• Aucun résultat trouvé

Constraining decaying dark matter with neutron stars

N/A
N/A
Protected

Academic year: 2021

Partager "Constraining decaying dark matter with neutron stars"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: hal-01274104

https://hal.sorbonne-universite.fr/hal-01274104

Submitted on 17 Feb 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Constraining decaying dark matter with neutron stars

M. Angeles Perez-Garcia, Joseph Silk

To cite this version:

M. Angeles Perez-Garcia, Joseph Silk. Constraining decaying dark matter with neutron stars. Physics

Letters B, Elsevier, 2015, 744, pp.13-17. �10.1016/j.physletb.2015.03.026�. �hal-01274104�

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Constraining

decaying

dark

matter

with

neutron

stars

M.

Ángeles Pérez-García

a

,

,

Joseph Silk

b

,

c

,

d

aDepartmentofFundamentalPhysicsandIUFFyM,UniversityofSalamanca,PlazadelaMerceds/n, 37008, Spain bInstitutd’Astrophysique,UMR7095CNRS,UniversitéPierreetMarieCurie,98bisBlvdArago,75014Paris,France cDepartmentofPhysicsandAstronomy,TheJohnsHopkinsUniversity,HomewoodCampus,Baltimore, MD21218,USA dBeecroftInstituteofParticleAstrophysicsandCosmology,DepartmentofPhysics,UniversityofOxford,OxfordOX13RH,UK

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received18July2014

Receivedinrevisedform12January2015 Accepted13March2015

Availableonline16March2015 Editor:S.Dodelson

The amount of decaying dark matter, accumulated in the central regions in neutron stars together withtheenergydepositionrate fromdecays,mayset alimitontheneutronstarsurvivalrateagainst transitionstomorecompactobjectsprovidednuclearmatterisnottheultimatestablestateofmatter and thatdarkmatterindeedisunstable.Moregenerally,thislimitsetsconstraintsonthedarkmatter particledecaytime,

τ

χ.Wefindthatintherangeofuncertainties intrinsictosuchascenario,masses (mχ/TeV)9×10−4or(mχ/TeV)5×10−2andlifetimes

τ

χ1055s and

τ

χ1053s canbeexcluded

inthebosonicorfermionicdecaycases,respectively,inanoptimisticestimate,whilemoreconservatively, itdecreases

τ

χ byafactor1020.Wediscussthevalidityunderwhichtheseresultsmayimprovewith

othercurrentconstraints.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

Disentangling the nature of dark matter (DM) is one of the greatest current challenges in physics. Whether this is realized through a stable or a decaying particle remains unknown to date. There is a vast literature with many well-motivated par-ticle physics models containing unstable, long-lived DM particle candidates, see e.g. [1] for a review. Possible DM decay time-scales,

τ

χ ,areconstrainedbycosmicmicrowavebackground(CMB)

anisotropies,FermiLATlimitsongalaxyclustersandgalactic

γ

-ray diffuseemission, antiprotonsandtheobservedexcess inthe cos-mic electron/positron flux [2,3]. It is usually assumed that the decay daughter particles are (nearly) massless although a more genericsituationwitharbitrarynon-zeromasses,mD,mayalso

oc-cur[4–6].ThespreadofthecurrentboundsontheDMlifetime

τ

χ

or,equivalently,ontheDMdecayrate



χ

=

1

χ islarge.For

ex-ample,PAMELA[7]andFermiLAT[8]datacanbeinterpretedina scenariowhereadecaying

χ

-particlehasalifetime

τ

e+e

1026s

forDMmasses



300GeV andwellintotheTeVrange[9](we usec

=

1).Suchlifetimesmayappearinthecontextof supersym-metric grand unification theories through dimension 6 operators

[10]with

τ

GUT

1027 s



TeV



5



M GUT 2×1016 GeV



4

.Onthe other hand, CMBdataprovideaconstraint



χ−1



30 Gyr formasslessdaughter

*

Correspondingauthor.

E-mailaddresses:mperezga@usal.es(M.Á. Pérez-García),silk@iap.fr(J. Silk).

particles whileforsufficiently heavyones, mD



mχ ,decaytimes

remainunrestricted[5].

Here we consider a scenario where weakly interacting scalar bosonic or fermionic metastable DM is gravitationally accreted onto neutron stars (NSs), and possibly first onto the progenitor stars.Inbrief,NSsareastrophysicalobjectsbelievedtohavea cen-tral core, whichconstitutesthe bulk ofthe starandwhere mass densitiesaresupranuclear,i.e.inexcessof

ρ

0



2

.

4

×

1014g

/

cm3.

Although thereis arich phenomenology onthe possibleinternal corecomposition,forthesakeofsimplicity,weconservatively con-sideritheretobecomposedofnucleon(n)fluid,withmass densi-ties

ρ

n

∼ (

1

10

0.Undertheseconditions,NSsareefficientDM

accretors.They caneffectively capturean incomingweakly inter-acting

χ

-particlepassingthroughthestarsinceitsmeanfreepath ismuch smallerthanthetypical NSradius.Explicitly,

λ

χ



σχ1nnn

where

σ

χn is the

χ

-nucleon elastic scattering cross-section that

we will usein the S-waveapproximation andnn

=

ρ

n

/

mn is the

nucleonparticledensity,withmn thenucleonmass.

Compilation of the latest results in direct detection searches

[11] allows analysis to set limits at a level of

σ

χn



10−44 cm2

inthe

∼ (

10–104

)

GeV range.Forthesakeofdiscussioninthis

work,we willconsiderthis

σ

χn value asrepresentative fora DM

particlecandidatehavinginmindthatcurrentexperimentalefforts can potentially providemore stringentlower values. Inthe same fashion, assuming an average NS with typical radius R



12 km

http://dx.doi.org/10.1016/j.physletb.2015.03.026

0370-2693/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

14 M.Á. Pérez-García, J. Silk / Physics Letters B 744 (2015) 13–17

andmassM



1

.

5M eachDMparticlewillscatterinsidea num-beroftimesgivenby

R

χ



6

.

1



R 12 km

 

σ

χn 10−44cm2

 

ρ

n 3

ρ

0



.

(1)

However,accretionofDMwillproceednotonlyduringtheNS lifetime,butalsointhepreviouslatestagesoftheprogenitorstar wherethedensenuclearashcentralcoreallowsthebuild-upofa

χ

-distribution,

(

r

)

,over time.In previous workswehave con-sideredtheeffectofaself-annihilatingDMparticleontheinternal NSdynamics[12–15]butherewewillfocusonthepossibilitythat theonlyprocessdepletingDMisdecay.

The picture is thus similar to proton decay searches such as thoseperformedbySuperKamiokande[16]consistingofa50kton waterdetectorlookingforprotondecaychannelsp

e+

π

0

,

ν

¯

K+.

This volume involves

1033 protons and is thus sensitive to

τ

p

1033-34yr asshowedbyanalysisofdata[17].Byanalogy,we

considertheNScoreasatankofDMthatbuildsupintime start-ingasearlyastheprogenitorstarphase.Thenumbersofcaptured particles will depend on the size, mass and composition of the progenitorstar(aswellasontheNSphase)oncetheDM-ordinary matterscatteringcross-sectionisfixed.

The DM accretionprocess onto NSs has beenpreviously esti-mated,seeforexample[18,19],bymeansofthecapturerate,Cχ ,

given an equation of state for regular standard-model matter in theinterioroftheNSatagivengalacticlocationandwitha cor-respondingambientDMdensity.Taking asreferencealocalvalue forDMdensity

ρ

ambient

χ,0



0

.

3 GeVcm3,itisapproximatedby



3

×

1022 f



MR





M 1

.

5M

 

R 10 km

 

1 TeV

 

ρ

ambient χ 0

.

3cmGeV3

s−1

,

(2) with f



MR



=

1

0

.

4



1.5MM 

 

10 km R



a redshift correction fac-tor. Following [20] we do not consider a reduction ofthe DM-n cross-sectionsincewe usecurrentexperimental sensitivity

σ

χn



10−44cm2, wellabove the geometricalcross-section. Itis

impor-tant to note that this dependence sets a limit on the intrinsic capabilityofNSs toaccumulatea criticalamountofDMand pos-siblyserveasatest-benchforDMproperties.

IntheNS,theDMparticlenumber,Nχ ,canbeobtainedsolving thedifferentialequation dNχ

dt

=

− 

Nχ , consideringcompeting

processes,captureanddecay,thelattertreatedviaagenericdecay rate



.TheDMpopulationattimet isthus

(

t

)

=



+



(

tcol

)





e−(ttcol)

,

t

>

t col

.

(3)

Thissolutiontakesintoaccount thepossibilityofan existing DM distributionintheprogenitor starbeforethetimeofthecollapse,

tcol, that produced the supernova explosion. Depending on the

χ

-mass and thermodynamical conditions inside the star, it may be possible to thermallystabilize a DM internal distribution. For the

σ

χn

,

mχ rangevaluesdiscussedsofarthisisindeedthecase.

The DM particle density takes the form

(

r

,

T

)

=

mρχ

χ

=

n0,χ e

kB T (r), withn0,χ the central value.

(

r

)

=

r 0

G M(r)dr r2 is

the gravitationalpotential. Assuming a constant baryonic density inthecoreM

(

r

)

=

0r

ρ

n4

π

r2dr,wefinallyobtain

(

r

,

T

)

=

n0,χe−(r/rth)

2

,

(4)

withathermalradiusrth

=

3kBT 2πGρnmχ.

In order to asses the importance of the progenitor DM cap-ture efficiency and thus the

(

tcol

)

value, let us consider a

15M progenitor star and its composition through the burning ages [21]. After the He-burning stage for tHe→CO



2

×

106 yr,

a CO mass

2

.

4M sits in the corewith a radius R

108 cm. The gravitationally-captured DM population is CHe→CO

χ tHe→CO



3

.

35

×

1039



1 TeV

 

ρambient χ 0.3 GeV/cm3



. Coherence effects may play a roleforslowlymoving,lowmχ incomingDMparticleswhentheir associated de Broglie wavelength is comparable to the nuclear size, and in this case one should include a multiplicative fac-tor to account fornucleus (N)instead ofnucleon scatterings,i.e.

σ

χN



A2



μ mn



2

σ

χn where A is thebaryonicnumberand

μ

the

reducedmassforthe

χ

N system.Sincethelaterburningstages proceedrapidly,theHe

CO stagegivesthemaincontributionto theDMcaptureintheprogenitor.

As the fusion reactions happen at higher densities and tem-peratures, the DM thermal radius contracts. In this way, for ex-ample, for

=

1 TeV in the He

CO, rth



470 km, while

for Si

FeNi, rth



70 km. The thermalization time t−th1

=



3kBT



1/2

σ

χN(nmNmχmN χ+mN)2, where nN

=

ρN

mN,for both cases is small

comparedtothedynamicalburningtimescalestth

/

tHe→CO



10−5, tth

/

tSi→FeNi



10−7.Howeverduringthecorecollapse,the

dynam-ical timescale involved is

tdyn col



3

8πρ¯G



10−

3 s where

ρ

¯

is an average matter density. Assuming a proto-NS (PNS) forms with T



10 MeV, central density nn

=

5n0 and a

neutron-rich fraction Yneut

0

.

9, nneut

=

Yneut5n0



p3F,neut

3π2 ,

thermaliza-tion time in this phase takes longer to be achieved [22] tth

=



2m2 χ 9mnkBT pF,neut mn 1 nnσχn





10−2 s.

ThecorecollapsemaythusaffecttheDMpopulationinsidethe star sincethose DMparticles remaining outsidethePNSmay ef-fectively not be considered to play a role in the NS phase. The number ofDMparticles inthestar interior,r

<

R,is writtenas

=

0Rn0,χ e−(

r/rth)2dV anditisa dynamicalquantitysincerth

is temperature(time)-dependent. As long as R



rth, we obtain

=

n0

rth

)

3.Theretainedfractionis

=

Nχ1 RPNS

0 n0,χe−(r/rth) 2 dV

,

(5)

so that for RPNS



10 km,



2

×

10−3.The retained DM

pop-ulation in the PNSafter the collapseis thus

=

(

tcol

)



6

.

7

×

1036



2×10−3

 

1 TeV



.LetusnotethatthecentralDM den-sity in the newly formed PNS n0



3

×

1023 cm−3 is much

smallerthanthatinthebaryonicmedium

1038cm−3.

At this point one should check that the DM content does not exceed the fundamental Chandrasekar limiting mass for the star to survive. If this was the case, it may lead to gravita-tional collapse of the star (see [23,24]). Therefore, for fermionic DM, we expect

(

t

)

<

NCh, where NCh

∼ (

MPl

/

)

3

1

.

8

×

1054

(

1 TeV

/

)

3 with MPl thePlanck mass,andforthe bosonic

case NCh

∼ (

MPl

/

)

2

1

.

5

×

1032

(

1 TeV

/

)

2.In caseaBose–

Einsteincondensateisconsidered[25] NBEC



1036

(

T

/

105 K

)

5and

theconditionis

(

t

)

<

NCh

+

NBEC.Asdescribed,inthefermionic

case, DMremains at all times belowthe limiting mass, butthis may not be the case in the cooling path of the PNS if a Bose– EinsteincondensateisformedforaDMparticleinthe

TeV mass range.Thescenariodescribedheremaybeindeedattheborderof the collapse case, howeverwe will restrict our discussion to the

(4)

precollapsedstate,leavingthepossibilityofadditionalcomplexity forfurtherinvestigation.

We can estimate the number of DM decays in the NS phase withina timeinterval

t

=

t

tcol



−1 usinga linear

approx-imation inthe exponential expansion in Eq.(3) and withaid of Eq.(5), ND,χ

=

(

tcol

)



t. Fora timeintervalcomparableto

knownagesofancientpulsars(likethatestimatedfortheisolated pulsar PSR J0108-1431

t



τ

old NS

=

1

.

7

×

108 yr [26]), decays

mayhaveprofoundimplications.

Neglecting any phase space blocking effects, the number of decays assuming decay times similar to those in the cosmic positron/electron anomaly

τ

e+e−, is given in the present

sce-nariobyND,χ

=

4

.

2

×

1026



f χ 2×10−3

 

1 TeV

 

1026s τe+e−

 

t τold NS



.This numberofdecaysovertheNSlifetimemayposeaproblemifthere issufficientenergydepositedinthenuclearmediumtotrigger fur-thermicroscopiceffectsthatmayaffectthestellarstability,aswe willargue.Thus,thepossibleimplicationsoftheabsenceofthese observationsmayindeedservetoconstrainthenatureofsuch de-cays.

Ifwenowfocusonthetypicaldecayfinalstatesofinterestfor fermionicorbosonic(neutral)DM,wecanestimatetheenergy de-positioninthemedium.Strictlyspeaking,injectionanddeposition arerelatedbyaninjectionfractionthatremainsunknownsincewe donotknowthepreferreddecaychannels.Inthisworkandin or-dertocomputethesizeoftheeffect,wewillconsiderthephoton contribution to decays by two-body channels with intermediate (massive) state daughter particles, quarks, leptons, weak bosons

w or, more generic

bosons and photons. Reactions include

χ

w

w

,

l+l

,

q+q

,

2

,

γ

,

χ

wl, keepinginmindthat

moregeneric decay final states[27] maywell happen.Using the photonspectrum dNγ

dE from[28,29],weestimatetheinjectionrate

per unit volume and unit energy from the contribution of each channelwithcorrespondingdecayrate



i atstellarradiallocation r asQ

(

E

,

r

)

=

(

r

)

i



i

dNi

γ

dE .Thentheenergyrateinjectedinthe

promptdecaychannelsiswrittenas

dE dt

=

E Q

(

E

,

r

)

dEdV

.

(6)

Energy release fromDM decay is injected locally as microscopic sparks [12] in the inner NS core over a central volume Vth

=

4

3

π

r3th,whereheating andcooling processescompete.Asa result,

inthethermalvolumetheaverageenergydensityinatime inter-val

t is

udecay



t

E Q

(

E

,

r

)

dE

.

(7)

However, for single events the energy deposit in a tiny local volume

δ

V canbe muchlarger udecay



Eispark

V foreach

chan-nelandEispark



EdN i

γ

dEdE.IndeedDMdecaymaybe regardedas

aspark-seedingmechanisminsimilarfashion tomodernversions ofdirectdetectionnucleationexperiments (PICO,MOSCAB)based onSeitz’stheory on heatspike triggering[30].Thermally induced quarkbubblenucleationinthecontextoftheappearanceofquark starshasbeenalreadysuggested[31] andsome studies[32] con-cludethatquark matter bubblesmaynucleateifthetemperature locallyexceeds

δ

T



few MeV, providedthe MITmodelbag con-stantisB1/4

=

150

±

5 MeV.

Inthe scenariodepicted here, decaysmayprovide theenergy injection to create a bubble. In order to see this, we estimate theminimumcriticalwork[32] neededtonucleatea neutral sta-blesphericalquark bubble inthecoreof thecold NS.It isgiven by Wc

=

163π

2γ3

P where

P

=

Pq

Pn and Pq ( Pn) is the

quark(nucleon)pressure.Foratwo-flavourud-quarksystemPq

=

i=u,d μ4

i

4π2

B andassuminganeutron-richsystemPn



2

nm2n)5/2 15π2m

n

asmost ofthe pressure will effectively be provided by neutrons inthefluid.

γ

=

i=u,d μ2

i

8π2,isthecurvaturecoefficientand

μ

i (

μ

n)

isthequark(nucleon)chemicalpotentialrelatedtotheFermi mo-mentum of the degenerate system

μ

i

=

pF i (

μ

n

=

mn2

+

p2F n).

Electrical charge neutrality requires for the ud matter nd

=

2nu

and nn

= (

nu

+

nd

)/

3 with ni

=

μ3

i

π2 in the light quark massless

limit. Note that we do not include further refinements due to non-zeroquark masses,in-medium orCoulombeffects ordroplet surfacetensionsincethey donot changetheglobalpictureaswe wanttokeep acompactmeaningfuldescriptionofthenucleation process. Bubbles haveat least a radius Rc

=



2

γ

/

P and their stability is granted asthey reachthe minimumbaryonic number

Amin

10[33]when A

43

π

R3cnn

>

Amin.Althoughtheremaybe

additionalefficiencyquenchingfactorsweexpectthattheydonot significantly alter the picture presented herebut we discussthis possibilitybelowasapossiblesourceofuncertainty.

Inprevious work by Harkoetal.[34],it was assumedthatto convertthefullNS,atleastonestablecapable-to-growquark bub-ble should be formed. However, in order to be conservative we willrequirea numberN0 ofbubblesthatcouldleadtoasizeable

amountofnucleatedmatter,thenonecanwritethiscondition us-ingthesparkseedingrateas

Nbub



dNbub dE dE dtdt

N0

.

(8)

Ifthiswasindeedthescenario,apossiblycatastrophicNStoquark star transitioncould occur when the macroscopicdeconfinement proceedsvia detonation modesto rapidlyconsumethe star[36]. TheGRBsignalemittedhasbeenestimatedin[14]andsubsequent emissionincosmicraychannelsisalsoexpected[15].

In our galaxy, the supernova rateis about R

=

10−2 yr−1 so

that an average rate of NS formation over the age of the uni-verse

τ

U

4

.

34

×

1017 s yields NN S

R

τ

U

108–9. Assuming

this population is formed by regular nucleonic NSs, and under the conditions discussed so far regarding DMproperties a lower limit optimistic value (provided one bubble is formed, N0

=

1)

for

τ

χ can be accordingly set from the age of the old NSs as

τ

χ



(

tcol

)

told NS.

The energy density necessary to create such a quark bub-ble withvolume Vd



43

π

R3c is therefore ubub



Wc

/

Vd



5

.

4

×

1035erg

/

cm3.Thisestimateisinagreementwithsimilarandmore

detailed calculations [34]. To allow the quark bubbles to nucle-ate,thelocalenergydensitiesmustthenfulfilludecay



ubub.Some

attemps to computationally model progression of seeds of quark matterinsideNSshavebeenrecentlyperformedin[37].

In Fig. 1 we plot the logarithm of

τ

χ versus mχ for bosonic

(upper panel)andfermionic(lower panel)DMparticlecases.We considertheoptimisticvalue N0

=

1 whereonesinglestable

bub-blecanproceedtoconvertthefullstar[34].Thedifferentpartially overlapping rectangular-shapedcoloredregions (solidorhatched) represent exclusion regions for each of the decay channels con-sidered in this work. Particle decays in this region would pro-duce NS transitions over ages below those assumed for regular old NSs. We assume aDM density

ρ

ambient

χ,0



0

.

3cmGeV3 and,in line

withour previous discussion,we set nn

=

5n0. Wecan see there

is a threshold mass belowwhich energy injectionis not ableto growstablebubbles.Wefindthatformasses

(

/

TeV

)



9

×

10−4 or

(

/

TeV

)



5

×

10−2 in the bosonic or fermionic cases

(5)

16 M.Á. Pérez-García, J. Silk / Physics Letters B 744 (2015) 13–17

Fig. 1. LogarithmofDMdecaytimeasafunctionofmass.Upper(lower)panel de-pictsbosonic(fermonic)channels.Coloredregionsshowourexcludedvalues assum-ingN0=1.Weshowcurrentconstraintsfromupperlimitscomingfromgamma

raysintheGalacticCenterandingalaxyclusters,positronandantiprotonfluxes, andIceCubeandSuperKamiokande.Dashedlinesonbothpanelsdenoteourmost pessimisticgloballowerboundondecaytimearisingfromtheuncertaintiesinthe percolationscenario(seedetailsinthetext).

excluded.Asalreadymentioned,thereisanaturallimitforNSsto effectivelytestdecaying DM,fromtheirability toaccrete and re-tain DM during its lifetime

τ

old NS. We can use thisresult to set

exclusionregions for

τ

χ complementary tothose showninother

worksundertheconditionsofvalidityofourscenario.Weplot up-perlimitconstraintscomingfrome+e−,gammas,antiprotonfluxes andIceCube andSuperKamiokande[2,3].Notethatbosonic decay channelsare ableto probea widerrangeof DMmassesas com-paredto fermionic decays.Our optimistic limitsare considerably strongerthanearlierresults,includingtheCMBconstraints[35].

Atthispointweshouldcriticallyassestheseveraluncertainties thatmayaffectourestimate.Asaresultwedepictagloballower bound on decay time in dashed lines in Fig. 1. In the following we explain the differentoriginof theproposed reduction factors intheDMlifetimes.

Inthemechanismofbubble nucleationinside thecoreofNSs presented in this work, a major uncertainty concerns quenching efficiencies,whichmayrequiremorethanasinglebubbleto trig-gertheNScollapse.Inamoreconservativescenario,theminimum number of bubbles to effectively distort the internal NS struc-ture may be linked to the mechanical instability one can create bynucleation.Theassociatedvariationinpressureisproportional to the volume affected or number of bubbles, this is estimated asgiven by

δ

P





∂P

∂Nbub



0

δ

Nbub where the coefficient is related

to regular nuclearmatter compressibility(in theabsence of bub-bles). In order to quantify the effect,let usconsider an old and cold NS with T

105 K and

ρ

n

=

5

ρ

0 for a DM particle with

1 TeV. TheDMparticle numberinsidethe NSthermal vol-ume is Ath



Vthnn



1042. If each possibly formed bubble has

a baryonic number Amin



10 thena macroscopic N0 numberof

bubbles account for Abub

10N0. In principle, a standard

varia-tioninthenumberofnucleonsdepletedfromthethermalvolume nucleonsea,

Ath



1021,could providealargeenough variation

in pressure to trigger transitioning. Then the number of bubbles to create this perturbation is N0



Ath

/

Amin



1020.In such a

pessimistic scenario, the limits on DM decay lifetimes wouldbe reducedbyasimilarproportion.

In addition, heavy-ioncollision simulations usingperturbative QCD[38]giveestimatesofthetypicalquenchingfactororratioof energyspreadinthiscontextasQ



O(

0

.

1

)

.Onemustnote how-ever that the jet-sized regions in heavy-ion collisions are about three orders of magnitudeor more smaller in local energy den-sity i.e.

GeV

/

fm3 than the ranges presentedin thiswork with

a few fm spatial spread on a time-scale of several fm/c. This size is comparable to typical bubble sizes. We expect that this correction doesnot significantlyaffecttheresultspresentedhere. In addition oneshould consider that Pauliblocking effectsof or-dinary matter may reduce the kinematicalphase spaceavailable for the DM-n interaction effects atthe few percent for low

whilebeingnegligibleintheTeVrangeandabove.Alsothe uncer-tainty onthe quotedminimumbubble sizeandbaryonicnumber can somewhat further constrain the lower mχ range,and so we should be safe for somewhat larger masses. Note however that some works havesuggesteda decaying PeVmassDM particleas an explanation to IceCube PeV cascadedata [40,41]. Such a PeV mass DM particle would be however at the limit of thermaliza-tionfor

σ

χn

10−44 cm2,a smallercross-section invalidatingthe

thermalization procedure quoted in our NS scenario and cannot be ruled out in light of our current findings. However, existing data,asdepictedinFig. 1allowsfora

104–105factorinlifetime to vary proportionally the cross-section and DMmass parameter space, andself-consistentlyother parametersinthemodel.Aswe do not intend to perform a detailed analysis in this work, we leave thistask forfuture contributions. Linked to thisargument, we haveconsideredan average-sized massiveNS,however, varia-tionsinmassandradiusincurrentsurveysareoftheorderof30%

[39] and thecapturerate wouldbe affected ina similar fashion, resultinginamoderatelyreducedcaptureefficiency.

In summary, we have shown that the current population of galactic NS may constrain the nature of a decaying bosonic or fermionic DM particle with mass in the GeV–TeV range. Since there are a number of uncertainties intrinsic to the model, we discussinparticulartwo cases,namelythe optimisticcasewhere we find that DM particles with lifetimes

τ

χ



1055 s exclude

masses

(

/

TeV

)



9

×

10−4 or

τ

χ



1053s excludes

(

/

TeV

)



5

×

10−2inthebosonicorfermioniccases,respectively.

Uncertain-ties associatedmay substantially reduce theselimits. Inthe pes-simisticcase, aglobalboundisset withlifetimes afactor



1020 smallerthat stillimproveonrivalboundsfrome+e−,

γ

, p fluxes

¯

and IceCube andSuperKamiokande, leavinga combinedfactor of

104–105 in lifetime if different cross-sections or masses are

considered. Theseresults areobtainedfromthe prior ofavoiding nucleation of quark bubbles ina NS coredue toefficient energy injectionbysparkseeding.Ifthiswas thecase, aconversionfrom NSintoquarkstarwouldbetriggered,therebyreducingthe popu-lationofregularNSinthegalaxy.

(6)

Acknowledgements

M.A.P.G.wouldliketothankusefuldiscussionswithR.Lineros, C.Muñoz andP. Panci. She acknowledges thekind hospitalityof IAPwherepartofthisworkwasdeveloped.Thisresearchhasbeen supported at University of Salamanca by the Consolider MULTI-DARKandFIS2012-30926MINECOprojectsandatIAP bytheERC project267117 (DARK)hostedbyUniversité PierreetMarieCurie –Paris6andatJHUbyNSFgrantOIA-1124403.

References

[1]G.Bertone,D.Hooper,J.Silk,Phys.Rep.405(2005)279. [2]L.Dugger,etal.,arXiv:1009.5988.

[3]A.Ibarra,etal.,arXiv:1307.6434. [4]A.H.G.Peter,Phy.Rev.D81(2010)083511. [5]S.Aoyama,etal.,arXiv:1106.1984.

[6]F.J.SánchezSalcedo,Astrophys.J.591(2003)L107.

[7]PamelaCollaboration,O.Adriani,etal.,Nature458(2009)607. [8]FermiCollaboration,A.A.Abdo,etal.,Phys.Rev.Lett.102(2009)181101. [9]A.Ibarra,D.Tran,J.Cosmol.Astropart.Phys.02(2009)021.

[10]E.Nardi,F.Sannino,A.Strumia,J.Cosmol.Astropart.Phys.1(2009)43. [11]SeeFig. 26inD.Bauer,etal.,arXiv:1310.8327.

[12]M.A.Perez-Garcia,J.Silk,J.R.Stone,Phys.Rev.Lett.105(2010)141101,arXiv: 1108.5206.

[13]M.A.Perez-Garcia,J.Silk,Phys.Lett.B711(2012)6,arXiv:1111.2275. [14]M.A.Perez-Garcia,F.Daigne,J.Silk,Astrophys.J.768(2013)145,arXiv:1303.

2697.

[15]K.Kotera,M.A.Perez-Garcia,J.Silk,Phys.Lett.B725(2013)196,arXiv:1303. 1186.

[16]C.Regis,etal.,arXiv:1205.6538.

[17]Super KamiokandeCollab.,Phys. Rev.D85(2012)112001, Phys. Rev.D86 (2012)012006.

[18]A.Gould,Astrophys.J.321(1987)571.

[19]A.deLavallaz,M.Fairbairn,Phys.Rev.D81(2010)123521. [20]C.Kouvaris,Phys.Rev.D77(2008)023006.

[21]R.Kippenhahn,A.Weigert,StellarStructureandEvolution,Springer,1990. [22]I.Goldman,S.Nussinov,Phys.Rev.D40(1989)3221.

[23]C.Kouvaris,P.Tinyakov,arXiv:1104.0382.

[24]S.D.MacDermott,H.B.Yu,K.Zurek,Phys.Rev.D85(2012)023519. [25]J.Bramante,K.Fukushima,J.Kumar,arXiv:1301.0036.

[26]N.D’Amico,B.Stappers,M.Bailes,C.E.Martin,J.F.Bell,A.G.Lyne,R.N. Manch-ester,Mon.Not.R.Astron.Soc. 297(1998)28.

[27]N.F.Bell,A.J.Galea,K.Petraki,Phys.Rev.D82(2010)023514. [28]M.Cirelli,etal.,J.Cosmol.Astropart.Phys.051(2011)1103. [29]J.Fortin,J.Shelton,S.Thomas,Y.Zhao,arXiv:0908.2258. [30]F.Seitz,Phys.Fluids1(1958)2.

[31]J.E.Horvath,O.G.Benvenuto,H.Vucetich,Phys.Rev.D45(1992)3865; J.E.Horvath,H.Vucetich,Phys.Rev.D59(1998)023003.

[32]J.Madsen,Lect.NotesPhys.516(1999)162. [33]E.Farhi,R.L.Jaffe,Phys.Rev.D30(1984)2379;

M.S.Berger,R.L.Jaffe,Phys.Rev.C35(1987)213. [34]T.Harko,K.S.Cheng,P.S.Tang,Astrophys.J.608(2004)945. [35]R.Diamanti,etal.,arXiv:1308.2578.

[36]B.Niebergal,R.Ouyed,P.Jaikumar,Phys.Rev.C82(2010)062801. [37]M.Herzog,F.K.Ropke,Phys.Rev.D84(2011)083002,arXiv:1109.0539. [38]K.J.Eskola,K.Kajantie,J.Lindfors,Nucl.Phys.B323(1989)37. [39]B.Kiziltan,etal.,arXiv:1309.6635.

[40]A.Esmaili,P.D.Serpico,J.Cosmol.Astropart.Phys.11(2013)054.

[41]B.Feldstein,A.Kusenko,S.Matsumoto,T.T.Yanagida,Phys.Rev.D88(2013) 015004.

Figure

Fig. 1. Logarithm of DM decay time as a function of mass. Upper (lower) panel de- de-picts bosonic (fermonic) channels

Références

Documents relatifs

Abstract: Conformal films obtained through polymerization of aminomalononitrile in solution at pH = 8.6 display an irreversible electrochemical oxidation current and

L’impérialisme n’est rien d’autre que la phase théorique de la colonisation, il a permis de préparer les territoires pour une domination systématique des

Il considéra sa victime avec stupeur, ce dernier, encore tout écarlate d'avoir eu le col serré, le surplombait de sa haute taille et de sa morgue, lui qui était monté haut dans

[r]

In order to estimate the spurious shell effects due to the unbound neutrons, we simulate an homogeneous gas of neutron matter in W-S cell by removing all the proton states.

In a spinodal de- composition scenario, cluster properties as sizes and chemical compositions can be predicted from the characteristics of the most unstable mode at the onset

1: (color online) Neutron specific heat divided by the temperature in the three shallow layers calculated with the band theory (solid thick line) and with different approxima-

In this Letter we analyze the impact of the Fock term in two effective, rel- ativistic meson-exchange models related to the quark na- ture of hadrons: the chiral Lagrangian model