• Aucun résultat trouvé

Maximizing the spectral efficiency of coded CDMA under successive decoding

N/A
N/A
Protected

Academic year: 2022

Partager "Maximizing the spectral efficiency of coded CDMA under successive decoding"

Copied!
18
0
0

Texte intégral

(1)

Æ

!

"# $% &' Æ

( ) )

# * &' Æ

#

! "# $% & ' ( ")%

*

*

+ **,-

. "/% 0

!

1

Æ

2

3 4

5 5,67 &

4

2 4 8 (

"9:%!

5 4

(2)

; 2 * "<=%

& 2 Æ

! *

">#?% "##%

'

(

@,0 ,67 "#$%

@,0*

' @,0 *

* .

+ ,67 3

Æ

! "#)%

4 ,67 4

&44 5

* A-7 Æ

& ( , $

* '6 .

,67 & 2

Æ * (

, ) . ;

@,0B . 2

, /# & ( .

5 , /$ 4

, /9 ( . 4 ,67

A

2 , 9 2

"#)%

' 2

C

D

C# #!

* "#/%E

'6

?#! F

(3)

4 , 4

2 (

# . F

"

% 5 F

3

& (

C

G H

&

C

+

I ,67

'

& Æ

C

&

J

5 6 4

4 . GH

C

$!

J

1 "#?% Æ ++8(! *

C!B

!C !D

#

D #!

)!

C

!

C

! Æ "#/%

**,- &84 "#9%

C ! /!

(4)

.

!

C

#D

#D

D

#D

9!

! Æ

**,- .

!C

#D

! :!

& Æ )! :!

"#?% )! .2

!

C# ! &

Æ .

D ËÆÊ

!

,67 ËÆÊ

C #

C

!

& C

.2 !

#

D ËÆÊ

!C

#

D ËÆÊ

!

#"#?% 3

KJ 4

! . 8

D ËÆÊ

C

#

L

D ËÆÊ

D ËÆÊ

L

C

D ËÆÊ

,67

& '6

$

#

C

<!

& Æ !

**,- . ,

(5)

!C

#D

!! =!

! C

! 6

5 6

"?

%!

#D

!!

Æ

1 )!

'6 **,-

. "/% 3

2

A-7

& 7 7!

! Æ 4 "#:%

! & (

! ,67 A-7

3 ( "#< #=#> $?%

C

ËÆÊ!

ËÆÊ!C$

#

#D

ËÆÊ

ËÆÊ

¾

$

>!

@,0 '6 ,67 3 2 3 #

@,0 >! ! !

"#)%

& *

,67 ; .

4

. '

1

**,-. 2

"$#% @,0 (

!! "?$% 3 #! Æ

!C

!! #?!

(6)

3 $

! ! C #!

C ) #? A & '6

' @,0

.2

Æ

2 4

& @,05

& ,67

ËÆÊ

. , )

4

3 2 "#?%

Æ

ËÆÊ!C

"

ËÆÊ ËÆÊ!!% ##!

ËÆÊ!

D

ËÆÊ

#DËÆÊ

C# #$!

3 2

¼

.

!C

ËÆÊ! #)!

ËÆÊ

ËÆÊ!CËÆÊ #/!

&

¼

$

!C

#9!

3 2

¼

$ 1 "#?-4 #:)%

@,0

!

#:!

<!

& #:! ËÆÊ

(7)

ËÆÊ!

#DËÆÊ!

!ËÆÊ

ËÆÊD#

#<!

!C

"

%

"

%!

& #<! Æ

ËÆÊ

C

#=!

ËÆÊ

!

#DËÆÊ

! !ËÆÊ

¼

¼

D#

#>!

#D

! $?!

C

$#!

3

¼

4 ËÆÊ

ËÆÊ

ËÆÊ

!

¼

#D

¼

!

$$!

C

#

#

$)!

& #<! 4 E

!

$ $/!

#

#DËÆÊ

$9!

D

ËÆÊ

#DËÆÊ

C# $:!

& $9! &8 4

ËÆÊ C ËÆÊDËÆÊ

ËÆÊ

#DËÆÊ

$<!

(8)

4 "

%C# 14 $/! .

6 #<!

ËÆÊ! C "

ËÆÊ ËÆÊ!!% $>!

ËÆÊ

#DËÆÊ

)?!

ËÆÊ

#DËÆÊ

ËÆÊ

#DËÆÊ!

)#!

ËÆÊ

#DËÆÊ

!ËÆÊ

#DËÆÊ!

)$!

C

#DËÆÊ!

!ËÆÊ

#DËÆÊ

))!

1 @,0 & #

5 "#$% 1 4

4 & #

A,0

5 ! ")%

1 * ( E

#! 4 $! 4 '

5 # ,67

4 ! 4 ! 6

E @,0

2 =! #?!

'

! & , 1

6 7 ,167! **,-.

D#

! 8

!

C#

'.2 (

'

C ? &

(9)

A . 9!

!C

!! 4 "#9%

"?!

!

! )/!

4

#D

#D

C# )9!

2 (

C

#D!

D

?#% ):!

C

#D!

!

)<!

6

C#

# !

3 Æ C

! A-7

!

E

(

B

)=!

E

& 4 C 4

3 )=!

!

& )=! 2

C

!

C# M

#

!

C

M

? C M

D#

)>!

M

!

(10)

, 2

1 .2 ,67

5 (

! '

3

2

! 3 #

! 2

"#)% 3 # '

C?

&

!

C#

C# /?!

C

#D

!

!

/#!

)/! 8

!

Æ C

2 (

E

2 (

B

/$!

2 "

C # C

!

/#! ' E

& /$! 2

C

C# M

#

C

M

? C M

D#

/)!

C? M

½

(11)

, 2

1 244

"#)%

!"#$%&$ ' 1 3 ) G7C?$ #? #=H

Æ 4 ?$

#? #= @,0 ?# ?9 ?>!

3 # & 4

Æ

( " !%N ??# A

N

!

)=! &

'

4

!"#$%& ' 13 / GHG @,0H

Æ 4

"#)% 3 #

@,0 C ??9 #>9

?# & HH

G @,0H

¼

"#)% #= + 1

5 -

. ( G @,0H! 5

1 3 /

!

Æ

,67 ! 1

Æ (

(

1 4Æ

/$!

"?

%

! /)! 2

!

' ( *

( @,0

,

G H *

(12)

& * 2

**,-. 22 **,-.

2 "$$%! 6

(

Æ (

!

'4 . Æ @,0

& ,67

&

E (

,67 4 (

4 B

A

2

; 4

4

Æ

J

* ,67

!

"" #

"

( B

)=!

4 8

)=!

(

B

C

//!

&

2 (

!

#

B

#

/9!

#

(13)

3 Æ

C

&

2 (

4 4

! 8

;

)>!

1

. &

4 )>!

' 4 B

/9!

# /:!

D# /<!

& # 3.2 #

# 1 /:! /<! B

2 (

4 ( '

E

2 (

(

# .

2 ( .

&

.

C#

!

!

/=!

4 (

& B /<!

# !C

!

D#

!

/>!

1 Æ # ! #

# "

% &

? 8

#

# $ # ! #

& 2 # ! # # C

. $ 2 #

!

$C M

. )>! & B )>!

??!

D

##

??!

1 B # !

# C

8 )>!

(14)

&

/$!

M

"$)%

2 (

B

% &! & # M

9?!

% &! .

% &!C

O

O

C

C # M

# O

C

,

!

% &!

$

"#% & K& ' 6 P#>>#

"$% A7 7IG

H /$ $ ):/Q)<9 * #>>:

")% , RS G * E &

H

1 ; #>=: #?$9Q#?)/

"/% *R & G; 4 (

H . 6 #>><

"9% R R G; 4

* H /9 :

#>=/Q#>># , #>>>

":% ' P ' 7 , A K Æ G1 .

H 1---& 1& $??#

"<% K R !

'7 * #>>9

"=% ) G&, $9$$/ R)#?G)&,76'#F

3!HH-&,1 #>>>

">% , R , , G, Æ * H

(15)

"#?% , R , , G& 4T Æ

*H /< / #)?$Q#)$<

* $??#

"##% & & G *

H 1--- & 1& $??$

"#$% , RS G, Æ H

/= : #)#>Q#)/)K $??$

"#)% 7 I G H '

$??$

"#/% ,R I I0#>>=

"#9% & , 8 G E -5 5

H /9 $ :/#Q

:<9 * #>>>

"#:% G, H /<

$3 $??#

"#<% & 7 7 I G&

H /< $

9>>Q:#=3 $??#

"#=% & 7 7 I , G

H /<

$ :#>Q:)<3 $??#

"#>% , P & 7 7 I G

2 H

/< $ :9<Q:<?3 $??#

"$?% ,P "

*1& * $???

"$#% -KU& G;*1 **,-

,*H /<$

##$=Q##// * $??#

"$$% & ,RS G

H # # $<)Q)?/ 3

$??#

"$)% K - G, H

# K #>:>

:>Q=<

(16)

-12 -10 -8 -6 -4 -2 0 2 4 6 8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

g (dB)

R (bit/symbol)

Rate-threshold for LDPC codes with QPSK modulation

QPSK capacity Selected LDPC codes

3 #E 7 @,0

"<%

(17)

0 1 2 3 4 5 6

0 5 10 15 20

ρ (bit/s/Hz)

β (user/chip)

CDMA, QPSK vs. Gaussian inputs

10 dB

3 dB

Single User, Gaussian, E b /N 0 =3dB CDMA, Gaussian, E b /N 0 =3dB CDMA, QPSK, E b /N 0 =3dB

3 $E , Æ * @,0

!

0 1 2 3 4 5 6 7 8 9

-2 0 2 4 6 8 10 12 14 16

ρ (bit/s/Hz)

E b /N 0 (dB) Equal rate CDMA LDPC, R=0.2

LDPC, R=1.0 LDPC, R=1.8 Single User, Gaussian

3 )E , Æ 4

(18)

0 1 2 3 4 5 6 7 8 9

-2 0 2 4 6 8 10 12 14 16

ρ (bit/s/Hz)

E b /N 0 (dB) Equal power CDMA LDPC

discr.QPSK

Single User, Gaussian

3 /E ,Æ @,0 4

Références

Documents relatifs

We can observe that higher P (i:e: higher T) can be obtained with less memory when using an RS turbo decoder. Full-parallel decoding of RS codes appears to be more memory-ef cient

Abstract— The work focuses on optimizing coded caching un- der asynchronous demands. We consider a single-stream setting where users are allowed to request content at arbitrary

This equalization process has to take into account the Co- Antenna Interference (CAI) caused by the spatial multiplexing scheme. In this section, we present two types of MIMO MC-

Abstract - In this paper, the combination of spatial mul- tiplexing with coded Multi-Carrier Code Division Multiplex Access (MC-CDMA) for a Multiple Input Multiple Output

Then, since Turbo Coded MC-CDMA was demonstrated to be very efficient for a Single Input Single Output (SISO) system, allowing the use of a simple Single User (SU) detector [2],

This is because logical columns constructed by GCR cannot go through clustered fault areas, thus large scale clustered fault areas decreases the area of PEs that can be used

In this paper, we proposed two memory reduction methods for the SC decoding of Polar Codes.. Both methods can be com- bined and lead to a non-negligible memory

• We introduce error-correcting codes, in particular LDPC codes, to the SCMA system proposed in [9], and show that the performance of coded SCMA with the proposed decoding