h e bending moments a c c o r d i n g t o 2 a r e

Y

on t h e average s l i g h t l y g r e a t e r t h a n a c c o r d i n g t o 1. We can conclude from t h i s t h a t we do n o t have t o t a k e i n t o account t h e c o n t i n u i t y in t h e y d i r e c - t i o n , 1.e. we may c a l c u l a t e t h e beams i n t h e x d i r e c t i o n a s though t h e s t r i p of s l a b in t h e y d i r e c t i o n were completely f i x e d . The same h o l d s c o n v e r s e l y t r u e f o r t h e beams of y d i r e c t i o n .

The same r e s u l t i s a l s o o b t a i n e d from t h e l i m i t i n g c a s e E = 2, f o r

example where ( l x = 6 . 0 m, 1 = 1 2 . 0 m ) . For t h e sake o f s a v i n g space o n l y

Y

t h e f o l l o w i n g f i n a l r e s u l t s a r e c i t e d f o r s = 2:

Case 1

M~ = +12.94 -9.40 +5.82 -5.10 +9.43 t m Case 2 I/Ix = +13.37

-3.85

+6.1'7 -5.50 +9.67 t m

Here t h e rnoments a c c o r d i n g t o 2 a r e p r e f e r a b l e t o t h o s e of 1 because o f t h e s i m p l e r c a l c u l a t i o n . Case 2 on t h e average g i v e s h i g h e r v a l u e s t h a n 1,

which t a k e s i n t o account a c t u a l c o n d i t i o n a t t h e upper and lower boundaries. D e s p i t e t h e small l o a d i n g width, t h e bending moments i n t h e s u p p o r t i n g beams a r e somewhat h i g h e r on t h e average f o r c a s e 2. The r e a s o n i s t h a t

vrhere t h e upper and lower edges o f t h e s l a b a r e f i x e d , a s i n c a s e 2, t h e s l a b moments mx become s m a l l e r t h a n f o r t h e f r e e l y supported edges o f c a s e 1, and

t h u s t h e i n f l u e n c e of t h e g r e a t e r l o a d i n g width i s removed. I n c a l c u l a t i n g t h e beams of x d i r e c t i o n , t h e r e f o r e , t h e c o n t i n u i t y o f t h e s l a b I n t h e y d i r e c t i o n can be d i s r e g a r d e d . I n a manner s i m i l a r t o t h a t f o r t h e o r d i n a r y continuous beam we t h u s o b t a i n t h e maximum p o s i t i v e moments of t h e beam i n t h e x d l r e c t i o n due t o l i v e load by a l t e r n a t i n g , a c c o r d i n g t o F i g . 15 and 15a, t h e l i v e load on t h e slab^ i n t h e y d i r e c t i o n i n r e l a t i o n t o t h e x d l r e c t i o n .

(24)

The niaximun~ s u p p o r t moments, on t h e o t h e r hand, a r e o b t a i n e d by l o a d i n g a c c o r d i n g t o F i g . 15b and 15c. The corresponding bending moments o v e r t h e s u p p o r t s of t h e e n t i r e system f o r t h e l o a d i n g width can be taken from t h e a v a i l a b l e t a b l e s f o r continuous beams with e q u a l spans. From t h i s vre deduct t h e s l a b moments f o r t h e continuous load q f and t h e a l t e r n a t i n g load q" I n t h e manner i n d i c a t e d above.

A s f a r a s t h e a l t e r n a t i n g load q" i s concerned, t h e c a l c u l a t i o n , of course, Is now i n a c c u r a t e , because a t t h e s u p p o r t i n q u e s t i o n two s l a b s load- ed with q" a r e continuous w i t h one a n o t h e r . The r e s u l t i n g inaccuracy, how- e v e r , l s o f no inlportance, e s p e c i a l l y a s t h e r e i n f o r c e m e n t s of t h e s l a b In x d i r e c t i o n i n t h e v i c i n i t y of t h e beam a r e n o t f u l l y u t i l i z e d and can t h e r e - f o r e be counted on t o c o o p e r a t e . This i s i n d i c a t e d i n F i g . 6 and 7 , accord- i n g t o which t h e moments mx a l o n g t h e y a x i s a r e p a r a b o l i c . Every d e s i g n e r , however, w i l l i n c l u d e r e i n f o r c e n ~ e n t s i n t h e s l a b n e a r t h e s u p p o r t i n g beams s o t h a t t h e s e can s e r v e a s a r e s e r v e f o r t h e beams.

In

S e c t i o n 111 t h e c a l c u l a t i o n method d e r i v i n g from t h e above conclu- s i o n s are i l l u s t r a t e d w i t h a numerical example.

In

t h e course of t h i s i t Is

a g a i n shown how t h e s h e a r f o r c e s a r e o b t a i n e d i n a simple manner from t h e moments.

In S e c t i o n I1 below, t h e c a l c u l a t i o n f o r t h e s l a b of F i g .

13

i s c a r r i e d o u t by means of t r i a n g u l a r and t r a p e z o i d a l loads, i n o r d e r t o check i f such

a c a l c u l a t i o n i s s u f f i c i e n t l y a c c u r a t e e s p e c i a l l y f o r t h e beams a t t h e boundaries of t h e s l a b .

11. The c a l c u l a t i o n of t h e s l a b of F i g .

31

by t r a p e z o i d a l and t r i a n g u l a r l o a d s ( ~ i g . 1 6 )

The three-moment e q u a t i o n of t h e continuous g i r d e r with c o n s t a n t moment o f i n e r t i a i s :

-

6

r - + 4Mr + Mr+ 4 -

-

( T I + P ~ ~ ' ) .

Here 0' and q" a r e t h e a n g l e s of r o t a t i o n of t h e s t a t i c a l l y d e t e r m i n a t e beam a t t h e r - t h support ( F i g . 1 7 ) . For a c o n s t a n t load q t h e moment and t h e corresponding angle of r o t a t i o n a r e found from

Figure

Table 111  Bending  rnoll~ents o f   s l a b   t y p e s   1  t o   4  w i t h o u t   t o r s i o n a l   reinTor-cement  S l a b   t y p e   =!.
Table  TV  --

Références

Documents relatifs

where q(Xi) is the wave function of the collective motion depending on the collective variables in the system connected with the main nucleus axes. @( ... F,

It consists in dividing a complex radiation problem into two subproblems : a bounded one, solved thanks to Finite Elements, and a unbounded one studied here with Boundary Elements..

[r]

8c the cholesteric liquid crystal must adapt its helical director modulation to fit the cylinder diameter d, in the sense that an integer number of full helix turns (pitches p) fit

This transformation provided the 9 condensed identity coef- ficients for any pair of individuals, but the 15 detailed identity coefficients can only be calculated using Karigl’s

2014 A general analytic and very rapid method for the calculation of the mean square vibration amplitude of crystal atoms is given.. This method has been tested on a

Stabilization of an inverted pendulum with delayed feedback is a benchmark prob- lem in control engineering literature [2, 28, 26, 33] as well as in understanding human.. As

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des