• Aucun résultat trouvé

Relation between mean annual air and ground temperatures in the permafrost region of Canada

N/A
N/A
Protected

Academic year: 2021

Partager "Relation between mean annual air and ground temperatures in the permafrost region of Canada"

Copied!
9
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Proceedings: Permafrost International Conference, pp. 241-246, 1963-10-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=364bd45f-3fc7-41e1-83b0-1c5f45f4a213

https://publications-cnrc.canada.ca/fra/voir/objet/?id=364bd45f-3fc7-41e1-83b0-1c5f45f4a213

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Relation between mean annual air and ground temperatures in the

permafrost region of Canada

(2)
(3)
(4)

R e p r ~ n t e d from t h e PROCEEDINGS: PERMAFROST INTERNATIONAL CONFERENCE, NAS-NRC, P u b l i c a t i o n 1 2 8 7

A N ~ k ~ ~ E D

SESSION V

THERMAL ASPECTS

RELATION BETWEEN MEAN ANNUAL AIR AND GROUND TEMPERATURES

IN THE PERMAFROST REGION OF CANADA

R . J . E. BROWN, Division of Building Research, National Research Council, Canada

Climate i s b a s i c to permafrost formation and i s a most impor- tant factor influencing the e x i s t e n c e of this phenomenon. Of a l l climatic f a c t o r s , air temperature i s the most readily meas- ured and i s most directly related to ground h e a t l o s s and heat g a i n . Observations in Canada and other countries indicate a broad relation between mean annual a i r and ground tempera- tures in permafrost.

Many investigators have estimated the mean annual air temperature required to produce and maintain permafrost [ I ] . There i s , however, much disagreement on this matter. Terzaghi reported that the southern limit of permafrost coin- c i d e s very roughly with the 32OF mean annual air isotherm [2]. Black reported t h a t , b e c a u s e of local conditions, the mean annual air temperature required t o produce or maintain perma- frost varies many degrees; he suggested that i t i s generally between 24 and 30°F [3]. Nikiforoff in h i s hypothesis of the origin of permafrost suggested that the southern boundary coincides approximately with the 28.4OF isotherm [ 4 ] .

In C a n a d a , the southern limit of permafrost a s presently known l i e s between the 25' and 30°F mean annual air i s o - therms e x c e p t in western Quebec [5] (Fig. 1)

.

W e s t of Manitoba, the known limit of permafrost coincides approxi- mately with the 3 0 ' ~ isotherm. In Manitoba, however, it c u t s eastward from the 30' to the 3S°F isotherm. In Ontario it coincides with the 25OF isotherm. In western Quebec it l i e s north of the 2S°F isotherm from whence it extends s o u t h e a s t - ward into southwestern Labrador (and perhaps even further southward)

.

Although observations are limited, the southern limit appears to c r o s s the 25OF isotherm in southern Labrador and then extend northeastward between the 25' and 30°F isotherms t o the Atlantic c o a s t .

Apparently, the mean annual ground temperature differs from the mean annual air temperature by s e v e r a l d e g r e e s and t h i s difference i s not c o n s t a n t . H e n c e , precise prediction of permafrost distribution cannot be b a s e d solely on t h i s factor.

Attempts have been made t o r e l a t e permafrost distribution in Canada with freezing indexes [ 6 , 7 , 81 and thawing indexes [ 6 , 73. These indexes reflect annual fluctuations of a i r temperature about the freezing point and indicate the amount of h e a t added to and withdrawn from the ground. A station with a mean annual air temperature of 32OF will there- fore have e q u a l freezing and thawing indexes. As with mean annual air temperature, there i s a broad relation between permafrost distribution and t h e s e i n d e x e s , but accurate pre- diction of permafrost occurrence cannot be b a s e d solely on this factor b e c a u s e of the influence of other climatic and terrain factors [ 1

1.

N e v e r t h e l e s s , a review of the literature and examination of the known southern limit of permafrost, shows some general correlation between mean air and ground temperature a s indicated by the correspondence between certain isotherms and the permafrost boundary a s w e l l a s by other evidence [ l , 61.

INFLUENCE OF TERRAIN AND OTHER CLIMATIC FACTORS

The difference between mean annual air and ground tempera- ture, and variations in t h i s difference from place t o place are caused by climatic factors other than air temperature in combination with surface and subsurface terrain f a c t o r s . The complex energy exchange regime a t the ground s u r f a c e , which i s influenced by t h e s e f a c t o r s , i s such that the mean annual

ground temperature i s s e v e r a l d e g r e e s warmer than the mean annual air temperature. Factors which seem particularly

influential are net radiation, vegetation, snow cover, and ground thermal properties that vary with time; other factors include relief slope and orientation and surface and subsurface drainage

.

The difference between mean annual air and ground tempera- ture can be explained in part by the f a c t that the ground surface i s heated by solar radiation during the day to a much higher temperature than the a i r above; this e x c e s s heating more than b a l a n c e s the cooling of the ground surface by radia- tion during the night. Snow cover contributes to t h i s situation by insulating the s o i l from the cold air above [ 9 ] .

It i s suggested that the difference between mean annual air and ground temperature would be greater in interior continental l o c a l i t i e s than in maritime locations b e c a u s e of the greater snowfall and accumulation in the former a r e a s [ l o ] .

Variations in net radiation, vegetation, snow c o v e r , and other factors contribute to observed differences in the thick- n e s s and temperature of permafrost in neighboring a r e a s of the continuous zone having slmilar mean annual air temperature; they a l s o help explain the patchy occurrence of permafrost a t a particular location in the southern fringe of the permafrost region. The mean ground temperature in permafrost c a n vary a t any given depth within a region of only a few square miles due to v a r ~ a t i o n s in surface cover, ground t y p e , moisture content, geological structure, or geothermal gradient. In the discontinuous z o n e , variations in mean ground temperature frequently occur between the middle and edge of an individual body of permafrost

.

Fluctuations in the permafrost boundary generally within confines of the 25 and 30°F mean annual air isotherms a c r o s s C a n a d a , and l o c a l variations in the permafrost within a small a r e a , appear to be influenced by microclimatic and terrain f e a t u r e s . Heavy snowfall in late autumn e a s t of Hudson Bay may be responsible for the a b s e n c e of permafrost a t latitudes similar to those w e s t of Hudson Bay where permafrost i s widespread and late autumn snowfall i s considerably l e s s [6].

GROUND TEMPERATURE REGIME IN PERMAFROST

In permafrost, the temperature d e c r e a s e s steadily from the ground surface to a depth of about 50 to 100 f t [ l l ] . Below this depth, the permafrost temperature i n c r e a s e s steadily under the influence of h e a t from the e a r t h ' s interior. Fluctua- tions in air temperature during the year produce a temperature oscillation in the ground to depths on the order of 50 f t with a time lag increasing with depth. At t h e s e d e p t h s , tempera- ture variation i s extremely s m a l l ( l e s s than O.l°F); this i s ' referred to a s the " l e v e l of zero annual amplitude. " Below t h i s depth, influence of the annual air temperature c y c l e i s not f e l t and ground temperatures change only in r e s p o n s e to long-term c h a n g e s extending over many c e n t u r i e s . U s e of the present mean annual air temperature to predict the mean annual ground temperature a t depths below the l e v e l of zero annual amplitude i s complicated by the latter temperature being a reflection of both present and past climatic regimes (with possibly different mean annual air temperatures).

A change in mean annual air temperature c a n r e s u l t , over a long time, in a significant change in the extent and thick- n e s s of permafrost. Observations from C a n a d a , Alaska, and

(5)

t h e USSR s h o w t h a t t h e g e o t h e r m a l g r a d i e n t c a n v a r y within w i d e limlts (1°F/40 f t t o 1°F/300 ft) depending on thermal p r o p a r t i e s of s o i l a n d r o c k , g e c l o g l c a l s t r u c t u r e , a n d o t h e r f a c t o r s . In t h e M a c k e n z i e River d e l t a , C a n a d a , W . G

.

Brown [ 121 found n g e o t h e r m a l g r a d i e n t cf 1°F/53 f t . M i s e n c r [ 131 o b s e r v e d a g e o t h e r m a l g r a d i e n t of 1°F/46 f t a t R e s o l u t e , NWT, in the C a n a d i a n Arctic a r c h i p e l a g o . At Point Barrow, A l a s k a , g e o t h e r m a l g r a d i e n t s of 1°F/42 f t a n d 1°F/53 f t were found in a n o i l w e l l [ 1 4 ] a n d b e n e a t h a s m a l l l a k e [ 1 5 1 , r e s p e c t i v e l y . G e o t h e r m a l g r a d i e n t s ranging from 1°F/72 f t to 1°F/324 f t , d e p e n d i n g o n rock t y p e , were o b s e r v e d In the Lena River b a s i n , Siberia [ 161

.

The lower v a l u e s o b s e r v e d in North America may be a t t r i b - u t e d partly to t h e proximity of large b o d i e s of w a t e r in c o n t r a s t to t h o s e in the USSR which w e r e m o s t l y in inland w a t e r s h e d s . S h p o l y a n s k a y a [ 171 reported v a l u e s in the T r a n s b a i k a l r e g i o n o f the USSR which a r e of t h e s a m e order of magnitude a s t h o s e c i t e d from C a n a d a and Alaska: 1°F/37 ft in s e d i m e n t a r y r o c k a n d 1°F/92 f t in d e n s e c r y s t a l l i n e r o c k . T h e r e f o r e , a c h a n g e o f 1°F, for e x a m p l e , in the mean a n n u a l a i r temperature c o u l d r e s u l t o v e r a long time in a c h a n g e of 1°F in the mean a n n u a l ground temperature. This would c a u s e a c h a n g e in permafrost t h i c k n e s s o f a p p r o x i m a t e l y 40 to 300 f t , d e p e n d i n g on t h e g e o t h e r m a l g r a d i e n t .

At some of t h e s e s t a t i o n s the r e c o r d s a r e e i t h e r of s h o r t d u r a t i o n , c o n t a i n g a p s , or a r e of q u e s t i o n a b l e r e l i a b i l i t y d u e to o b s e r v e r error or instrument d i f f i c u l t i e s : t h u s , o n l y approx- imate mean a n n u a l ground temperature v a l u e s c a n b e g i v e n . In s o m e c a s e s , the ground t e m p e r a t u r e s may n o t h a v e h a d time to return to t h e i r o r i g i n a l v a l u e s prior t o d i s t u r b a n c e b y i n s t a l - l a t i o n p r o c e d u r e s . In a d d i t i o n , a n e x c e s s of drilling w a s h w a t e r frozen around a temperature c a b l e in a h o l e would c h a n g e t h e thermal d i f f u s i v i t y of t h e ground b e i n g m e a s u r e d from the surrounding u n d i s t r u b e d ground s u f f i c i e n t l y to a f f e c t ground temperature o b s e r v a t i o n s . DISCUSSION R e s u l t s of O b s e r v a t i o n s M o s t of t h e t e m p e r a t u r e s r e p o r t e d w e r e m e a s u r e d under d i f f i c u l t f i e l d c o n d i t i o n s a n d a r e of q u e s t i o n a b l e p r e c i s i o n s o t h a t o n l y g e n e r a l r e l a t i o n s h i p s c a n b e d e d u c e d . T h e s e ground- temperature m e a s u r e m e n t s s u g g e s t t h a t there i s n o t a c o n s t a n t d i f f e r e n c e b e t w e e n them a n d the mean a n n u a l a i r temperatures. There i s n o i n s t a n c e , h o w e v e r , of the l a t t e r b e i n g h i g h e r than t h e former. Some of the ground temperature o b s e r v a t i o n s a r e e i t h e r s i n g l e o b s e r v a t i o n s or a v e r a g e s for o n l y part of a y e a r . As a r e s u l t , t h e v a l u e s v a r y s l i g h t l y from the mean a n n u a l ground t e m p e r a t u r e s , t h e d i f f e r e n c e d e c r e a s i n g w i t h d e p t h to t h e l e v e l of z e r o a n n u a l amplitude w h e r e t h e d i f f e r e n c e s h o u l d b e n e g l i g i b l e . V a r i a t i o n s in temperature with d e p t h a r e , of c o u r s e , g r e a t l y i n f l u e n c e d b y the g e o t h e r m a l g r a d i e n t , the magnitude of w h i c h v a r i e s from p l a c e to p l a c e . In v i e w of t h e s e f a c t o r s , it i s d i f f i c u l t to o b t a i n a p r e c i s e c o r r e l a t i o n b e t w e e n mean a n n u a l a i r a n d ground t e m p e r a t u r e s . B e c a u s e the problem c o n c e r n s v a r i a t i o n s in t h e ground thermal regime o v e r a y e a r o r m o r e , i t i s b e s t to make m e a s u r e m e n t s a t a d e p t h where t h e i n f l u e n c e of short-term w e a t h e r c y c l e s MEAN ANNUAL AIR AND GROUND TEMPERATURES IN CANADA

At p r e s e n t , ground temperature o b s e r v a t i o n s a r e a v a i l a b l e from 17 l o c a t i o n s in C a n a d a ' s permafrost region ( F i g . 1)

.

The l a t i - t u d e , l o n g i t u d e , h e i g h t a b o v e s e a l e v e l , permafrost d i s t r i b u - tion a n d t h i c k n e s s , a n d mean a n n u a l a i r t e m p e r a t u r e s of t h e s e s t a t i o n s a r e l i s t e d in T a b l e I . Information i s g i v e n a l s o for O t t a w a w h i c h i s s o u t h of the permafrost r e g i o n . Ground

temperature v a l u e s a r e l i s t e d in Table 11.

C O N T l NUOUS

100 0 100 200 300 400 500 800

-

M I L E S

(6)

w i l l ndt b e large (below a b o u t 2 ft)

.

None of t h e ground temperature v a l u e s ( e x c e p t O t t a w a [38]) h a s b e e n s u b j e c t e d t o Fourier a n a l y s i s b e c a u s e of t h e s h o r t duration of m o s t of t h e o b s e r v a t i o n s a n d their u n c e r t a i n a c c u r a c y . This type of a n a l y s i s c o u l d b e a p p l i e d probably to the Fort Simpson a n d Fort Vermilion v a l u e s .

e x a m p l e , the ground temperature in t h e T a u r c a n i s mine of 29°F a t t h e 325-ft d e p t h i s probably s e v e r a l d e g r e e s higher than the p r o b a b l e temperature a t t h e l e v e l of z e r o a n n u a l a m p l i t u d e .

Mean a n n u a l ground s u r f a c e t e m p e r a t u r e s (1 cm depth) a r e a v a i l a b l e a t t h r e e s t a t i o n s . Comparison w i t h mean a n n u a l a i r t e m p e r a t u r e s s h o w e d d i f f e r e n c e s of 8 . O°F a t O t t a w a , Ont

.

,

10.4'F a t Fort S i m p s o n , NWT, and 11.6'F a t Fort Vermillion, A l t a .

D i f f e r e n c e s b e t w e e n mean a n n u a l a i r a n d ground tempera- t u r e s w e r e e x a m i n e d in r e l a t i o n to t h e r e l a t i v e c o n t i n e n t a l i t y o f their l o c a t i o n . Maritime s t a t i o n s include: A s b e s t o s H i l l , Q u e

.

,

C h u r c h i l l , M a n . , a n d Rankin I n l e t and R e s o l u t e , NWT

.

D i f f e r e n c e s a t t h e s e s t a t i o n s d i d n o t a p p e a r to vary s i g n i f i - c a n t l y from t h o s e a t t h e o t h e r s t a t i o n s . Undoubtedly t h i s i s d u e to t h e l a c k of p r e c i s i o n in computing the d i f f e r e n c e s a n d t h e v a r i a b l e d e p t h s a t w h i c h o b s e r v a t i o n s w e r e m a d e . As a l r e a d y n o t e d , the m o s t s o u t h e r l y o c c u r r e n c e s of perma- f r o s t w i t h t e m p e r a t u r e s b e t w e e n 31' a n d 32'G, s e v e r a l t e n s of f e e t t h i c k , a n d n o t r e s t r i c t e d to a p a r t i c u l a r type of te'rrain, a r e found a t s u c h s t a t i o n s a s Thompson, M a n . , K e l s e y , M a n . , a n d Uranium C i t y , Sas)r. All t h e s e l o c a t i o n s h a v e mean Relation Between Air a n d Ground Temperatures

Air a n d ground temperature r e c o r d s s h o w t h a t the l a t t e r a r e warmer than t h e former b y a wide r a n g e varying from a b o u t

1°F a t Keg River, A l t a . , to 12'F a t T a u r c a n i s , NWT. Differ- e n c e s b e t w e e n mean a n n u a l a i r a n d ground t e m p e r a t u r e s a r e summarized in Table 111.

S e v e r a l f a c t o r s c o m p l i c a t e t h i s s i t u a t i o n : (a) Some indi- v i d u a l ground temperature v a l u e s a b o v e t h e l e v e l of z e r o a n n u a l amplitude may b e h i g h e r or lower than t h e a n n u a l mean depending on the time of y e a r a n d t h e d e p t h . (b) M e a n a n n u a l ground t e m p e r a t u r e s in permafrost d e c r e a s e with d e p t h from the ground s u r f a c e to a d e p t h of 5 0 to 100 f t a n d t h e n s t e a d i l y i n c r e a s e under the i n f l u e n c e of the g e o t h e r m a l g r a d i e n t . For

T a b l e I .

Permafrost M e a n 4 n n . Lat. Long. H t , a s l a Permafrost T h i c k n e s s , Air Temp.

,

N W (f t) Zone ( f t l b Source (OF) Location 1 . A i s h i h i k , Y .T

.

D i s c o n t i n u o u s 50 to 100 (Wide s p r e a d ) C o n t i n u o u s >930 C o n t i n u o u s 100 to 200 2. A s b e s t o s H i l l , P . Q . 3 . C h u r c h i l l . M a n . 4 . Fort Simpson, NWT. D i s c o n t i n u o u s a b o u t 40 (Patchy)

5 . Fort Smith, NWT

.

None

.

. .

6 . Fort Vermilion, Alta

.

(Keg River, Alta .)

None

.

. .

D i s c o n t i n u o u s a b o u t 5 7 . I n u v i k , NWT. (Aklavik, NWT .) C o n t i n u o u s C o n t i n u o u s >300 8 . K e l s e y , M a n . D i s c o n t i n u o u s (Patchy) a b o u t 30 C o n t i n u o u s 250 to 3 0 0 [ 2 4 1 1 5 . 6 (Aklavik) 9 . M a c k e n z i e D e l t a L a k e , NWT. 1 0 . Norman W e l l s , NWT. C o n t i n u o u s o r D i s c o n t i n u o u s 150 to 200 (Widespread) 1 1 . Rankin I n l e t , NWT. ( C h e s t e r f i e l d I n l e t , NWT .) C o n t i n u o u s a b o u t 1000 1 2 . R e s o l u t e , NWT. 1 3 . S c h e f f e r v i l l e , P .Q. C o n t i n u o u s 1300 D i s c o n t i n u o u s (Widespread) >250 1 4 . T a u r c a n i s , NWT. 1 5 . Thompson, M a n . C o n t i n u o u s 900 D i s c o n t i n u o u s (Patchy) a b o u t 50 1 6 . Uranium C i t y , Sask: D i s c o n t i n u o u s (Patchy) a b o u t 30 1 7 . Yellowknife, NWT

.

D i s c o n t i n u o u s 200 to 300 (Widespread) 1 8 . O t t a w a , O n t . None

. . .

a ~ e i g h t a b o v e s e a l e v e l b ~ e r m a f r o s t t h i c k n e s s e s b a s e d on information r e p o r t e d t o 1 9 6 3 CDivision of Building R e s e a r c h , C a n a d a

(7)

T a b l e 11.

M e a n Ann. Ground

Depth Ground Temp. O b s e r v a t i o n

Location (f t) Temp. (OF) (OF) D a t e s Source 1 . Alshihik, Y.T. . 20 28.3

.

. .

1953-1959 (weekly) DTC a

2 . A s b e s t o s H i l l , P . Q . 50

. . .

1 9 . 6 Average of t w o D B R ~ 100

. . .

1 9 . 6 r e a d i n g s 200

. . .

19.6 1 5 Apr. '62 a n d 8 J u l y ' 6 2 3 . C h u r c h i l l , M a n . J u l y 1955 4 . Fort S i m p s o n , NWT. 1 cm 35.4

. . .

1959-1962 (daily) [ 3 4 1 10 cm 34.9

. . .

20 cm 3 4 . 1

. . .

5 0 cm 34.6

.

.

.

100 cm 33.7

. . .

150 cm 33.2

. . .

5 . Fort Smith, NWT

.

a b o u t 1 5 a b o u t 3 2

. . .

1 9 5 0 ' s D B R ~

6 . Fort Vermilion, Alta. 1 cm 3 9 . 8

. . .

1959-1962 (daily)

1 0 cm 3 8 . 9

. . .

1341

20 cm 38.8

. . .

5 0 cm 38.9

. .

.

100 cm 38.9

. . .

150 cm 38.9

. .

.

Keg River, Alta

.

' a b o u t 5 a f e w t e n t h s

.

. .

S e p t . 1963 D B R ~

b e l o w 32 7 . I n u v i k , NWT. 47

. .

.

1955-1958 (weekly) [ 3 5 1

. . .

1961-1963 (weekly) D B R ~

. . .

. . .

t o w n s i t e 23.9 22 S e p t . ' 6 2 D B R ~ 2 4 . 5 25.4 1958-1963 (weekly) D B R ~

road t o Hidden Lake 2 2 47 9 7 8 . K e l s e y , M a n . down t o 30 25.4 6 M a y 1 9 6 1 D B R ~ 25.9 26.5 28.0 2 9 . 2

. . .

E l 2 1 9 . M a c k e n z i e D e l t a Lake, 5 0 NWT. 75 100 150 200 s u r f a c e 1 0 . Norman W e l l s , NWT. 900 f t from river 6 0 100 180 200 5 0 100 a b o u t 100 50 100 25 5 0 100 140 190 3 25 down t o 25 down t o 30 2 . 3 4 . 3 6 . 3 8 . 3 100 f t £rom river 1 1 . Rankin I n l e t , NWT

.

1 2 . R e s o l u t e , NWT. a b o u t 1 5 t o 1 7 1960 1954-1957 (weekly) 1 3 . S c h e f f e r v i l l e , P . Q . 1962 (weekly) 1 4 . T a u r c a n i s , NWT. 1 5 . Thompson, M a n . 1 6 . Uranium C i t y , S a s k . 1 7 . Yellowknife, NWT

.

1 9 6 1 1961-1963 (weekly) 1954-1957 (weekly) 1954-1957 (weekly)

(8)

Tab16 11. (continued)

M e a n Ann. Ground

Depth Ground Temp. O b s e r v a t i o n

Location (ft) Temp. (OF) (" F) D a t e s Source

1 8 . O t t a w a , Ont

.

1 cm 4 9 . 6 10 cm 49

.o

20' crn 4 7 . 9 50 cm 4 8 . 5 100 cm 4 8 . 6 150 cm 4 8 . 6 1959-1962 (daily) 1341 a ~ e p a r t m e n t of T r a n s p o r t , C a n a d a b ~ i v i s i o n of Building R e s e a r c h , C a n a d a ' ~ c G i l 1 S u b a r c t i c Research Laboratory a n n u a l a i r t e m p e r a t u r e s of about 24' t o 25OF. An e x c e p t i o n t o t h i s i s A i s h i h i k , Y . T . , w h o s e mean a n n u a l a i r temperature o f 2 4 . S°F i s c o m p a r a b l e , b u t t h e mean a n n u a l ground temperature of 28.3OF a t t h e 20-ft depth i s s e v e r a l d e g r e e s lower t h a n t h e ground t e m p e r a t u r e s a t t h e o t h e r t h r e e s t a t i o n s . H o w e v e r , a mean a n n u a l a i r temperature o f , s a y 25OF or l e s s , i s a l m o s t c e r t a i n to i n d i c a t e a permafrost c o n d i t i o n in the v i c i n i t y .

The q u e s t i o n a r i s e s a g a i n a s t o what i s t h e maximum mean a n n u a l a i r temperature a t which permafrost c a n e x i s t . Perma- f r o s t , a l b e i t o n l y a f e w f e e t t h i c k , i s found a t Keg River, Alta., which h a s a mean a n n u a l a i r temperature of 3 1 ° F . I t d o e s n o t o c c u r in the v i c i n i t y of Fort Vermilion, Alta. (28.2OF), nor a t Fort Smith, NWT (26.2OF), nor e v e n a t t h e Experimental Farm a t Fort S i m p s o n , NWT (25 .O°F). C l e a r l y v e g e t a t i o n p l a y s a dominant r o l e in t h i s s i t u a t i o n . Permafrost a t Keg River i s c o n f i n e d t o a few s m a l l s c a t t e r e d spruce-Sphagnum p e a t b o g s . N o s u c h b o g s o c c u r in the Fort Vermillion a r e a . Permafrost e x i s t s a l s o in s i m i l a r b o g s in t h e fort Smith a n d Fort Simpson a r e a s .

The origin of permafrost in t h e s e b o g s , p a r t i c u l a r l y in Keg River, c o u l d b e a t t r i b u t e d to one or more of t h e following c a u s e s :

( a ) It c o u l d b e a remnant from t h e c o o l e r c l i m a t i c regime of t h e P l e i s t o c e n e ;

(b) It could b e short-lived permafrost of p e r h a p s s e v e r a l d e c a d e s d u r a t i o n which formed a s a r e s u l t of s l i g h t l y lower a i r t e m p e r a t u r e s than t h o s e prevailing a t p r e s e n t ; a n d

( c ) It c o u l d b e s h o r t l i v e d a s in t h e s e c o n d c a s e b u t formed a s t h e r e s u l t of t e r r a i n c h a n g e s s u c h a s s n o w c o v e r or d r a i n a g e which were conducive t o i n i t i a t i o n of permafrost without a c h a n g e in mean a n n u a l a i r temperature.

In a l l three c a s e s t h e permafrost i s p r o t e c t e d b y m o s s a n d p e a t cover; it would probably d i s a p p e a r a n d not re-form if Lhis c o v e r were removed.

Thermal M e c h a n i s m s

M e c h a n i s m s which a l l o w formation of permafrost in t h e s e b o g s a r e a s s o c i a t e d with v a r i a t i o n s in h e a t e x c h a n g e a t t h e s u r f a c e o f t h e m o s s a n d p e a t . When d r y , p e a t h a s a low thermal c o n - d u c t i v i t y , e q u i v a l e n t to t h a t of s n o w . When w e t , i t s thermal c o n d u c t i v i t y i s g r e a t l y i n c r e a s e d ; when frozen i t s thermal c o n - d u c t i v i t y i s many t i m e s t h a t of dry p e a t . During s u m m e r , a thin s u r f a c e l a y e r of d r i e d p e a t h a v i n g a low thermal c o n d u c t i v i t y would p r e v e n t warming of the underlying s o i l . During the c o l d p a r t of y e a r , t h e p e a t i s s a t u r a t e d from t h e s u r f a c e ; when i t f r e e z e s , i t s thermal c o n d u c t i v i t y g r e a t l y i n c r e a s e s . B e c a u s e of t h i s t h e amount of h e a t t r a n s f e r r e d in winter from t h e ground t o t h e a t m o s p h e r e through t h e f r o z e n i c e - s a t u r a t e d p e a t i s g r e a t e r than t h e amount t r a n s m i t t e d in the o p p o s i t e d i r e c t i o n through the s u r f a c e l a y e r of dry p e a t a n d underlying w e t p e a t in summer. A c o n s i d e r a b l e portion of h e a t i s a l s o required during t h e warm period t o melt the i c e and t o

Table 111.

Location

M e a n Approx

.

Ann. Air A i r a r o u n d Temp. D i f f e r e n c e (OF) Ground T e m ~ . (OF) (OF) 1 . A i s h i h i k , Y.T. 24.5 28.3 (20 ft) 4 2 . A s b e s t o s H i l l , 19 t o 20 (50 f t t o P . Q . 1 7 200 ft) 2 - 3 3 . C h u r c h i l l , 27.5 t o 28.9 M a n . 19 (25 f t to 54 ft) 8

-

1 0 4 . Fort S i m p s o n , 35.4 ( s u r f a c e ) t o NWT

.

25.0 3 3 . 2 (150 cm) 8

-

1 0 5 . Fort S m i t h , About 32 ( a b o u t NWT

.

26.2 1 5 f t ) 6 6 . Fort Vermilion, 3 9 . 8 ( s u r f a c e ) t o Alta

.

2 8 . 2 3 8 . 9 (150 cm) 1 0

-

1 1 (Keg River, A f e w t e n t h s d e g r e e Alta .) 3 1 b e l o w 3 2 ( a b o u t 5 f t ) 1 7 . I n u v i k , NWT.

. . .

About 26 (25 f t t o 1 0 l o o ft) (Aklavi k

,

NWT.) 1 5 . 6 8 . K e l s e y , M a n . 30.5 t o 3 1 . 5 25.5 (down t o 30 ft) 5 - 6 9 . M a c k e n z i e D e l t a 1 5 . 6 23.8 ( s u r f a c e ) t o Lake, NWT. (Aklavik) 26.5 (100 ft) 8

-

1 1 1 0 . Norman W e l l s , About 26 to 28.5 NWT. 2 0 . 8 (50 f t t o 100 ft) 5 - 8 1 1 . Rankin I n l e t , About 15 t o 1 7 NWT.

. .

.

( a b o u t 1 0 0 ft) 4 - 6 ( C h e s t e r f i e l d I n l e t , N W T . ) 1 1 . 2 1 2 . R e s o l u t e , N W T . 2 . 8 1 0 . 0 ( 5 0 f t ) t o 6

-

7 8 . 5 (100 ft) 13

.

S c h e f f e r v i l l e , About 30 t o 31.5 P.Q. 23.9 (25 f t t o 190 ft) 6 - 8 1 4 . T a u r c a n i s , NWT. 1 7 29 (325 ft) 1 2 15

.

Thompson, M a n . 24.9 3 1 t o 3 2 (down 6 - 7 t o 25 ft) 1 6 . Uranium C i t y , 31 t o 3 2 (down S a s k . 2 4 to 3 0 ft) 7 - 8 1 7 . Yellowknife, 33.0 (2.3 ft) t o NWT. 22.2 3 1 . 4 ( 8 . 3 ft) 9

-

1 1 1 8 . O t t a w a , O n t . 4 1 . 6 49.6 ( s u r f a c e ) t o 6

-

8 a b o u t 4 8 (150 cm)

(9)

warm a n d e v a p o r a t e the w a t e r . The n e t r e s u l t i s a n e g a t i v e i m b a l a n c e of h e a t a n d c o n d i t i o n s c o n d u c i v e to the formation of permafrost.

Snow C o v e r

The i n f l u e n c e of s n o w c o v e r on the v a r i a t i o n b e t w e e n mean a n n u a l a i r and ground temperatures w a r r a n t s s e p a r a t e c o n s i d

-

e r a t i o n . T h i s i s i l l u s t r a t e d b y comparing mean a n n u a l a i r a n d ground t e m p e r a t u r e s a t Fort S i m p s o n , NWT; Fort Vermilion, Alta

.

,

and O t t a w a , O n t

.

,

a l l l o c a t e d a t Dominion Experimen- t a l Farms of the C a n a d i a n Department of Agriculture. D e s p i t e s i m i l a r i t i e s in v e g e t a t i o n and s o i l s , d i f f e r e n c e s b e t w e e n mean a n n u a l a i r and ground s u r f a c e t e m p e r a t u r e s (1 cm depth) for the period 1959 to 1962 vary among t h e t h r e e stations-Fort

S i m p s o n , 11.2OF; Fort Vermilion, 9.7OF; a n d O t t a w a , 7 .O°F. S i g n i f i c a n t d i f f e r e n c e s in s n o w c o v e r c o u l d a c c o u n t for t h e s e v a r i a t i o n s . Average monthly s n o w cover d e p t h s for O c t o b e r to December when winter f r o s t p e n e t r a t i o n i s i n i t i a t e d a r e 5 . 9 , 3 . 2 , a n d 1 . 3 i n . for Fort Simpson, Fort Vermilion, a n d O t t a w a , r e s p e c t i v e l y .

Average monthly s n o w cover d e p t h s for April a n d M a y when a i r t e m p e r a t u r e s r i s e a b o v e 32OF a n d i n i t i a t e thawing of the f r o z e n ground a r e 1 1 . 2 , 2 . 9 , a n d 0 . 0 i n . . r e s p e c t i v e l y . Therefore, the s n o w c o v e r would h a v e the g r e a t e s t e f f e c t a t Fort Simpson and the l e a s t a t O t t a w a . I t i s d i f f i c u l t t o e s t i - m a t e , h o w e v e r , the n e t e f f e c t of t h e r e l a t i v e a m o u n t s of s n o w c o v e r during t h e f r e e z i n g a n d thawing p e r i o d s on mean a n n u a l ground t e m p e r a t u r e s .

Snow cover r e d u c e s the amount of s o l a r radiation r e c e i v e d a t the ground s u r f a c e t h u s affecting t h e d i f f e r e n c e s b e t w e e n mean a n n u a l a i r a n d ground t e m p e r a t u r e s . O b s e r v a t i o n s a r e a v a i l a b l e for Fort Simpson a n d O t t a w a , and a n n u a l amounts of radiation r e c e i v e d a t b o t h s t a t i o n s have a b o u t t h e s a m e e f f e c t when c o n s i d e r e d in r e l a t i o n t o s n o w c o v e r . During May t o September (1959 t o 1962) when the ground w a s f r e e of s n o w , the d a i l y a v e r a g e incoming s o l a r r a d i a t i o n w a s a b o u t 470 g c a l / s q cm a t O t t a w a a n d 425 g c a l / s q cm a t Fort Simpson-a difference of o n l y 10%. During October to April (1959 t o 1962) when t h e ground w a s s n o w covered a t Fort Simpson a n d O t t a w a for most of t h e p e r i o d , s o l a r r a d i a t i o n a t O t t a w a w a s a b o u t 225 g c a l / s q cm a n d a t Fort Simpson a b o u t

130 g c a l / s q cm-a difference If 42%. The e f f e c t of t h i s l a r g e difference would b e p r a c t i c a l l y n u l l i f i e d , h o w e v e r , b y t h e s n o w c o v e r a t both s i t e s .

CONCLUSION

It a p p e a r s t h a t a n a c c u r a t e prediction of mean a n n u a l ground temperature and t h e o c c u r r e n c e of permafrost a t a s i t e s o l e l y from t h e mean a n n u a l a i r temperature i s s u b j e c t t o v a r i a t i o n s c a u s e d b y o t h e r c l i m a t i c a n d terrain f a c t o r s a l r e a d y n o t e d . Many more o b s e r v a t i o n s a r e required before anything more than a broad r e l a t i o n c a n b e e s t a b l i s h e d . T h i s i s a formidablc b u t , h o p e f u l l y , n o t i m p o s s i b l e t a s k .

REFERENCES

[ l ] R. F . Legget, H , B. D i c k e n s , R. J . E. Brown. "Perma- f r o s t I n v e s t i g a t i o n s in C a n a d a , " P r o c . , 1 s t I n t l . Symp. Arctic

w.,

Vol. I1 (Geology of t h e Arctic), U n i v . Toronto P r e s s , 1 9 6 1 , p p . 956-969.

[ 2 ] K . T e r z a g h i . " P e r m a f r o s t , " J . Boston S o c . C i v i l E n q r s . , Vol. 3 9 , 1 9 5 2 , p p . 1-50.

[ 3 ] R. F

.

Black. " P e r m a f r o s t , " Ann. Ropt. Bd. o f R e g e n t s S m i t h s o n i a n , 1 9 5 0 , W a s h i n g t o n , D . C . , G.P.O., pp. 273-301.

[ 4 ] C . Nikiforoff

.

"The P e r p e t u a l l y Frozen S u b s o i l of S i b e r i a , " S o i l S c i . , Vol. 2 6 , 1 9 2 8 , pp. 61-78.

[ 5 ] M . K . Thomas. C l i m a t o l o g i c a l A t l a s of C a n a d a , N a t l . R e s . C o u n . , D i v . Bldg. R e s . , a n d D e p t . T r a n s p o r t , Meteorol. D i v . , NRC 3 1 5 1 , 1953.

[ 6 ] R. J . E . Brown. "Distribution of Permafrost a n d I t s Relation t o Air Temperature in C a n a d a a n d the USSR, " Arctic, Vol. 1 3 , 1 9 6 0 , p p . 163-177

[ 7 ] H . A. Thompson. "Freezing a n d Thawing I n d i c e s in Northern C a n a d a , " P r o c . , 1 s t C a n a d i a n C o n f . Permafrost, N a t l . R e s . C o u n . , C a n a d a , A s s o c . Comm. S o i l and S n o w M e c h . , T e c h . M e m o . 7 6 , 1 9 6 3 , p p . 18-36. [ 8 ] E. B. W i l k i n s , W . C . D u j a y . "Freezing Index D a t a Influencing F r o s t Action, " P r o c . , 7th C a n a d i a n S o i l M e c h . C o n f . , N a t l . R e s . C o u n . , C a n a d a , A s s o c . Comm. S o i l a n d Snow M e c h . , T e c h . Memo. 3 3 , 1 9 5 4 , p p . 36-39. [ 9 ] J . E. C a r s o n . S o i l Temperature a n d Weather C o n d i t i o n s , Argonne N a t l . L a b . , Rept. No. 6 4 7 0 , Argonne, I l l . , 1961.

[ l o ] D . W . Boyd. N a t l . R e s . C o u n . , D i v . Bldg. R e s . , O t t a w a , C a n a d a , p e r s o n a l comm

.

,

1 9 6 3 .

[ l l ] R. J . E . Brown, G . H . J o h n s t o n . "Permafrost a n d Related Engineering P r o b l e m s , " (in p r e s s ) .

[ 1 2 ] W . G . Brown, G . H . J o h n s t o n , R. J . E. Brown. "Com- p a r i s o n of O b s e r v e d and C a l c u l a t e d Temperature and Perma- f r o s t L o c a t i o n s Under a L a k e , " (in p r e s s )

.

1131 A. D . M i s e n e r . " H e a t Flow and Depth of Permafrost a t Resolute Bay, C o r n w a l l i s I s l a n d , NWT, C a n a d a , " T r a n s . Am. G e o ~ h v s . U n i o n , Vol. 3 6 , 1 9 5 5 , p p . 1055-1060.

[ 1 4 ] M. C

.

Brewer. "Some R e s u l t s of G e o t h e r m a l I n v e s t i g a - t i o n s of Permafrost in Northern A l a s k a , " T r a n s . Am. G e o p h y s

.

Union,

Vol. 3 9 , 1 9 5 8 a , p p . 19-26.

[ 1 5 ] M . C . Brewer. "The Thermal Regime of a n Arctic Lake," T r a n s , Am. G e o p h y s . U n i o n , Vol. 3 9 , 1 9 5 8 b , p p . 278-284.

[16] P . I . M e l ' n i k o v . " 0 z a k o n o m e r n o s t y a k h

r a s p r o s t r a n e n i y a i r a z v i t i y a merzlykh pochv i gornykh porod v b a s s e y n e R. Leny

,

" M a t e r i a l y Po Obshchemu

M e r z l o t o v e d e n i y u , VII Mezhduvedomstvennove S o v e s h c h a n i y e Po M e r z l o t o v e d e n i v u , Ozd-vo Akad. Nauk SSSR, M o s c o w ,

1 9 5 9 , p p . 91-102. [ 1 7 ] N

.

A. S h p o l y a n s k a y a . " 0 v l i y a n i i u s l o v i y teploobmena p o v e r s k h n o s t i p o c h v y s a t m o s f e r o y n a vechnuyu merhlotu v z a b a y k a l ' e , " Vestnik M o s k o v s k o g o U n i v e r s i t e t a , No. 2 , 1 9 6 2 , p p . 37-42. [ 1 8 ] J . L. J e n n e s s . D e p t . M i n e s a n d R e s . , G e o g . B u r . , O t t a w a , C a n a d a (permafrost q u e s t i o n n a i r e , July 22, 1946). [ 1 9 ] J. F . M c Q u a t , E. N e c z k a r , R. D . L a w r e n c e . A s b e s t o s P r o j e c t , A s b e s t o s H i l l , Q u e . , Engr. Field Rept. N o . 2 , Murray Mining C o r p . , Ltd., Toronto, D e c . 1 5 , 1961. [ 2 0 ] W . A. J o h n s t o n . "Frozen Ground in t h e G l a c i a t e d P a r t s of Northern C a n a d a , " T r a n s . ROY. S o c . C a n . , Vol. )(XI', S e r . 3 , S e c . 4 , 1 9 3 0 , p p . 3 1 - 4 0 .

[ 2 1 3 J . A. P i h l a i n e n . Fort S i m p s o n , NWT-Engineering S i t e Information; S o i l a n d Permafrost C o n d i t i o n s , N a t l . Res

.

Coun

.,

C a n a d a , Div. Bldg. R e s . , T e c h . Paper No. 1 2 6 , NRC 6 4 5 2 , 1 9 6 1 .

[ 2 2 ] C

.

H

.

Anderson. Dominion Experimental Farm, C a n a d a D e p t . of A g r . , Fort Vermilion, A l t a . , p e r s o n a l c o m m . , 1962. [ 2 3 ] R. J . E. Brown, "Permafrost I n v e s t i g a t i o n s on t h e M a c k e n z i e Highway" (in p r e s s ) .

[ 2 4 ] G . H . J o h n s t o n , R. J . E . Brown. "Effect of a Lake on D i s t r i b u t i o n of Permafrost in t h e M a c k e n z i e River D e l t a , " P r o c . , 1 s t C a n a d i a n C o n f . P e r m a f r o s t , N a t l . R e s . C o u n , , C a n a d a , A s s o c . Comm. S o i l and Snow M e c h

.

,

T e c h . Memo 76,

1 9 6 3 , p p . 218-225. [ 2 5 ] G

.

D . G a r l a n d , D . H . Lennox. " H e a t Flow i n W e s t e r n C a n a d a , " G e o p h y s . J . Royal A s t r o n . S o c . , Vol. 6 , 1 9 6 2 , p p . 245-262. [ 2 6 ] R. A. H e m s t o c k . Permafrost a t Norman W e l l s , NWT, Imperial O i l , L t d . , C a l g a r y , 1 9 5 3 .

[ 2 7 ] "Permafrost Q u e s t i o n n a i r e , " N a t l . Res

.

Coun

.

,

C a n a d a , A s s o c . Comm . ' S o i l a n d Snow M e c h . , Note No. 5 , O t t a w a , D e c . 1 9 5 9 .

[ 2 8 ] L. A n n e r s t e n . "Ground Temperature M e a s u r e m e n t s in t h e S c h e f f e r v i l l e Area, P .Q., " Proc

.

,

1 s t C a n a d i a n C o n f . Permafrost, N a t l . R e s . Coun

.

,

C a n a d a , A s s o c . Comm. S o i l and S n o w M e c h . , T e c h . Memo. 76, 1 9 6 3 , p p . 215-217. [29] J . D . I v e s . A P i l o t P r o j e c t for Permafrost I n v e s t i q a t i o n s in C e n t r a l Labrador-Unqava, D e p t . M i n e s a n d T e c h . S u r v e y s , G e o g

.

Paper N o . 2 8 , O t t a w a , 1961. [ 3 0 ] J . D . Boulding

.

Mine M a n a g e r , T a u r c a n i s M i n e s Ltd

.

,

NWT, p e r s o n a l comm., 1961. [ 3 1 ] G . H . J o h n s t o n , R. J . E . Brown, D . N . P i c k e r s g i l l . "Permafrost I n v e s t i g a t i o n s a t Thompson, M a n i t o b a , " (in p r e s s ) .

Références

Documents relatifs

Keywords: Arabidopsis, AtMYB30, hypersensitive response, MYB transcription factor, plant defense, stress responses, transcriptional

by the presence of fibrous cap discontinuity with a communication between the lumen and the inner core of a plaque or with a cavity formation within the plaque. B, Plaque erosion

The idea of using the maximal regularity in uniqueness problems goes back to [15], where the second author gave a short proof of celebrated Furioli, Lemari´ e and Terraneo’s

As we have stated, there is no general agreement about where the syllable boundaries lie in many words. Hence the word list was divided into three groups. The

de notre travail et comme elle est une partie centrale dans la construction de théorie newtonienne de la gravité universelle, nous présentons la

This conclusion is confirmed by the high- density samples (curve D) showing a very low absorption coefficient (around 0.25) over the whole frequency

Se doter des meilleurs outils Intensité de  sélection Gain génétique  /unité temps Précision de  prédiction Variabilité  génétique Longueur cycle = x x.  Poursuivre

Rappel 2009 Ensemble Ministère de la défense Ministère de l’enseignement supérieur et de la recherche (1) Ministère de l’éducation nationale (du CAP au BTS) Ministères