• Aucun résultat trouvé

On the properties of adsorption caused by the "Thermal Disorder" on the surface of a crystal

N/A
N/A
Protected

Academic year: 2021

Partager "On the properties of adsorption caused by the "Thermal Disorder" on the surface of a crystal"

Copied!
36
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Translation (National Research Council of Canada), 1950-05-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20331413

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

On the properties of adsorption caused by the "Thermal Disorder" on the surface of a crystal

Volkenshtein, F. F.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=2ff87399-fa49-4539-916e-74ebcdaeb86a https://publications-cnrc.canada.ca/fra/voir/objet/?id=2ff87399-fa49-4539-916e-74ebcdaeb86a

(2)

NATIONAL RESEARCH COUNCIL OF CANADA

T R A N S L A T I O N TT-126

ON SOME P R O P E R T I E S OF ADSORPTION CAUSED B Y THE

"THERMAL DISORDERt' ON THE SURFACE OF A CRYSTAL

( 0 Nekotorykh Ocobennostyakh Adsorp t s i i Obyslovlennykh "Teplovym Besporyadkon" na Poverkhnosti K r i s t a l a )

b y F. Fo Volkenshtein Translated by Eo Rabkin OTTAWA May, 1950

(3)

T i t l e

r

NATIONAL RESEAFtCB COUNCIL O F CANADA

O t t a w , Canada

TRANSLATION TT-126

On Some Ppopeptie s of Adsorption Caused

by t h e wThermal Disorder" on t h e Surface of a C r y s t a l

By: F, F, Volkenshtein

Reference : Zhurnal F i z i c h e s k o i Khimii, Vol, 23,

No. 8, 1949, p a 917, Akademiya Nauk,

U,S.S,R,

T r a n s l a t e d by: E s t h e r Rabkin

(4)

Zhurnal F i z i c h e s k o i Khfmii Vol. 2 3 , Noo 8 , 1949

Acadsiny of Scfancas, U,S,S,R,

ON SOW PROPERTIES OF ADSORPTION CAUSED BY THE

"THERMAL DISORDlB'"ON THE SURFACE OF A CRYSTAL by

F. F. Volkenshtein

T r a n s l a t e d by E s t h e r Rabkin

SUMMARY

The a d s o r p t i o n of gas molecules on t h e s u r f a c e of a c r y s t a l when t h e number of adsorbed c e n t r e s v a r i e s w i t h tern- pera.ture has been analysed, Adsorption c e n t r e s a r e t r e a t e d

a s d e f e c t s of t h e s u r f a c e , t h a t i s , a s l o c a l d i s t o r t i o n s i n t h e p e r i o d i c s t r u c t u r e of t h e l a t t i c e . The k i n e t i c s of adsorp- t i o n a t d e f i n e d c o n d i t i o n s a r e found t o be e x a c t l y t h e same a s f o r t h e case of t h e s o - c a l l e d " a ~ t i v a t e d ' ~ a d s o r p t i o n , a l - though t h e a c t i v a t i o n b a r r i e r i s a b s e n t . An a d s o r p t i o n i s o - therm of the type Q

-

p h a s been obtained. The d i f f e r e n t i a l h e a t of a d s o r p t i o n was found t o be a f u n c t i o n of t h e f i l l i n g

i n , although t h e s u r f a c e i s e n e r g e t i c a l l y homogeneous and t h e r e a c t i o n s between t h e adsorbed molecules a r e ignored.

1, Disorder I n s i d e a C r y s t a l

A r e a l c r y s t a l d i f f e r s from an i d e a l c r y s t a l by t h e presence of d e f e c t s . By t h e word Ibdefectth we mean any d i s -

(5)

d6f ec t s p r e s e n t i n a r e a l l a t t f c e , we must df s t i n g u f s h between t h e macroscopic and microscopPc d e f e c t s ,

By macroscopic d e f e c t s we w f l l assume a d l s t o r - t i o n over a r e g i o n , t h e dfmensfons of which ape c o n s i d e r a b l y g r e a t e r t h a n the dimensfons of an i n d i v i d u a l c r y s t a l l i n e n u c l e u s . Cracks, p a r t i c l e s of f o r e f gn s u b s t a n c e and a l l

t y p e s of macsoacopfc embeddfngs a r e d e f e c t s of t h i s t y p e , The s u p f a c e s and r i b s of t h e c r y s t a l f t s e l f may b e looked upon a s macroscopPc d e f e c t s which d i s t o r t t h e s t r i c t p e r i o - d i c s t r u c t u r e of an i n f i n i t e i d e a l l a t t i c e ,

By mfcroscopic d e f e c t s we w f l l assume such a d i s t o r t i o n whfch by f t s dimensf ons f s of t h e same o r d e r of magnitude a s a n f n d f v i d u a l c r y s t a l l i n e n u c l e u s , Thus, f n t h e c a s e of a mfcroscopic d e f e c t , t h e p e r i o d i c s t r u c t u r e of t h e c r y s t a l f s p r a c t f c a l l y r e - e s t a b l i s h e d a t a d i s t a n c e of s e v e r a l l a t t f ce c o n s t a n t s , We w i l l n o t e t h e f o l l o w i n g t y p e s of mf c r o s c o p f c d e f e c t s : ( 1 ) a h o l e praoduced by t h e d i s a p p e a r a n c e of an atom o r i o n from t h e i d e a l l a t t i c e ; (2) a n e u t r a l atom o r i o n of the l a t t f c e l o c a t e d between t h e normal p o s i t i o n s ; (3) an i o n I n a h e t e r o p o l a r l a t t i c e found i n a normal posf- t i o n b u t c a r r y i n g an abnormal charge; ( 4 ) a f o r e i g n atom l o c a t e d between t h e normal p o s i t i o n s ; ( 5 ) a f o r e i g n atom l o c a t e d In t h e normal p o s f t i o n , t h a t I s , r e p l a c i n g a n a t u r a l atom of t h e l a t t f ce,

(6)

D e f e c t s of t h e s e types a r e s c h e m a t i c a l l y shown i n Figure 1. We must n o t e t h a t each d e f e c t produces around

i t s e l f a c e r t a i n deformation of t h e l a t t i c e which i s n o t shown i n t h e f i g u r e . S t r i c t l y speaking, we should imagine t h e t o t a l r e g i o n i n which t h e l a t t i c e i s deformed a s a d e f e c t c

From now on we w i l l l i m i t o u r s e l v e s t o t h e a n a l y s i s of m i c r o - d e f e c t s , i g n o r i n g t h e macroscopic d i s t o r t i o n s , We w i l l t h u s d e a l w i t h an i d e a l i z e d p i c t u r e of a r e a l c r y s t a l .

We w i l l note t h a t , s t r i c t l y speaking, micro-defects can n o t be considered a s b e i n g f i x e d i n s i d e a c r y s t a l : t h e y p o s s e s s d e f i n i t e m o b i l i t y , The m o b i l i t y of t h e d e f e c t s i s a r e s u l t of t h e p e r i o d i c s t r u c t u r e of t h e l a t t i c e . The d i s - placement of a d e f e c t a l o n g t h e l a t t i c e demands some energy of a c t i v a t i o n ; t h a t i s , i t i s connected with t h e overcoming of p o t e n t i a l b a r r i e r s , t h e hei@;ht of which i s determined by t h e n a t u r e of t h e d e f e c t , t h e s t r u c t u r e of t h e l a t t i c e and t h e d i r e c t i o n of motion of t h e d e f e c t .

Another g e n e r a l p r o p e r t y of micro-daf e c t s i s t h e presence of i n t e r a c t i o n s between them, which i s n o t i c e a b l e when t h e y approach each o t h e r . D e f e c t s may a t t r a c t o r r e p u l s e each o t h e r . Thus, f o r example, i n a h e t e r o p o l a r l a t t i c e

c o n s t r u c t e d from i o n M+ and 'R t h e empty m e t a l l i c p o s i t i o n s r e p u l s e each o t h e r , b u t t h e y a r e a t t r a c t e d t o t h e empty m e t a l l o i d p o s i t i o n s o r t o t h e m e t a l l i c i o n s between t h e

(7)

n a t u r a l p o s i t i o n s , An e l e c t r o n i n such a l a t t i c e , which we must imagine a s a n e u t r a l s t a t e of t h e i o n M+, i s a t t r a c t e d

t o t h e empty m e t a l l o i d p o s i t i o n and i s r e p u l s e d from an empty m e t a l l i c p o s i t i o n (1).

When two o r s e v e r a l d e f e c t s a r e combined t o g e t h e r a new d e f e c t , p o s s e s s i n g d i f f e r e n t p r o p e r t i e s , i s formed. Thus, f o r example, m e t a l l o i d and m e t a l l i c h o l e s joined toge-

t h e r , o r an e l e c t r o n a t t r a c t e d by a m e t a l l o i d h o l e c o n s t i t u t e f o r m a t i o n s of a d i f f e r e n t type, p o s s e s s i n g p r o p e r t i e s d i f f e - r e n t from t h e i r components analysed i n d i v i d u a l l y .

Thus, i n s i d e a r e a l c r y s t a l l i n e l a t t i c e we have a c h a r a c t e r i s t i c "chemistry of d e f e c t s M . "Reactionsm between d e f e c t s may be exothermic o r endothermic, t h e same a s g e n e r a l r e a c t i o n s . These " r e a c t i o n s " , t h e same a s g e n e r a l r e a c t i ons, may proceed w i t h o r without a c t i v a t i o n , depending on t h e n a t u r e of t h e r e a c t i n g d e f e c t s . A c r y s t a l l i n e l a t t i c e can b o t h produce and absorb d e f e c t s . Thus, f o r example, i n an i d e a l l a t t i c e , the displacement of an atom from a p o s i t i o n i n t o t h e space between t h e n a t u r a l p o s i t i o n s c o n s t i t u t e s an example of a r e a c t i o n which produces a d e f e c t .

A d e f e c t of a g i v e n kind under g i v e n c o n d i t i o n s p o s s e s s e s a d e f i n i t e average l i f e d u r a t i o n . It can d i s a p p e a r and reappear.

We w i l l assume t h a t d e f e c t s do n o t d i s a p p e a r beyond t h e l i m i t s of t h e l a t t i c e and t h a t they do n o t e n t e r i t from

(8)

t h e o u t s i d e , I n t h f s case a t e q u i l i b r i u m t h e r e a r i s e a s many d e f e c t s of a given kfnd a s t h e number t h a t d i s a p p e a r s p e r u n i t time i n a u n i t f volume of t h e c r y s t a l , The con- c e n t r a t i o n of d e f e c t s i n t h i s case i s d e t e ~ m i n e d by t h e e q u i l i b r i u m c o n d i t i o n s . The e q u i l i b ~ i u m c o n c e n t r a t i o n changes with temperature. I n a d d i t i o n , i t i s dependent on t h e h i s t o r y of t h e sample. I n a given sample a t a given temp r a t u r e t h e e q u i l i b r i u m concentpation may b e changed under the i n f l u e n c e of e x t e r n a l f o r c e s ( i l l u m i n a t i o n , e l e c - t r i c f i e l d and o t h e r s ) . T h i s i s connected w i t h t h e f a c t , t h a t t h e e x t e r n a l f o r c e s charge t h e r a t e s of t h e r e a c t i o n s , i n which t h e s e d e f e c t s p a r t i c i p a t e .

From now on when we speak of t h e c o n c e n t r a t i o n of d e f e c t s we w i l l mean e q u i l i b r i u m c o n c e n t r a t i o n s a I n o t h e r words, we w i l l ignore t h e 'frozent"(metastable) s t a t e s of t h e l a t t i c e .

The t o t a l number f d e f e c t s of a l l t y p e s contained i n a u n i t volume of a c s y s t a w i l l 1 be r e f e r r e d t o a a

d i s o r d e r i n t h e c r y s t a l , It i s assumed t h a t t h e t o t a l d i s - order i s s u f f i i e n t l y s m a l l * n o t h e r words f t i s assumed t h a t the t o t a l c o n c e n t r a t i o n of a l l d e f e c t s i s s m a l l a s

compared t o t h e number of n u c l i i n a u n i t volume. Otherwise we would s t e p out beyond t h e frame of our p i c t u r e , I n f a c t when t h e number of d e f e c t s i s comparable w i t h t h e number of nuc e i we can n o t speak of t'micro-defects", t h e summation of

(9)

which i n t h i s case must be looked upon a s a fGmacro-defectw, I n a t o t a l d i s o r d e r we must d i s t i n g u i s h between t h e h i s t o r i c a l and t h e thermal p o r t i o n s of t h e d i s o r d e r , The p o r t i o n of t h e d i s o r d e r which i s r e t a i n e d a t zero tem- p e r a t u r e we w i l l name a s t h e h i s t o r i c a l ( i r r e v e r s i b l e ) d i s - o r d e r . B y t h e thermal d i s o r d e r , which i s of a r e v e r s i b l e c h a r a c t e r , we w i l l assume an a d d i t i o n a l d i s o r d e r

,

super- imposed on t h e i n i t i a l h i s t o r i c a l d i s o r d e r by h e a t i n g .

Thus, f o r example, a l a t t i c e of type

M,

Rr with a d i s t o r t e d s t o i c h i o m e t r y p o s s e s s i n g , f o r example, an e x c e s s of metalloid may c o n t a i n empty m e t a l l i c p o s i t i o n s r i g h t from t h e v e r y beginning, The number of t h e s e d e f e c t s a t z e r o temperature c h a r a c t e r i z e s t h e h i s t o r i c a l d i s o r d e r , During h e a t i n g , m e t a l l i c i o n s of t h e l a t t i c e move from t h e n a t u r a l p o s i t i o n s i n t o t h e space between t h e p o s i t i o n s , hence addi-

t i o n a l empty m e t a l l i c p o s i t i o n s a r e formed. The degree of d i s t o r t i o n of t h e s t o i c h i o m e t r y d u r i n g h e a t i n g does n o t

change, b u t t h e g e n e r a l d i s o r d e r i n c r e a s e s due t o t h e super- i m p o s i t i o n of the thermal on t h e h i s t o r i c a l df s o r d e r ,

The r e l a t i o n s h i p between t h e h i s t o r i c a l and thermal d i s o r d e r s i s n a t u r a l l y dependent on t h e h i s t o r y and t h e tem- p e r a t u r e of t h e sample, I n some c a s e s t h e h i s t o r i c a l d i s - o r d e r predominates c o n s i d e r a b l y over t h e thermal d i s o r d e r . I n t h i s case t h e t o t a l d i s o r d e r i s p r a c t i c a l l y unchanged with temperature. I n o t h e r c a s e s , on t h e c o n t r a r y , t h e

(10)

h i s t o r i c a l d i s o r d e r may be n e g l e c t e d a s compared w i t h t h e thermal d i s o r d e r . I n t h e s e c a s e s p r a c t i c a l l y t h e whole d i s o r d e r i s of a h e a t o r i g i n .

2. Disorder on t h e Surface of a C r y s t a l and I t s Function i n Adsorption

On t h e s u r f a c e of an i d e a l i z e d r e a l c r y s t a l , the same a s i n s i d e of a c r y s t a l , we d e a l w i t h m i c r o - d e f e c t s of v a r i o u s types. Thus, t h e s u r f a c e of a r e a l c r y s t a l i s

c h a r a c t e r i z e d by a d e f i n i t e degree of d i s o r d e r . The laws con t r o l l i n g t h i s d i sorder a r e r e f l e c t e d i n t h e behaviour of a d s o r p t i o n ,

I n f a c t t h e a d s o r p t i o n of g a s molecules t a k e s p l a c e , a s i s known, a$ i n d i v i d u a l a d s o r p t f o n c e n t r e s , t h e number of which, g e n e r a l l y speaking, may n o t be l a r g e i n comparf son with t h e t o t a l number of t h e s u r f a c e atoms, According t o Taylor, t h e geometric h e t e r o g e n e i t i e s of t h e

s u r f a c e a r e such a d s o r p t i o n c e n t r e s . On our i d e a l i z e d sur- f a c e , t h e micro-def e c t s appear t o be such h e t e r o g e n e i t i e s . Remaining i n t h e frame of the Taylor assumptions, we may

t r e a t micro-defects p r e s e n t on t h e s u r f ace a s a d s o r p t i o n c e n t r e s . From t h i s p o i n t of view t h e i d e a l s u r f a c e d o e s n o t g e n e r a l l y adsorb, The degree of d e v i a t i o n of t h e r e a l

s u r f a c e from t h e i d e a l s t a t e determines t h e a d s o r p t i o n c a p a c i t y .

(11)

We must n o t e t h a t t h e p r e s e n c e o f d e f e c t s on t h e s u r f a c e d o e s n o t by i t s e l f mean t h a t t h e h e t e r o g e n e i t y i s e n e r g e t i c , E n e r g e t i c h e t e r o g e n e i t y p r e s u p p o s e s t h e p r e s e n c e of v a r i o u s t y p e s of a d s o r p t i o n c e n t r e s , However, i f t h e a d s o r p t i o n c e n t r e s w i l l b e d e f e c t s of o n l y one d e f i n i t e t y p e , c h a r a c t e r i z e d by t h e same h e h t a d s o r p t i o n q , t h e n our s u r - f a c e from an a d s o r p t i o n p o i n t of view w i l l b e e n e r g e t i c a l l y homogeneous. From now on, f o r s i m p l i c i t y , we w i l l d e a l w i t h

a n e n e r g e t i c a l l y homogeneous s u r f a c e c o n s i d e r i n g t h a t t h e a d s o r p t i o n of a g a s molecule may t a k e p l a c e n o t on any d e f e c t of t h e s u r f a c e , b u t o n l y on d e f e c t s of a d e f i n i t e t y p e .

I n t h e g e n e r a l t h e o r i e s of a d s o r p t i o n , t h e f o l l o w - i n g p r o p e r t i e s a r e a s s i g n e d t o t h e a d s o r p t i o n c e n t r e s :

(1) It i s assumed t h a t t h e number of a d s o r p t i o n c e n t r e s on t h e s u r f a c e i s a c o n s t a n t v a l u e , c h a r a c t e r i s t i c f o r a

g i v e n s u r f a c e and that i t does n o t change with t e m p e r a t u r e ,

T h i s number i s c o m p l e t e l y d e t e r m i n e d by t h e h i s t o r y of t h e s u r f a c e .

( 2 ) F u r t h e r , i t i s assumed t h a t t h e a d s o r p t i o n c e n t r e s a r e l o c a l i z e d on t h e s u r f a c e . They a r e immobileo The h i s -

t o r y of t h e a d s o r p t i o n c e n t r e s d o e s n o t change with t i m e s o t h a t we d e a l w i t h a s o - c a l l e d f r o z e n d i s t r i b u t i o n of adsorp- t i o n c e n t r e s on t h e s u r f a c e ,

( 3 ) F i n a l l y , i t i s assumed t h a t t h e number of c e n t r e s does n o t change wl t h coverage. I n o t h e r words, t h e t o t a l

(12)

number of c e n t r e s i s independent of t h e f a c t of how many of them a r e occupied by adsorbed molecules and how many remain f r e e .

It must be noted t h a t t h e conception r e g a r d i n g t h e a d s o r p t i o n c e n t r e s a s d e f e c t s of t h e s u r f a c e does n o t i n t h e l e a s t support t h e s e assumptions. The r e v e r s e i s t r u e : a l l t h r e e assumptions a r e i n c o n t r a d i c t i o n with t h f s concep- t i o n . Thus, i d e n t i f y i n g t h e a d s o r p t i o n c e n t r e s w i t h t h e d e f e c t s of t h e s u r f a c e , we must d i s r e g a r d t h e t h r e e assump- t i o n s enumerated above, which a r e t h e b a s i s of t h e g e n e r a l a d s o r p t i o n theory, L a t e r i t wf 11 be shown how t h e b a s i c a d s o r p t i o n laws change.

We w P l l d e s i g n a t e by A t h e d e f e c t s which a c t a s t h e a d s o r p t i o n c e n t r e s , L e t NA be t h e c o n c e n t r a t i o n of t h e s e d e f e c t s on t h e s u r f a c e a t a temperature T . We w i l l c o n s i d e r

t h a t t h e c o n c e n t r a t f o n of d e f e c t s A i n c r e a s e s w i t h t h e tem- p e r a t u r e from some minimum value NA = X a t T = 0 t o some maxi-

m value NA = Y a t T =

-,

s o t h a t

X C

NA

&

Y. (1)

We w i l l agree t o c h a r a c t e r i z e t h e d i s o r d e r on t h e s u r f a c e by a c o n c e n t r a t i o n of d e f e c t s A, s e t t i n g a s i d e t h e o t h e r d e f e c t s which may be p r e s e n t on t h e s u r f a c e and which may e n t e r i n t o r e a c t i o n s w i t h d e f e c t s A . Then, NA e x p r e s s e s

t h e d i s o r d e r a t a temperature T ; moreover, t h e number X ex- p r e s s e s t h e h i s t o r i c a l p o r t i o n of the d i s o r d e r , and t h e number

(13)

( N A

-

X )

-

t h e thermal p o r t i o n of t h e d i s o r d e r . The number Z = Y

-

X i s t h e d-ifference between t h e maximum and minimum d i s o r d e r s r e a l i z e d on t h e s u r f a c e . This number remains con-

s t a n t f o r a given s u r f a c e and may b e used a s i t s c h a r a c t e r i s - t i c 0 We w i l l d i s t i n g u i s h between two p a r t i c u l a r ( l i m i t - i n g ) c a s e s : (1) X = 0 o r

Z

= Y, T h i s i s t h e case when t h e t o t a l d i s o r d e r i s of a thermal o r i g i n ( t h e h i s t o r i c a l d i s o r d e r i s a b s e n t ) .

(2) X = Y or Z = 0. This i s t h e case when t h e t o t a l d i s o r d e r i s of a h i s t o r i c a l o r i g i n ( t h e thermal d i s o r d e r i s

a b s e n t ) .

We must note t h a t the g e n e r a l t h e o r i e s of adsorp- t i o n d e a l w i t h t h e second of t h e s e two p a r t i c u l a r c a s e s , Thus, t h e s e t h e o r i e s , based on a c o n s t a n t (unchanging tem- p e r a t u r e s ) number of a d s o r p t i o n c e n t r e s , remain t r u e o n l y while t h e thermal d i s o r d e r can be considered s u f f i c i e n t l y small a s compared t o t h e h i s t o r i c a l . I n the p r e s e n t paper we a r e a n a l y s i n g a more g e n e r a l c a s e , when t h e thermal and the h i s t o r i c a l d i s o r d e r s a r e comparable i n magnitude, Our formulae may be transformed i n t o t h e g e n e r a l formula of t h e Langmuir theory f o r t h e l i m i t i n g case

Z

= 0.

We w i l l c o n s i d e r t h a t each a d s o r p t i o n c e n t r e A may a c c e p t one and only one g a s molecule, s o t h a t t h e

(14)

a d s o r p t i o n c e n t r e on which a gas molecule i s found i s incapable of f u r t h e r a d s o r p t i o n and f a l l s out of t h e p l a y , Such an occupied a d s o r p t i o n c e n t r e , t h a t i s , u n i t e d with t h e adsorbed gas molecule, we w i l l d e s i g n a t e by t h e symbol B , i n d i s t i n c t i o n from t h e f r e e c e n t r e A o The f r e e c e n t r e s

A , a s w e l l a s t h e occupied c e n t r e s B , c o n s t i t u t e d e f e c t s on t h e s u r f a c e b u t they a r e d e f e c t s of d i f f e r e n t t y p e s , W e w i l l d e s i g n a t e by NB the c o n c e n t r a t i o n of t h e B d e f e c t s , E v i d e n t l y NB i s t h e number of g a s molecules adsorbed p e r u n i t s u r f a c e . The r e a c t i o n of a d s o r p t i o n and d e s o r p t i o n i s expressed i n t h e form:

A + G & B 9 (2

where G i s t h e symbol f o r t h e g a s molecule. T h i s r e a c t i o n i s exothermic i n t h e forward d i r e c t i o n and endothermic i n t h e r e v e r s e d i r e c t i o n , We w i l l d e s i g n a t e by q t h e h e a t of t h e r e a c t i o n , For an e q u i l i b r i u m s t a t e we have: N A O N G

-

-

O C 9 where

ce

= ocoe NB

- Q

( 3 )

Here NG i s t h e c o n c e n t r a t i o n of g a s molecules i n t h e gas phase :

Adapting t h e d e s i g n a t i o n N = NA + NB where, obviously, N i s t h e t o t a l number of a d s o r p t i o n c e n t r e s ( f r e e + occupied) we may r e w r i t e t h e c o n d i t i o n ( 3 ) thus:

(15)

Taking i n t o account r e a c t i o n (2) we must r e w r i t e i n s t e a d of ( 1) :

X < N < Y . ( 1 1 ) I n t h e p a r t i c u l a r case, when the t o t a l d i s o r d e r i s of a p u r e l y h i s t o r i c a l o r i g i n we have X = N = Y and e q u a t i o n (39) t ~ a n s f o r m s i n t o t h e g e n e r a l L a n m u i r e q u i l i - brium equation:

3, Tlie Appearance and Disappearance of

Adsorption Centres -

- - - - - - - - - - -- - - - -

D e f e c t s A , which a c t a s t h e a d s o r p t i o n c e n t r e s , p a r t i c i p a t e not only i n t h e r e a c t i o n s of a d s o r p t i o n and d e s o r p t i o n ( 2 ) b u t a l s o i n a number of o t h e r r e a o t i o n s pro- ceeding on t h e s u r f a c e simultaneously w i t h r e a c t i o n (2), These simultaneous r e a c t i o n s may vary depending on t h e n a t u r e of t h e d e f e c t s p r e s e n t on t h e s u r f a c e . I g n o r i n g

t h e s e d e f e c t s means a r e t u r n t o the Langmuir t h e o r y o Below we dl1 analyse two of t h e s i m p l e s t c a s e s , when d e f e c t s A

r e a c t w i t h t h e o t h e r d e f e c t s on t h e s u r f a c e according t o monomolecular and bimolecular r e l a t i o n s , A s t o d e f e c t s B, we must consider t h a t t h e y p a r t i c i p a t e only i n r e a c t i o n ( 2 ) .

If we would a s s i g n t o t h e s e d e f e c t s the c a p a c i t y t o p a r t a k e i n any o t h e r r e a c t i o n s , then t h i s would mean a t r a n s i t i o n t o a heterogeneous s u r f a c e , and we would go beyond the frame of our theory.

(16)

Let u s Imagine t h a t along with d e f e c t s A end B

t h e s u r f a c e a l s o c o n t a i n s d e f e c t s of a t h i r d type which we

w i l l d e s i g n a t e by C , and t h e c o n c e n t r a t i o n of which a t a temperature T we w i l l d e s i g n a t e by NC, Vje wf 11 assume t h a t t h e d e f e c t s C and A a r e i n t e r t r a n s f o r m a b l e ,

C S A ( 6 )

We w i l l c o n s i d e r , t h a t the tramlbrmation of a d e f e c t C i n t o a d e f e c t A demands a c e r t a i n e x p e n d i t u r e of energy u,

Thus, d e f e c t s A take p a r t i n two simultaneous r e a c t f o n s ( 2 ) and ( 6 ) . A t e q u i l i b r i u m we must add t o equa- t i o n ( 5 ) t h e following equation:

..

u N~ where

/3

= p 0 e

-

kT

-

=

p.

N~ 0 We now have: Y = NA

+

NB

+

NC, X = 0 , s o t h a t equation ( 7 ) may be r e w r i t t e n thus:

N

-

NB

=

P o

Y - N

From t h e two equations ( 3 ) and ( 7 ) t w o unknowns may be determined: the t o t a l number of adsorbed c e n t r e s N and the t o t a 1 number of adsorbed molecules NB.

We w i 11 analyse an example of t h e monmolecular

r e a c t i o n ( 6 ) .

We w i l l assume t h a t on t h e s u r f a c e of a c r y s t a l , atoms of a f o r e i g n i m p u r i t y a r e d i s t r i b u t e d . Let Y be the s u r f a c e c o n c e n t r a t i o n of such atoms. During h e a t i n g a por- t i o n of the atoms of t h e impurity i s t r a n s f e r r e d from t h e

(17)

norlnaP i n t o the excf t e d s t a t e ( e l e c t r o n e x c i t a t i o n ) . We

w i l l d e s i g n a t e by

u

tho energy o r e x c f t a t i o n . We w i l l

c o n s i d e r t h a t t h e a d s o r p t i o n c e n t r e s a r e e x a c t l y t h e s e e x c i t e d a t m s of t h e impurf t y . I n corrospondence with t h e d e s i g n a t i o n s adopted above, we w i l l d e s i g n a t e by C t h e atoms of t h e impurity found i n t h e normal s t a t e , by A t h e e x c i t e d atoms of t h e i m p u r i t y , by B t h e a toms of t h e impu- r i t y connected w i t h t h e adsorbed molecules, We have two sfmuBtaneously proceeding r e a c t i ons ( 2 ) and (6). The con- d i t i o n s of equflibroium s t a t e s a r e expressed by t h e e q u a t i o n s (31) and (7s).

We w i 11 analyse a n o t h e r p o s s i b l e c a s e , Let us

assume t h a t a l o n g wfth t h e d e f e c t s A ( f r e e a d s o r p t i o n c e n t r e s ) and d e f e c t s B (occupied a d s o r p t i o n c e n t r e s ) two o t h e r t y p e s of d e f e c t s C and D a r e p r e s e n t on t h e s u r f a c e of a c r y s t a l , which do n o t d i r e c t l y p a r t i c i p a t e i n a d s o r p t i o n . Vfe w i l l

assume, however, t h a t t h e d e f e c t s C a r e capable of b r e a k i n g up i n t o d e f e c t s A and D. L e t u s assume t h a t u i s t h e energy

of d f s s o c f a t i o n . We w i l l d s o assume t h a t a r e v e r s i b l e pro- c e s s f s a l s o pogsfble: t h e recombination of d e f e c t s A and D

wfth the f o r m a t i o n of a d e f e c t C.

Thus t h e f o l l o w i n g r e a c t i o n t a k e s p l a c e

C Z A A D , ( 8 )

proceedfng sfmultaneously wf t h r e a c t i o n (2). A t a s t a t e of e q u i l f b r f u m we must add t o e q u a t i o n (3') t h e f o l l o w i n g

(18)

e q u a t i o n t

N~ . N ~ =

/s,

where

p

=

pee

-3%

o

N~ ( 9 )

VJe have here: Y = NA

+

NB + NC, X = NA + NB

+

ND9

so t h a t equatf on ( 9 ) may be r e w r i t t e n thus2

From equatfons (3') and ( 9 ' ) t h e unknowns N and NB can be determined,

I n t h e case of the bimolecular r e a c t i o n ( 8 ) ,analysed h e r e , a s i n the case of t h e mon~molecular r e a c t i o n ( 6 ) , ad-

$ o r p t i o n c e n t r e s A ' l o r i g i n a t e " from d e f e c t s C, During h e a t i n g t h e number of d e f e c t s A i n c r e a s e s a t t h e expense of t h e d i s - appearance of d e f e c t s C, Thus, t h e r e a c t i o n s ( 6 ) o r ( 8 ) appear t o be s o u r c e s of thermal d i s o r d e r on t h e s u r f a c e of a c r y s t a l . We w i l l a n a l y s e t h e example of a bimolecular r e a c t i o n ( 8 )

.,

We w i l l assume, t h a t we d e a l w i t h a h e t e r o p o l a r c r y s t a l c o n s t r u c t e d from i o n s M+ and ,'R i n which t h e s t o i - chiometrfc r a t i o i s d i s t o r t e d t o some degree. A s an example, we s h a l l d e a l w i t h a c r y s t a l which h a s a s t o i c h i o m e t r i c excess

of a metal. We a f l l c o n s i d e r , t h a t on t h e s u r f a c e of such a c r y s t a l a r e d i s t r i b u t e d t h e "excess" atoms of a m e t a l M,

which b e shown and designated i n f i g u r e (2) by t h e symbol A,

(19)

of the c r y s t a l . , Let X be t h e c o n c e n t r a t i o n of t h e s e d e f e c t s a t T = 0 . We w i l l consider t h a t t h e a d s o r p t i o n c e n t r e s a r e d e f e c t s of t h f s [and only t h i s ) type. An a d s o r p t i o n c e n t r e , connected w i t h a gaseous molecule, f s designated I n FOgzxre 2 by the symbol B. The r e a c t i o n s of a d s o r p t i o n and d e s o r p t i o n a r e s c h e m a t i c a l l y shown i n

Figure 2 by t h e arrow3 1 and 2 r e s p e c t i v e l y . I n a d d i t i o n , we w i l l assume t h a t i n the s u r f a c e l a y e r of a c r y s t a l t h e r e a r e a l s o contained d e f e c t s of a n o t h e r type: empty m e t a l l o f d p o s i t i o n s , It must be noted t h a t one of the m e t a l l i c i o n s

the l a t t i c e , d i r e c t l y nefghbouring w i t h such an empty m e t a l l o f d s i t e , myst b e i n a n e u t r a l s t a t e ( i n o t h e r words

f t must take an e x t r a e l e c t r o n ) , D e f e c t s of t h i s type (empty m e t a l l o i d s i t e connected wf t h an atom of t h e m e t a l ) a r e d e s i g n a t e d f n Figure 2 by t h e symbol C. The concentra- t i o n of such d e f e c t s a t T = 0 we w i l l d e s i g n a t e by Z o These d e f e c t s - a c c o r d i n g t o our assumption do n o t p a r t i c i p a t e

d i . ~ e c t l y , f n a d s o r p t i o n o The d e f e c t s A and C ensure a s t o i - chiometric excess of a metal i n t h e s u r f a c e l a y e r of t h e crystal a t T = 0 ,

During h e a t i n g , t h e atoms of t h e metal connected with t h e empty m e t a l l o f d s i t e s , d i s s o c i a t e from the s u r f a c e of t h e l a y e r and t o t h e s u r f a c e of t h e c r y s t a l , A s a r e - s u l t af such a d f s s o c f a t i o n i n t h e s u r f a c e l a y e r t h e r e remains an empty m e t a l l i c sf t e , connected wf t h t h e empty m e t a l l o i d

(20)

s i t e ( d e f e c t 'd) i n Figure 2), and on t h e s u r f a c e of the

c r y s t a l t h e r e appears an "excesst4 m e t a l l i c atom A , I n o t h e r words, d u r i n g h e a t i n g t h e d e f e c t C b r e a k s up t o form a d e f e c t A and a d e f e c t

B o

T h i s r e a c t i o n i s s c h e m a t i c a l l y shown i n Figure 2 by t h e arrow 3, The r e v e r s e p r o c e s s simultaneously comes i n t o p l a y : t h e recombination of de- f e c t A and D which b r i n g s about t h e formation of a d e f e c t C , T h i s r e a c t i o n of t h e recombination i s shown i n Figure 2 by t h e arrow 4.

The equilfbrfuln c o n c e n t r a t i o n s of t h e d e f e c t s . A ,

B, C , D, corresponding t o some temperature T a r e connected by t h e e q u a t i o n s ( 3 ) and ( 9 ) or,which i s t h e same t h i n g , by e q u a t f o n s ( 3 ' ) and ( g 9 ) . Here t h e number X c h a r a c t e r i z e s

t h e i n i t i a l ( h i s t o p i c a l ) d i s o r d e r on t h e s u r f a c e of a c r y s t a l , and t h e number Y = X + Z c h a r a c t e r i z e s t h e d e g r e e of d i s t o r - t i o n of t h e stofchiometry of t h e s u r f a c e l a y e r of t h e c ~ y s t a l ~ I n a p a r t i c u l a r c a s e d e f e c t s C may be completely a b s e n t ( 2 = 0 ) , I n t h i s case t h e t o t a l d i s o r d e r i s of a p u r e l y h i s t o r i c a l o r i ~ i n : t h e number of a d s o r p t i o n c e n t r e s i n t h i s

c a s e w i l l n o t change ~ 5 t h temperature (Langmuir t h e o r y ) ,

In another p a r t i c u l a r case a t T = 0, t h e d e f e c t s of type A may be completely absent (X = O ) o I n t h i s case t h e adsorp-

t i o n c e n t r e s A appear on t h e s u r f a c e d u r i n g h e a t i n g exclu- s i v e l y a t t h e expense of t h e decomposition of d e f e c t s C ,

(21)

W e w i l l analyse another example of a bimolecular r e l a t i o n s h i p .

We dl1 assume t h a t on t h e s u r f a c e of an i o n i c c r y s t a l , atoms of an imgurity a.re d i s t r i b u t e d . The concen- t r a t i o n of theso atoms we w i l l d e s i g n a t e by 2. A s an

example, we s h a l l assume t h a t t h e s e atoms a r e l o c a t e d on t h e n e g a t i v e i o n s of t h e l a t t i ce a s shown i n Figure 3,

During h e a t i n g t h e atoms of t h e i m p u r i t y i o n i z e , and t h f s i o n i z a t i o n i n c r e a s e s with temperature. In Figure 3 the n e u t r a l atoms of t h e impurity a r e d e s i g n a t e d by t h e symbol

C , and t h e i o n i z e d by t h e symbol D o An e l e c t r o n which h a s d e p a r t e d from an atom of t h e impurity becomes the c o l l e c -

t i v e p r o p e r t y of t h e s u r f a c e l a y e r of t h e l a t t i c e ( f r e e e l e c t ~ o n ) , Free e l e c t r o n s , t h e c o n c e n t r a t i o n of which i n c r e a s e s with temperature, f o m an e l e c t r o n g a s , which determines t h e e l e c t r o - c o n d u ~ t i v i ty of the c r y s t a l , Thus atoms of an i m p u r i t y appear t o be a r e s e r v o i r which sup- p l i e s t h e conducting e l e c t r o n s . The appearance of a f r e e e l e c t r o n i n t h e s u r f a c e l a y e r of t h e l a t t i c e means a

n e u t r a l i z a t i o n of one of t h e i o n s M+ of t h e s u r f a c e l a y e r . The d i splacement of an e l e c t r o n along t h e s u r f a c e means t h e displacement of t h e n e u t r a l s t a t e M from one i o n M+

t o t h e neighbourfng ion M+. We w i l l consider t h a t adsorp- t i o n c e n t r e s a r e e x a c t l y t h e se n e u t r a l i z e d m e t a l l i c atoms of t h e l a t t i c e . I n Figure 3 they a r e d e s i g n a t e d by t h e

(22)

symbol A ; an adsorgtf on cenbre, which h a s taken onto i t s e l f a gas molecule and I s connected wf t h i t , i s d e s i g n a t e d by t h e symbol B. I n o t h e r words, t h e a d s o r p t i o n c e n t r e s i n our model a r e tho f r e e e l e c t r o n s , (The conceptf on regard- i n g e l e c tro-conductivity a s a d s o r p t i on c e n t r e s h a s been p o s t u l a t e d b y 0, M, Todes.)

The i o n f z a t f o n p r o c e s s of a n e u t r a l atom of t h e impurity C mag be t r e a t e d a s a simultaneous appealaance of a f r e e e l e c t r o n A and a tihole'!* D , connected with an atom of t h e impurity. Along with t h i s p ~ o c e s s t h e r e t a k e s p l a c e t h e r e v e r s i b l e n e u t r a l i z a t i o n p r o c e s s of t h e impuri t y f on, c o n s i s t i n g of a recombination of an e l e c t r o n w i t h a "holefY, The condf t i o n s of equi l i b r i u m a r e expressed by t h e e q u a t i o n s

(3') and ( 9 0 f o r which, however, i t must be assumed t h a t

X = 0 and Y = Z , ( t h e absence of t h e h i s t o r i c a l d i s o r d e r ) , I n f a c t , t h e number of "holesft f s e q u a l t o t h e t o t a l number of e l e c t r o n s , t r a n s f e r r e d t o t h e c o l l e c t i v e s t a t e , These c o l l e c t i v e e l e c t p o n s a r e composed of e l e c t r o n s which remain f r e e , and of e l e c t r o n s which e n t e r i n t o a bond with gaseous molecules, t h u s f a l l i n g out of a c t i o n , We have

%

= N A + N B 9 from which i t f o l l o w s t h a t X = 0 a n d Y = Z,

4t

The term "holeff i s used h e r e i n t h e same sense a s i n t h e t h e o ~ y of semf-conductors, "Holeft means the absence of an

(23)

4, The Isotherm and t h e D i f f e r e n t i a l Heat of Adsorp- t i o n by Taking I n t o Account t h e Thermal Disorder

It can be e a s i l y shown t h a t , although t h e thermal d i s o r d e r due t o t h e monanolecular r e a c t i o n ( 6 ) e x e r t s an

e f f e c t on t h e k i n e t i c s of a d s o r p t i o n , i t h a s no e f f e c t on the a d s o r p t i o n equilibrfum, Thus, from t h e viewpoint of e q u i l i b r i u m , r e a c t i o n ( 6 ) i s of no i n t e r e s t , I n t h i s p a r a - graph we w i l l l i m i t o u r s e l v e s t o t h e c a s e when t h e thermal d i s o r d e r can be expressed by t h e bimolecular r e a c t i o n (81,

I n t h i s case t h e e q u i l i b r i u m c o n c e n t r a t i o n s ND and N = NA+NB a r e determined from t h e e q u a t i o n s ( S f ) and ( g q ) , We w i l l rewri t e t h e s e equations t h u s :

We dl1 analyse e q u a t i o n ( l o b ) , Solving t h e equa- t i o n with r e s p e c t t o N we o b t a i n N a s a f u n c t i o n of T

and^^:

We must n o t e t h a t i f i n this e x p r e s s i o n we assume

Z = 0, which means t h a t t h e thermal d i s o r d e r i s d i s r e g a r d e d , t h e n we o b t a i n from ( 1 1 ) ; N = X , a s i t should b e ,

The r e l a t i onship between N and NB ( a t a g i ven T = c o n s t a n t ) i s s c h e m a t i c a l l y shown i n Figure 4a. A s t h e s u r f a c e becomes covered with adsorbed molecules ( a s NB i n c r e a s e s ) ,

t h e t o t a l number of a d s o r p t i o n c e n t r e s N = NA

+

NB i n a r e a s e a )

*

(24)

from a c e r t a i n minimum v a l u e ( a t VEj = 0 ) up t o a maximum value N = Y ( a t NB = Y ) ~ Thus, i n t h e p r c e s s of a d s o r p t i o n t h e r e a r i s e a d d i t i o n a l a d s o r p t i o n c e n t r e s , A s t h e tempera- t u r e i n c r e a s e s t h e p o i n t A i n F i g u r e 4a d i s p l a c e s upwards

while t h e p o i n t B remains f i x e d

.

The family of curves N = N( NB )

,

corresponding t o v a r i o u s values of T , a r e shown i n Figure 4b.

The curves a r e numbered i n t h e order of i n c r e a s i n g T o Curve 1

corresponds t o t h e l i m i t i n g c a s e T = 0; curve 4 corresponds t o the o t h e r l i m i t i n g c a s e , T = - 0

We w i l l d e r i v e an equation f o r t h e isothermo For

t h i s purpose we w i l l r e t u r n t o t h e equation of e q u i l i b r i u m ( l o & ) , S u b s t i t u t i n g i n t h i s equation t h e expressions ( 4 ) and ( 1 1 ) and s o l v i n g t h i s equation w i t h r e s p e c t t o NB, we o b t a i n t h e follow- i n g e x p r e s s i o n f o r t h e isotherm:

We have h e r e designated:

It must be noted t h a t a t p

+

w (independent of t h e value f o r

T ) e x p r e s s i o n ( 1 2 ) g i v e s NB

+

Y ( s a t u r a t i o n ) .

If we n e g l e c t t h e thermal d i s o r d e r i n comparison with t h e h i s t o r i c a l , assuming Z = 0 ( o r , which i s t h e same t h i n g , X = Y) then t h e e x p r e s s i o n (12) i s transformed i n t o t h e g e n e r a l

*

(25)

as i t should b e ,

If,

however, we n e g l e c t t h e historical d i s o r d e r a s compared with t h e thermal d i s o r d e r , assuming X = 0, and i f we a l s o consider t h a t Z = Y i s s u f f i c i e n t l y l a r g e , so t h a t

Z = Y

))

p ,

then formula ( 1 2 may be approximated a s follows: a ) I n t h e r e g i o n of "smallr' p r e s s u r e s , a t Y p & 14;

r

b ) 1n t h e r e g i o n of "averagem p r e s s u r e s , a t 1

<

y p

<

t

P

Y

C ) I n t h e r e g i o n of t b l a r g e v p r e s s u r e s , a t 1

<<

jj

<

d p :

%a, we o b t a i n t h e g e n e r a l Henry law a t t h e begin- n i n g of the isotherm, which i s d f s p l a c e d by t h e r e l a t i o n s h i p

%-fi

on t h e mfddle of t h e isotherm, and which a g a i n i n i t s

t u r n i s transformed i n t o s a t u r a t i o n .

We must n o t e t h a t t h e r e l a t i o n s h i p NB

-

fi

i n t h e g e n e r a l t h e o r f e s of a d s o r p t i o n may be obtained a s a r e s u l t of a heterogeneous s u r f a c e ( e x p o n e n t f a l d i s t r i b u t i o n f u n c t i o n ) o r a s a r e s u l t of i n t e r a c t i ons between adsorbed molecules o r , f i n a l l y , by assuming t h a t the e x c e s s molecules d % s s o e i a t e d u r i n g a d s o r p t i o n . Generally t h e isotherm N B d

6

indf c a t e s

(26)

t h a t one of t h e s e t h r e e c o n d i t i o n s i s p r e s e n t , I n our case, however, t h e s u r f a c e i s known t o be homogeneous ( a d s o r p t i o n c e n t r e s of one type o n l y ) , t h e i n t e r a c t i o n s of adsorbed ~ o l a c u l e s a r e ignored and the d i s s o c i a t i o n of excess mole- c u l e s i s absent. Here t h e r e l a t i o n s h i p

~ ~ a f i

h a s a com- p l e t e l y d i f f e r e n t o r i g l n : i t 1 3 determined by t h e i n c r e a s e

i n t h e number of a d s o r p t i o n c e n t r e s o r i g i n a t e d from t h e sur- f a c e being covered a s a r e s u l t of t h e thermal d i s o r d e r ,

We dl1 now t u r n t o t h e c a l c u l a t i o n s of t h e d i f f e - r e n t i a l h e a t of a d s o r p t i o n Q, For t h i s we w i l l determine t h e energy W of a c r y s t a l which h a s on i t s s u r f a c e N a d s o r p t i o n c e n t r e s , of which NB c e n t r e s a r e occupied by adsorbed mole- cule s and NA c e n t r e s a r e f r e e . O f the t o t a l number N c e n t r e s , X c e n t r e s have a h i s t o r P c a l o r i g i n , and t h e remaining N

-

X

c e n t r e s have a thermal o r i g i n , I n o r d e r t o produce a thermal a d s o r p t i o n c e n t r e , i t i s n e c e s s a r y t o use up a q u a n t i t y of energy u; on t h e o t h e r hand, a combination of each gaseous molecule with an a d s o r p t i o n c e n t r e r e l e a s e s an energy q. Thus, we w i l l have:

w

=

UCN

-

X )

-

q ~ ~ .

Here f o r zero energy we t a k e t h e energy of a system which h a s no adsorbed molecules and which h a s no thermal d i s o r d e r on t h e s u r f a c e , We must n o t e t h a t t h e s e l e c t i o n of the zero p o i n t i s n o t e s s e n t i a l f o r t h e c a l c u l a t i o n s of

Q,

(27)

For tk.e d i f f e r e n t i a l h e a t of a d s o r p t i o n we o b t a i n :

S u b s t i t u t i n g (Il), we o b t a i n

If we n e g l e c t t h e thermal d i s o r d e r , assuming

Z

= 0, then e x p r e s s i on (14) g i ves Q = q = c o n s t a n t , a s should be expected, The v a r i a t f o n of Q w i t h NB i s due t o t h e thermal d i s o r d e r and i s t h e more pronounced t h e l a r g e r i s Z o

The curve Q = Q(NB) i s s c h e m a t i c a l l y shown i n Figure

5, A s the s u r f a c e i s covered, Q d e c r e a s e s from some maximum value Q =

&ma

a t NB = 0 t o some minimum v a l u e $ =

$Ifn

at

NB = Y , he p o s i t i o n of t h e p o i n t s Qa, and i n Figure 5

i s dependent on t h e magnitude of t h e parameter 2, By decseas- i n g Z , t h a t i s , a s t h e magnitude of t h e h i s t o r i c a l d i s o r d e r i n t h e g e n e r a l d i s o r d e r i n c r e a s e s , t h e p o i n t s Qmax and Qmin Sn Figure 5 a r e d i s p l a c e d u ~ w a r d s , moreover t h e p o i n t

Gin

d i s - p l a c e s f a s t e r t h a n t h e p o i n t

Gax,

SO that t h e curve s t r a i g h t e n s

out. I n t h e limf t a t Z = 0 ( a p u r e l y h i s t o r i c a l d i s o r d e r ) we have

h,

=

Gin

= q o

We obtained a d e c r e a s e i n t h e d i f f e r e n t i a l h e a t with coverage, although t h e s u r f a c e i s e n e r g e t i c a l l y homogeneous and t h e f n t e r a c t i o n s between adsorbed molecules a r e a b s e n t . .n

(28)

The relatYonsh2.p between Q and NB f o r t h e c a s e which we have analysed, i s s t i p u l a t e d by t h e f a c t t h a t t h e t o t a l number o f a d s o r p t f o n c e n t r e s N d o e s n o t remain c o n s t a n t b u t i n c r e a s e s a s NB f n c r e a s e s , The a d s o r p t i o n c e n t r e s on t h e surf ace of a c r y s t a l a r e t r e a t e d h e r e a s a c h a r a c t e r i s t i c of t h e coverage of g a s on t h e orsf g i n a l s u r f a c e , t h e c o n c e n t r a t i on of t h e c e n t r e s i n c r e a s i n g t o g e t h e r w i t h an i n c r e a s e i n NB, and t h e energy change of t h i s i n c r e a s e should be taken i n t o account when s a l c u l a t f n g t h e d i f f e r e n t i a l h e a t of a d s o r p t i o n ,

I n p a r t i c u l a r , i f we assume t h e model analysed a t t h e end of s e c t i o n 3 i n which t h e f r e e e l e c t r o n s of a c r y s t a l a r e t h e a d s o r p t i o n c e n t r e s t h e n t h e "gas of a d s o r p t i o n centres1' may be considered a s an e l e c t r o n g a s i n a c r y s t a l , I n t h f s

c a s e our a n a l y s i s a g r e e s w i t h t h a t by Breger and Zhukhovf t s k i d

( 2 ) , who i n t h e c a l c u l a t i o n s of t h e d i f f e r e n t i a l h e a t of t h e a d s o r p t i o n took i n t o account t h e change of energy of an e l e c - t r o n gas d u r i n g a d s o r p t i o n , The d f f f e r e n c e i s t h a t B r e g e ~ and Zhukhovitskii have analysed an e l e c t r o n g a s i n a m e t a l , b u t i n our model we a r e d e a l i n g w i t h an e l e c t r o n g a s I n a

semi-conductor, I n t h e model of Breger and Z h ~ k h o v i t s k f f ~ t h e same i n our model, each adsorbed molecule i s connected w i t h

t h e s u r f a c e of a c r y s t a l by means of a l a t t i c e e l e c t r o n , hence t h i s e l e c t r o n f a l l s out from t h e t o t a l f a m i l y of f r e e

e l e c t r o n s , Thus, i n t h e model of Breger and Z h u k h o v i t s k i i t h e f r e e e l e c t r o n s of a c r y s t a l a r e t r e a t e d a s a d s o r p t i o n c e n t r e s ,

(29)

t h e same a s f n our model.

5, The E f f e c t of t h e Thermal Disorder on t h e K i n e t i cs of Adsorptf on

For t h e r a t e of a d s o r p t i o n we have

where GC " / q r = oC. I n t h f s e q u a t i o n we w f l l assume t h a t

NGNA

)>

N N B I which means t h a t we w i l l n e g l e c t d e s o r p t i o n

a s compared t o a d s o r p t i o n , This c o n d i t i o n i s f u l f i l l e d a t s u f f i c i e n t l y small NB o r s u f f i c i e n t l y l a r g e q. L e t t f n g ko = x v N G P we may r e w r i t e equation 1 5 a s f o l l o w s :

where NA 1s a f u n c t i o n of N B o

We w f l l assume t h a t t h e s t a t e of e q u i l i b r i u m i s r e t a i n e d f o r the a d s o r p t i o n c e n t r e s , If the thermal df s o r d e r i s governed by a bimolecular r e a c t f on ( 8 ) , t h e n t h e s t a t e of e q u i l i b r i u m may be expressed by e q u a t i o n s ( 9 )

o r

( 9 , ) from which we o b t a i n ( s e e ( 1 1 ) ) :

If t h e thermal df s o r d e r i s d e s c r i b e d by a monomolecula~ Peac- t i o n ( 6 ) then t h e s t a t e of e q u f l i b r i u m may be expressed by e q u a t i o n s ( 7 ) o r (7') from which we o b t a i n :

(30)

By s u b s t i t u t i n g ( 1 7 ) o r (18) i n t o (161, w e can f i n d t h e r e q u i r e d r e l a t i o n s h i p between

%

and t f o r t h e

c a s e s of bimolecular and monomolecular r e a c t i o n s r e s p e c t i - vely, Vie dl1 analyse both of t h e s e c a s e s ,

F f r s t , we wf 11 analyse t h e c a s e when t h e r e l a t f on- shfp be tween NA and

NB

1 s g i ven by e x p r e s s i on ( 1 7 ) .

If i n ( 1 7 ) we assume t h a t

Z

=

0 ( o r X = Y-), which means t h a t we n e g l e c t t h e thermal d i s o r d e r , then ( 1 7 ) g i v e s

NA = Y

-

NBQ I n t h f a case we o b t a i n t h e g e n e r a l Langmufr k i n e t i c s : '

a s should be expected,

Conversely, if we n e g l e c t t h e h i s t o r i c a l d i s o r d e r assuming i n ( 1 7 ) X = 0 ( o r 2 = Y ) , then i n t h i s case ( 1 7 ) w i l l

become:

Expression (179) may be considerably s i m p l i f i e d f o r the two l i m i t i n g cases: f o r the case of s u f f i c i e n t l y "high" and f o r t h e case of s u f f i c i e n t l y "low" temperatures. I n f a c t , i n t h e r e g i o n of "high" temperatures, assuming

P

>

NB, we have

from ( 1 7 ' ) : NA = Y

-

NB which a g a i n l e a d s t o t h e formqla ( 1 9 ) . The d e v i a t i o n from t h e Langmuir k i n e t i c s appear i n the r e g i o n

of s u f f i c i e n t l y temperatures. I n t h i s r e g i o n , i f we N

(31)

f o l l o w i n g sfmple form:

Substf t u t f n g (20) i n t o ( 1 6 ) and i n t e g r a t i n g equa- t f o n ( 1 6 ) w e o b t a i n :

NB N

-

2

( 1

-

) =

-

i$ a t ,

Y

where the f o l l o w f n g deaf g n a t i on i s assumed:

A t NB

/g

Y ( 2 1 ) g i v e s

We w f l l now r e t u r n t o the c a s e i n which t h e r e l a - t i o n s h i p between NA and

%

i s g i v e n by e x p r e s s i on ( 1 8 ) , S u b s t i t u t i n g ( 1 8 ) i n t o ( 1 6 ) we o b t a i n :

from h e r e , assumfng t h e d e s i g n a t f o n

(32)

I n t h e r e g f o n of s u f f f c f e n t l y h i g h temperatures, when

p

9

1, we have according t o ( 2 3 ) : k

=

ko and formula

( 2 4 ) c o f n c l d e s with ( 1 9 ) . In t h f s case we o b t a i n t h e Langmuir k f n e t i e u , I n t h e r e g i o n of sufficiently low temperatures,

when c g 1, w e have

u

I n t h i s c a s e we o b t a i n k f n e t f c s t y p i c a l f o r t h e s o - c a l l e d " a c t i v a t e d " adsorptf on,

For t h e theory of a c t f v a t e d a d s o r p t i o n t h e o r i g i n of formulae ( 2 4 ) and ( 2 5 ) i s g e n e r a l l y connected w i t h t h e presence on t h e c r y s t a l s u r f a c e of a p o t e n t f a l b a r r i e r wfth a h e i g h t u , hence only t h o s e gaseous molecules which have a k i n e t i c energy f n a d i r e c t 1 on normal t o t h e s u r f a c e l a r g e r t h a n t h e energy u (3,4) w i l l r e a c h t h e s u r f a c e , However, in our ease t h e r e f s no such p o t e n t i a l b a r r i e r n e a r the s u r f a c e of the c r y s t a l and formulae ( 2 4 ) and ( 2 5 ) have a d i f f e r e n t o r i g i n , I n t h e concept of the a c t i v a t f o n p o t e n t i a l b a r r i e r t h e number of gas molecules f a l l f n g on t h e s u r f a c e f n ~ e a s e s

--

kT wfth t h e temperature i n p r o p o r t i o n t o a m u l t f p l f e r e

,

while t h e number of adsorptfon c e n t r e s a c c e p t i n g t h e s e mole- c u l e s remains c o n s t a n t ; conversely, f n t h f s concept, t h e number of a c c e p t i n g c e n t r e s i n c r e a s e s P$ t h temperature i n

- U

--

p r o p o r t i o n t o t h e m u l t i p l i e r e kT, while t h e number of f a l l f n g molecules remains p r a c t i c a l l y c o n s t a n t ,

(33)

We must n o t e t h a t t h e t h e o r y of a c t i v a t e d adsorp- t i o n may be c o n s t r u c t e d without t h e concept of t h e p o t e n t i a l a r e I n f a c t , we w i l l assume t h a t t h e r e a r e no p o t e n t i a l b a r r i e r s , and t h a t t h e s u r f a c e of a c r y s t a l c o n t a i n s a con-

s t a n t ( n o t changing w i t h temperature) number of adsorp t i o n c e n t r e s , however, we w i l l c o n s i d e r t h a t n o t a l l t h e centres; a r e capable t o adsorb, b u t only those c e n t r e s yrrhfch a r e found f n an e x c i t e d ( a c t i v e ) s t a t e , Let u be t h e energy of e x c f - t a t l ~ n ( a c t i v a t i o n ) of t h e a d s o r p t f on c e n t r e . The a d s o r p t i o n I n t h f s c a s e befng a r e a c t f o n of combfnation between a gas molecule and an adsorp t f on c e n t r e , wf 11 r e q u i r e an a c t i v a t i on

energy u. Thus we have i n the c a s e of a heterogeneous r e - a c t i o n a s f t u a t i o n w e l l known i n t h e chemistry of homogeneous r e a c t f o n s , T h i s p i c t u r e completely a g r e e s wfth o u r s , I n which a d s o r p t i o n proceeds without a c t i v a t i o n , b u t t h e number of

a d s o r p t i o n c e n t r e s does n o t remain c o n s t a n t , and i n c r e a s e s w f t h temperature ( t h e r m a l d i s o r d e r ! ) , I n f a c t , f n our case when t h e appearance and df sappe arance of adsorp t i on c e n t r e s i s d e s c r i b e d by a monomolecular r e l a t i o n s h f p C A , t h e i n c r e a s e i n t h e number of c e n t r e s w i t h temperature may be t r e a t e d a s a t r a n s i t f o n of a d s o r p t i o n c e n t r e s from t h e

" p a s s f v e v s t a t e C I n t o t h e " a c t i v e " s t a t e A o Such a t r a n s i t i o n

f s connected ~ 4 t h an expenditure of energy u and may be t r e a t e d a s an t O e x c i t a t i o n T ' of t h e a d s o r p t i o n c e n t r e , I n t h i s t r e a t - ment the t o t a l number of c e n t r e s remains c o n s t a n t ( d o e s n o t

(34)

change tvi t h tempera'tur e ) however, t h e number of '4active'b

c e n t r e s A , c a p a b l e f o r a d s o r p t i o n , I n c r e a s e s w i t h h e a t i n g a t t h e expense of a d e c ~ e a s e i n t h e number of 'spassive'k c e n t r e s C which d o n o t d i r e c t l y p a r t i c i p a t e i n a d s o r p t i o n ,

The a:lt;lor wishes t o e x p r e s s h i s g r a t i t u d e t o

C , Z, RoginskSi f o r a number of v a l u a b l e remarks d u r i n g t h e d i s c u s s i o n of t h i s work, S e q t t o t h e e d i t o r J u l y 1 4 , 1948, Academy of S c i e n c e s U,S,S.R, I n s t i t u t e of P h y s i c a l Chemistry D i v i s i o n of C a t a l y s i s and Topochemistry Moscow, REFERENCES 1, F ,F0 V o l k e n s t e i n , ' L ~ l e c t r o - ~ o n d u c t i v i t y of Semi -Condue t o r sLb Chapter 1, S t a t e P u b l S s h e r s , 1947,

2 , A,Kh, Breger and A , A , Z h u k h o v i t s k i i , Zhuro F i z , Khfm,, 2 1 - 9

423, ( 1 9 4 7 ) ,

3, Lennard-Jones, Trans, F a r , Soc,

-

28, 333 (1932).

(35)

ion R - ion M + a t o m M gaseous molecule o s o o o o o

0

ion R - o o o ~ s o o o s s e ~ e ~ o o o o o o o o o o o 0 0 0 0 0 0 € 3 e 0 e ~ 0 0 ~ ~ 0 0 0 0 0 0 0 0 s s o 0 ~ o e ~ e ~ e o o o o o o o ~ o o c c o a o o o c o c e e g o e l o o o o o o o o o o ion M + a t o m M

1. Vacant s i t e . 4 . A forel,rn atom i n the i n t e r s t i c e s

.

2 . Neutral atom in the i n t e r s t l c e s . 5 . A foreign a t o m in a normal s i t e .

3 . Ions with anomalous c h a r g e s .

a t o m of a n impurlty ion of a n impurity gaseous molecule F i g . 2 F i g . 3

(36)

a) - a)

Fig. 4

I .

0 x+p

Références

Documents relatifs

Les résultats obtenus concernant l’activité antifongique des extraits aqueux sont représentés dans (Tableau 06). Avec les extraits des feuilles, l’activité antifongique est

Ce travail est focalisé à l’évaluation de toxicité aigue du mélange binaire d’un insecticide (Dursban) et fongicide (Mancozebe)et d’un insecticide seul (Décis) sur des

Au total, 31 parcelles agricoles ( Fig. 1 ), situées chez 10 agriculteurs représentatifs de la typologie (en termes de pratique et de gestion) et dans une station expérimentale, ont

Et dans notre travail, on a élaboré également une base de données avec cartes numérisées pour faciliter la gestion de fonctionnement du réseau d’alimentation

On étudie numériquement la convection naturelle laminaire de l’air (Pr=0.71) dans une enceinte rectangulaire, pour deux cas : Le premier cas c’est pour la paroi inferieur soumis

In particular, they know that adjectives name properties of entities named by nouns; they know that adjectives imply a contrast (i.e. values on a dimension are

The transcriptional activation of SREBP targets encoding the key enzymes of fatty acid biosynthesis (FASN) and the pentose phosphate pathway (G6PD) leads to a rapamycin-

words, it is critical to resolve between signaling intermediates in their free active and inactive forms (A * and A) from when they are bound to other intermediates, including