• Aucun résultat trouvé

On the D -affinity of quadrics in positive characteristic

N/A
N/A
Protected

Academic year: 2023

Partager "On the D -affinity of quadrics in positive characteristic"

Copied!
6
0
0

Texte intégral

(1)

Algebraic Geometry

On the D -affinity of quadrics in positive characteristic

Alexander Samokhin

Institute for Information Transmission Problems, B. Karetnyj per., 19, 127994, Moscow, Russia Received 30 December 2005; accepted after revision 6 January 2007

Available online 9 March 2007 Presented by Michel Raynaud

Abstract

In this Note we deal with the rings of differential operators on quadrics of low dimension in positive characteristic. We prove a vanishing theorem for the first term of thep-filtration on the rings of differential operators on such quadrics. Such a vanishing is a necessary condition for theD-affinity of these varieties. We also discuss applications of this result to derived categories of coherent sheaves.To cite this article: A. Samokhin, C. R. Acad. Sci. Paris, Ser. I 344 (2007).

©2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur laD-affinité de quadriques en caractéristique positive.Dans cette Note nous étudions les anneaux des opérateurs dif- férentiels sur les quadriques en petite dimension en caractéristique positive. Nous démontrons un théorème d’annulation pour le premier terme de lap-filtration sur les anneaux des opérateurs différentiels sur ces quadriques. Une telle annulation est une condi- tion nécessaire pour que ces variétés soientD-affines. Enfin, nous discutons des applications de ce résultat à des catégories dérivées des faisceaux cohérents.Pour citer cet article : A. Samokhin, C. R. Acad. Sci. Paris, Ser. I 344 (2007).

©2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

SoitXune variété lisse sur un corpskalgébriquement clos de caractéristique quelconque,OXle faisceau structural deX, et DX le faisceau des opérateurs différentiels surX. On noteM(D)la catégorie desD-modules (à gauche) qui sont quasi-cohérents comme desOX-modules. La variétéXest diteD-affine si les deux conditions suivantes sont satisfaites : (i) pour chaqueFM(D)on aHk(X,F)=0 pourk >0, et (ii)Fest engendré par ces sections globales surDX.

Beilinson et Bernstein ont démontré dans [3] que les espaces homogènes des groupes de Lie étaientD-affines si le corpsk est de caractéristique zéro. Par contre, comme l’ont découvert Kashiwara et Lauritzen dans [9], les espaces homogènes en caractéristique positive ne sont pasD-affines en général. Dans cet article nous étudions les quadriques de dimension4 en caractéristique positive (ce sont les espaces homogènes du groupe orthogonal). Nous prouvons qu’une condition nécessaire est satisfaite pour que de telles quadriques soientD-affines. Ce théorème, qui est le résultat

This work was supported in part by a French Government Fellowship and by the RFBR grant No. 02-01-22005.

E-mail address:sasha@math.univ-paris13.fr.

1631-073X/$ – see front matter ©2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

doi:10.1016/j.crma.2007.01.023

(2)

principal de cet article, est similaire à celui d’Andersen et Kaneda de [1] où le cas de la variété de drapeaux du groupe du typeB2a été traité.

1. Introduction

Throughout we fix an algebraically closed field k of characteristic p. Let X be a smooth variety over k, and F:XX the absolute Frobenius morphism. Note that sinceX is smooth, the sheafFOX is locally free (hereF is the direct image functor underF). Recall that the sheaf of differential operatorsDX onXadmits thep-filtration defined as follows. For r1 denote Dr the endomorphism bundle EndOX(FrOX) (here Fr =F◦ · · · ◦F is the r-iteration ofF). ThenDX=

Dr. Recall thatXis said to be Frobenius split if the sheafOXis a direct summand inFOX. Homogeneous spaces of linear algebraic groups are Frobenius split [11]. For a Frobenius split varietyXand for alli∈Nthe following property holds (Proposition, Sec. 1, [1]):

Hi(X,DX)=0⇔Hi(X,Dr)=0 for anyr∈N. (1)

Below we consider the case of smooth quadrics of dimension4, which are homogeneous spaces of orthogonal groups, and prove a necessary condition for these quadrics to beD-affine (cf. the main theorem of [1]):

Theorem 1.1.LetQnbe a quadric of dimensionn4. ThenHi(Qn,D1)=0fori >0.

2. Preliminaries

LetXbe a smooth variety overk, and Coh(X)the category of coherent sheaves onX. The direct image functorF has a right adjoint functorF!in Coh(X)[8]. The duality theory for the finite flat morphismFyields [8]:

Lemma 2.1.The functorF!is isomorphic to

F!(?)=F(?)ω1Xp, (2)

whereωXis the canonical invertible sheaf onX.

For anyi0 one has an isomorphism, the sheafFOXbeing locally free:

Hi

X,EndOX(FOX)

=Exti(FOX,FOX). (3) From Lemma 2.1 we obtain:

ExtiX(FOX,FOX)=Exti

OX,F!F(OX)

=Hi

X,FFOXω1Xp

. (4)

Consider the fibered square:

X π2

π1

X

F

X F X

Leti:Δ X×Xbe the diagonal embedding, and˜ithe embeddingX ˜ →X×Xobtained from the above fibered square.

Lemma 2.2.One has an isomorphism of sheaves:

˜iOX˜ =(F)(iOΔ). (5) HereF×Fis the Frobenius morphism onX×X. The lemma is equivalent to saying that the fibered productX˜ is isomorphic to the Frobenius neighbourhood of the diagonalΔX×X(cf. [4]).

(3)

Lemma 2.3.There is an isomorphism of cohomology groups:

Hi

X,FF(OX)ω1Xp

=Hi

X×X, (F)(iOΔ)

ωX1pOX

. (6)

Proof. Recall that the signin the right-hand side of (6) denotes the external tensor product. Applying the flat base change to the above fibered square, we get an isomorphism of functors, the morphismFbeing flat:

FF=π1π2. (7)

Note that all the functorsF,F,π1, andπ2are exact, the morphismFbeing affine. The isomorphism (7) implies an isomorphism of cohomology groups

Hi

X,FF(OX)ω1Xp

=Hi

X, π1π2(OX)ω1Xp

. (8)

By the projection formula the right-hand side group in (8) is isomorphic toHi(X, π˜ 2OXπ1ω1Xp). Letp1andp2 be the projections ofX×Xonto the first and the second component respectively. One hasπ1=p1◦ ˜iand π2=p2◦ ˜i.

Hence an isomorphism of sheaves π2OXπ1ω1Xp= ˜i

p2OXp1ωX1p

= ˜i

ωX1pOX

. (9)

From (9) and the projection formula one obtains HiX, π˜ 2OXπ1ω1Xp

=HiX,˜ ˜i

ω1XpOX

=Hi

X×X,˜iOX˜

ω1XpOX

. (10)

Using Lemma 2.2 we get the statement. 2 Corollary 2.4.One has as well an isomorphism:

Hi

X,FF(OX)ω1Xp

=Hi

X×X, (F)(iOΔ)

OXωX1p

. (11)

Finally, we need a well-known lemma (e.g., SGA3):

Lemma 2.5.If a sheafF on a varietyXis quasi-isomorphic to a bounded complexFthenHi(X,F)=0provided thatHp(X,Fq)=0for allp+q=i.

3. Vanishing

In this section we prove Theorem 1.1. LetQnbe a smooth quadric of dimensionn4. Note thatQ1is isomorphic toP1, andQ2is isomorphic to P1×P1. For projective spaces in positive characteristic theD-affinity was proved in [6] by B. Haastert. We need, therefore, to consider the casen=3 andn=4. We treat the case of three-dimensional quadrics, the four-dimensional case being similar. Let G be a simply connected simple algebraic group over k of typeB2, B a Borel subgroup of G, and P⊂G a parabolic subgroup such that G/P is isomorphic to a quadricQ3. Denoteπ: G/B→G/P the projection. There exists a line bundleLover G/B such that R0πLis a rank two vector bundle overQ3, the spinor bundle. DenoteU the dual bundle to R0πL. There is a short exact sequence:

0→UVOQ3U→0, (12)

where V is a symplectic k-vector space of dimension 4, i.e. a space equipped with a non-degenerate skew form ω2

V.

Lemma 3.1.LetQ3be a smooth quadric of dimension 3, and i:ΔQ3×Q3 the diagonal embedding. Then the following complex is exact:

0→UU(−2)→Ψ2OQ3(−2)→Ψ1OQ3(−1)→OQ3OQ3iOΔ→0. (13) HereΨi fori=1,2are some vector bundles onQ3, which have right resolutions

0→ΨiBikOQ3→ · · · →B1kOQ3(i−1)→OQ3(i)→0, (14) andBi arek-vector spaces.

(4)

Proof. One can show, without recurrence to Kapranov’s theorem for quadrics ([7], Theorem 4.10), that the collection of bundlesU(−2),OQ3(−2),OQ3(−1),OQ3is a complete exceptional collection [12] in Db(Q3), the bounded derived category of coherent sheaves onQ3, and then use a purely categorical construction of a resolution of the diagonal [12]

that can be performed over fields of arbitrary characteristic. The bundlesU, Ψ2, Ψ1,OQ3 are terms of the so-called right dual collection. Otherwise, one can suitably modify Kapranov’s argument so that it will hold over fields of positive characteristic (for more details see [13]). 2

Theorem 3.2.One hasExti(FOQ3,FOQ3)=0fori >0.

Proof. By Corollary 2.4 we need to show thatHi(Q3×Q3, (F)(iOΔ)(OQ3ωQ1p

3 ))=0 fori >0. Recall that ωQ3=OQ3(−3). For a line bundleLone hasFL=Lp. Taking the pull-back under(F)of the resolution (13), we get a complex of coherent sheaves in degrees−3, . . . ,0 :

0→FUF U(−2)

FΨ2OQ3(−2p)→FΨ1OQ3(p)OQ3OQ3→0. (15) DenoteCthe complex (15), and letC˜be the tensor product ofCwith the invertible sheafOQ3ω1Qp

3 . ThenC˜ is quasiisomorphic to the sheaf(F)(iOΔ)(OQ3 ω1Qp

3 ). We thus have to compute the hypercohomology ofC˜. There is a distinguished triangle in Db(Q3):

· · · −→FU(FUωQ3)[3] −→ ˜C−→σ2(C˜)−→ · · ·[1] . (16) Hereσ2is the stupid truncation, and[1]is a shift functor in Db(Q3). Let us first look at the truncated complex σ2(C˜), which is quasiisomorphic to

0→FΨ2OQ3(p−3)→FΨ1OQ3(2p−3)→OQ3OQ3(3p−3)→0. (17) Let us show thatHk(Q3,FΨi)=0 fork > iandi=1,2. Indeed, the sheavesΨ1andΨ2have resolutions as in (14).

By the Kempf vanishing theorem [10], effective line bundles on homogeneous spaces have no higher cohomology. The terms of resolutions (14) forn=3 andi=1,2 consist of direct sums of effective line bundles and of direct sums of the sheafOQ3. Positivity of a line bundle is preserved under the Frobenius pullback, hence the terms of the resolutions of sheavesFΨi have only zero cohomology. Applying Lemma 2.5, we obtain the above vanishing. Further, line bundles that occur in the second argument of the terms of the complex (17) are effective forp >3. Forp=2 andp=3 the line bundle occurring in the leftmost term of (17) is isomorphic toOQ3 andOQ3(−1), respectively. For allpthese line bundles have no higher cohomology. Using again Lemma 2.5, we getHi2(C˜))=0 fori >0.

Consider now the bundle FU (FUωQ3). The proof of Theorem 3.2 will be completed if we show that Hi(Q3×Q3,FU (FUωQ3))=0 for i =3. Indeed, taking cohomology of the triangle (16), we see that Hi(C˜)=0 fori >0. 2

Lemma 3.3.One hasHi(Q3×Q3,FU(FUωQ3))=0fori =3.

Proof. By the Serre duality one hasHk(Q3,FU)=H3k(Q3,FUωQ3), for 0k3. Using the Künneth for- mula, we see that it is sufficient to show thatHk(Q3,FU)is non-zero for just one value ofk. In fact,Hk(Q3,FU)=0 ifk =2. To prove this, apply the Frobenius pullbackFto (12). We get

0→FUFVOQ3FU→0. (18)

We need a particular case of the following theorem due to Carter and Lusztig ([2], Theorem 6.2):

Theorem 3.4.Letkbe a field of characteristicpand letEbe a vector space of dimensionroverk. Then there exists an exact sequence of GLr(k)-modules

0→FESp(E)Σ(p1,1)(E)→ · · · →Σλ(E)→0 (19) whereλ=(p−min(p−1, r−1),1,1, . . .). HereΣλ are Schur functors. In particular, if a partitionλis equal to (p,0, . . .)thenΣλis equal top-th symmetric power functorSp. This construction globalizes to produce a resolution of the Frobenius pull-back of a vector bundle[2].

(5)

Theorem 3.4, applied to the bundleU, furnishes a short exact sequence, the bundleUhaving rank 2:

0→FUSpUSp2UOQ3(1)→0. (20)

The vector bundlesSpU andSp2UOQ3(1)are pushforwards ontoQ3of effective line bundles Lχ1 andLχ1

over G/B that correspond to the weightsχ1=(p,0)andχ2=(p−1,1), respectively. Moreover, the restrictions ofLχ1 andLχ1 to the fibers ofπ have positive degrees. Considering the Leray spectral sequence for the morphism π and using the Kempf vanishing theorem, we obtain that the bundlesSpU andSp2UOQ3(1)both have no higher cohomology. By Lemma 2.5 one then has Hi(Q3,FU)=0 fori >1. Moreover, there is an isomorphism H0(Q3,FU)=V. Considering the long exact cohomology sequence associated to (18), we get the statement of Lemma 3.3. Hence, it remains to prove the isomorphismH0(Q3,FU)=V. Indeed, taking cohomology of (20), we get a short exact sequence:

0→H0(Q3,FU)H0(Q3,SpU)H0

Q3,Sp2UOQ3(1)

. (21)

Using again the Kempf vanishing theorem, we obtain H0(Q3,SpU)=SpV andH0(Q3,Sp2UOQ3(1))= Σ(p1,1)V. On the other hand, the resolution (19), applied to the vector spaceV, furnishes a short exact sequence:

0→FVSpVΣ(p1,1)V. (22)

Comparing (21) and (22), and taking into account the above isomorphisms, we get the isomorphism H0(Q3,FU)=V .

Finally, one has an isomorphismV =VsinceV is symplectic. This implies Lemma 3.3. 2

The proof of Theorem 1.1 in the case of four-dimensional quadrics is essentially the same, the only difference being that there are two spinor bundles in this case.

4. Tilting bundles

This paper grew out of an attempt to understand possible applications of the work [4] to the derived categories of coherent sheaves on homogeneous spaces. It follows from one of the main results of [4] that for a homogeneous spaceG/Poverk(here chark=p > h, wherehis the Coxeter number of a semisimple algebraic groupGoverk) the bundleFOG/Pis a generator [5] in Db(G/P), the derived category of coherent sheaves onG/P. Theorem 1.1 in this framework can be rephrased as saying that the bundleFOQn is a tilting bundle onQnforn4. By [5] one then has an equivalence of categories:

Db(Qn)Db

End(FOQn)−mod

, (23)

forn4. It is this kind of equivalence that we would like to get for all homogeneous spaces. In a forthcoming pa- per [13] we show, in particular, an equivalence of the type (23) for quadrics of arbitrary dimension, and for some other homogeneous spaces (including the flag variety in typeB2, cf. [1]). This gives a hope that for a homogeneous spaceG/Pthe bundleFOG/Pmay have some relevance to tilting bundles on such a variety (such bundles are con- jectured to exist on all homogeneous spaces).

Acknowledgements

I am happy to thank R. Bezrukavnikov and A. Kuznetsov for extremely valuable discussions. I also would like to express my gratitude to the University Paris 13 and the University Paris 7 for their warm hospitality.

References

[1] H.H. Andersen, M. Kaneda, On theD-affinity of the flag variety in type B2, Manuscripta Math. 103 (2000) 393–399.

[2] D. Arapura, Frobenius amplitude and strong vanishing theorems for vector bundles, Duke Math. J. 121 (2) (2004) 231–267.

[3] A. Beilinson, J. Bernstein, Localisation deg-modules, C. R. Acad. Sci. Paris, Ser. I 292 (1981) 15–18.

[4] R. Bezrukavnikov, I. Mirkovi´c, D. Rumynin, Localization of modules for a semisimple Lie algebra in prime characteristic, arXiv:math.

RT/0205144, Ann. of Math, in press.

(6)

[5] A. Bondal, M. Van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Moscow Math. J. 3 (1) (2003) 1–36.

[6] B. Haastert, Über Differentialoperatoren undD-Moduln in positiver Charakteristik, Manuscripta Math. 58 (4) (1987) 385–415.

[7] M. Kapranov, On the derived categories of coherent sheaves on some homogeneous spaces, Invent. Math. 92 (1988) 479–508.

[8] R. Hartshorne, Residues and Duality, Lecture Notes in Mathematics, vol. 20, Springer, 1966.

[9] M. Kashiwara, N. Lauritzen, Local cohomology andD-affinity in positive characteristic, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 993–996.

[10] G. Kempf, Linear systems on homogeneous spaces, Ann. of Math. (2) 103 (3) (1976) 557–591.

[11] V. Mehta, A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. 122 (1985) 27–40.

[12] A.N. Rudakov, et al., Helices and Vector Bundles, Seminar Rudakov, London Math. Soc. Lecture Note Ser., vol. 148, Cambridge Univ. Press, Cambridge, 1990.

[13] A. Samokhin, Tilting bundles on Fano varieties and the Frobenius morphism, in preparation.

Références

Documents relatifs

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.. Access

This theorem shows that the connections in the motive of an excellent quadric are minimal among anisotropic quadrics of a given dimension one can put it also as follows:

through rational equivalence, showing that on X all cycles (in the middle dimension) are generated by subspaces (mod rational equivalence) and that.. on the set of

(Since the dimension is a power of 2, it follows that q is not a neighbor of any multiple of a Pfister form.) Thus Conjecture 1.1 on ruledness predicts that q is ruled, but all

Cependant, les recherches dans ce domaine ont révélé un comportement de l’écoulement dans les microcanaux différents des résultats classiques, que ce soit pour

En resumidas cuentas, a través de esta investigación hemos intentado echar la luz sobre la nominada “Primavera Árabe” que ha marcado los principios de la segunda

Dans le dernier chapitre, nous avons étudié l’effet de quelques grandeurs de la cellule solaire biface au silicium monocristallin (N + /P/P + ) à émetteur de type N + , de

1. either injective or surjective) for a general choice of C and L in the range where the Brill–Noether number is nonnegative. The original formulation of the conjecture is due