• Aucun résultat trouvé

Lack of compactness in the 2D critical Sobolev embedding, the general case

N/A
N/A
Protected

Academic year: 2023

Partager "Lack of compactness in the 2D critical Sobolev embedding, the general case"

Copied!
5
0
0

Texte intégral

(1)

Contents lists available atSciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Partial Differential Equations

Lack of compactness in the 2D critical Sobolev embedding, the general case

Défaut de compacité de l’injection de Sobolev critique en deux dimensions d’espace

Hajer Bahouri

a

, Mohamed Majdoub

b

, Nader Masmoudi

c

aLAMA UMR CNRS 8050, Université Paris-Est Créteil, 61, avenue du Général de Gaulle, 94010 Créteil cedex, France bDépartement de mathématiques, faculté des sciences de Tunis, 2092 Manar, Tunisia

cThe Courant Institute of Mathematical Sciences, NY University, 251 Mercer St., New York, NY 10012, USA

a r t i c l e i n f o a b s t r a c t

Article history:

Received 18 November 2011

Accepted after revision 23 January 2012 Available online 11 February 2012 Presented by Haïm Brezis

This Note is devoted to the description of the lack of compactness of the Sobolev embedding of H1(R2) in the critical Orlicz space L(R2). It turns out that up to cores our result is expressed in terms of the concentration-type examples derived by J. Moser (1971) in [16] as in the radial setting investigated in Bahouri et al. (2011) [5]. However, the analysis we used in this work is strikingly different from the one conducted in the radial case which is based on an L estimate far away from the origin and which is no longer valid in the general frame work. The strategy we adopted to build the profile decomposition in terms of examples by Moser concentrated around cores is based on capacity arguments and relies on an extraction process of mass concentrations.

©2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Cette Note est consacrée à l’étude du défaut de compacité de l’injection de Sobolev de H1(R2)dans l’espace d’Orlicz critiqueL(R2). Nous démontrons que la déscription donnée dans Bahouri et al. (2011) [5] concernant le cas radial reste valable dans le cas général (à des translations près par des coeurs de concentration). La preuve utilise des arguments de capacité ainsi qu’un processus d’extraction de concentrations.

©2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Il est bien connu que H1

(

R2

)

s’injecte continûment dans tous les espaces Lp

(

R2

)

pour 2p

<

∞, mais pas dans L

(

R2

)

. De plus, on sait d’après les inégalités de Moser–Trudinger (voir [16,18]) queH1 s’injecte dans l’espace d’OrliczL (défini ci-dessous). Plus précisément, on a

u

L

1

4

π

u

H1

.

(1)

Cette injection est critique dans le sens où on ne peut pas remplacer l’espace d’OrliczLpar un espace plus petit du type Orlicz (voir [5,7]). Il est aussi à remarquer que cette injection est non compacte pour, au moins, deux raisons. La première

E-mail addresses:hbahouri@math.cnrs.fr(H. Bahouri),mohamed.majdoub@fst.rnu.tn(M. Majdoub),masmoudi@courant.nyu.edu(N. Masmoudi).

1631-073X/$ – see front matter ©2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

doi:10.1016/j.crma.2012.01.016

(2)

est la perte de compacité à l’infini illustrée par l’exempleun

(

x

)

=

ϕ (

x+xn

)

ϕ

D\{0}et|xn| → ∞. La seconde est due à un phénomène de concentration et un exemple typique est celui de P.-L. Lions [14] et J. Moser [16] :

fα

(

x

) =

⎧ ⎪

⎪ ⎨

⎪ ⎪

0 si

|

x

|

1

,

log2απ|x| si eα

|

x

|

1

,

α

2π si

|

x

|

eα

,

α

→ ∞. Remarquons que peut-être écrite

(

x

)

= α

2πL

(

logα|x|

)

avec

L

(

t

) =

⎧ ⎨

0 sit

0

,

t si 0

t

1

,

1 sit

1

.

L’objectif principal de cette Note est de démontrer que le défaut de compacité de l’injection de Sobolev H1

Lpeut-être décrit à l’aide de l’exemple de Moser (à des translations près par des coeurs de concentration). Le résultat principal est le suivant :

Théorème 1. Soit

(

un

)

une suite de H1

(

R2

)

telle que un

0

,

lim sup

n→∞

un

L

=

A0

>

0 et lim

R→∞lim sup

n→∞

un

L(|x|>R)

=

0

.

(2) Alors, il existe une suite

( α

(j)

)

d’échelles, une suite

(

x(j)

)

de coeurs et une suite

(j)

)

de profils tels que les triplets

( α

(j)

,

x(j)

, ψ

(j)

)

soient deux à deux orthogonaux et, à extraction près, on a pour tout entier

1,

un

(

x

) =

j=1

α

n(j)

2

π ψ

(j)

log

|

x

x(nj)

| α

n(j)

+

r()n

(

x

),

lim sup

n→∞

rn()

L

→∞

−→

0

,

(3)

un

2L2

=

j=1

ψ

(j)

2

L2

+ ∇

r()n

2

L2

+ ◦(

1

),

n

→ ∞.

(4)

La preuve de ce résultat repose sur un procédé d’extraction diagonale : l’extraction des échelles utilise le cas radial [5]

à travers le réarrangement de Schwarzun deun tandis que celle des coeurs de concentraction se base essentiellement sur des arguments de capacité. Nous renvoyons à la version en anglais ci-dessous pour les définitions et les idées de la preuve de ce résultat et à [6] pour des détails et des compléments.

1. Introduction

It is well known thatH1

(

R2

)

is continuously embedded in all Lebesgue spacesLp

(

R2

)

for 2p

<

∞, but not inL

(

R2

)

. On the other hand, it is also known (see for instance [1]) thatH1

(

R2

)

embeds inBMO

(

R2

)

L2

(

R2

)

, whereBMO

(

Rd

)

denotes the space of bounded mean oscillations which is the space of locally integrable functions f such that

f

BMOdef

=

sup

B

1

|

B

|

B

|

f

fB

|

dx

<

withfBdef

=

1

|

B

|

B

fdx

.

The above supremum being taken over the set of Euclidean balls B,| · |denoting the Lebesgue measure.

For the sake of geometric problems and the understanding of features of solutions to nonlinear partial differential equa- tions with exponential growth, we investigate in this paper the lack of compactness of Sobolev embedding ofH1

(

R2

)

in the Orlicz spaceL(R2

)

(defined below) which turns out not to be comparable withBMO

(R

2

)

(for a proof of this fact, one can consult [5]). Remark that the lack of compactness of H˙1

(

Rd

)

BMO

(

Rd

)

was characterized in [2] using a wavelet-based profile decomposition.

Note that in higher dimension, are available several works that highlight the role of the study of the lack of compactness in critical Sobolev embedding to the description of solutions of nonlinear partial differential equations. Among others, one can mention [3,4,10,12,13,15,19].

Let us introduce the so-called Orlicz spaces on Rd (for a complete presentation and more details, we refer the reader to [17]).

Definition 1.Let

φ

:R+→R+ be a convex increasing function such that

(3)

φ (

0

) =

0

=

lim

s0+

φ (

s

),

lim

s→∞

φ (

s

) = ∞ .

We say that a measurable functionu:Rd→Cbelongs to Lφ if there exists

λ >

0 such that

φ (

|uλ|

) <

∞. We denote then

u

Lφ

=

inf

λ >

0

,

Rd

φ |

u

(

x

) | λ

dx

κ

,

(5)

where

κ

is the constant appearing in (7).

In what follows we shall fixd=2,

φ (

s

)

=es2−1 and denote the Orlicz spaceLφ byLendowed with the norm · L. The 2D critical Sobolev embedding in the Orlicz spaceLcan be stated as follows:

Proposition 1.

u

L

1

4

π

u

H1

.

(6)

Let us point out that the embedding (6) derives immediately from the following Trudinger–Moser inequality proved in [18]:

Proposition 2.

sup uH11

R2

e4π|u(x)|2

1

dx

:= κ < ∞,

(7)

and this is false for

α >

4

π

.

The embedding H1

Lis not compact at least for two reasons. The first reason is the lack of compactness at infinity.

A typical example is given byun

(

x

)

=

ϕ (

x+xn

)

where 0=

ϕ

Dand|xn| → ∞. The second reason is of concentration-type derived by P.-L. Lions [14] and J. Moser [16], and illustrated by the following fundamental example defined for

α >

0 (

α

→ ∞) by:

fα

(

x

) =

⎧ ⎪

⎪ ⎨

⎪ ⎪

0 if

|

x

|

1

,

log2απ|x| if eα

|

x

|

1

,

α

2π if

|

x

|

eα

,

which satisfies fαL14π as

α

→ ∞. The heart of this work is to prove that the lack of compactness of the Sobolev embedding

H1

R

2

L

R

2

can be reduced up to cores to the example by Moser. Before coming to the statement of the main theorem, let us introduce some definitions as in [8] and [5].

Definition 2. A scale is a sequence

α

:=

( α

n

)

of positive real numbers going to infinity, a core is a sequence x:=

(

xn

)

of points inR2 and a profile is a function

ψ

belonging to the set

P

:=

ψ

L2

R,

e2sds

; ψ

L2

(R), ψ

|]−∞,0]

=

0

.

Given two scales

α

,

α

˜, two cores x, ˜x and two profiles

ψ

,

ψ

˜, we shall say that the triplets

( α ,

x

, ψ)

and

( α

˜

,

x˜

, ψ)

˜ are orthogonal (in short

( α ,

x

, ψ)

( α

˜

,

x˜

, ψ)

˜ ) if

either

log

( α ˜

n

/ α

n

) → ∞ ,

(8)

or

α

˜n=

α

n and

log

|

xn

− ˜

xn

|

α

n

a

0 with

ψ

or

ψ ˜

null fors

<

a

.

(9)

Our result is as follows:

(4)

Theorem 1.Let

(

un

)

be a bounded sequence in H1

(

R2

)

such that un

0

,

lim sup

n→∞

un

L

=

A0

>

0 and lim

R→∞lim sup

n→∞

un

L(|x|>R)

=

0

.

(10) Then, there exist a sequence of scales

( α

(j)

)

, a sequence of cores

(

x(j)

)

and a sequence of profiles

(j)

)

such that the triplets

( α

(j)

,

x(j)

, ψ

(j)

)

are pairwise orthogonal and, up to a subsequence extraction, we have for all

1,

un

(

x

) =

j=1

α

n(j)

2

π ψ

(j)

log

|

x

x(nj)

| α

n(j)

+

r()n

(

x

),

lim sup

n→∞

r()n

L

→∞

−→

0

,

(11)

un

2L2

=

j=1

ψ

(j)

2

L2

+ ∇

r()n

2

L2

+ ◦ (

1

),

n

→ ∞ .

(12)

The elements used in our orthogonal asymptotic decomposition are completely different from the ones involving in the decomposition derived by P. Gérard in [8] in the framework of Sobolev embedding in Lebesgue spaces or by S. Jaffard in [11]

in the more general case of Riesz potential spaces.

2. Ideas of the proof

We just give some basic ideas of our strategy, and we refer the reader to [6] for more details and some complements. The proof of Theorem 1 is done in four steps. In the first step, according to Schwarz symmetrization, we are reduced to the study ofun the symmetric decreasing rearrangement ofun. SinceunH1rad

(

R2

)

and satisfies assumptions of Theorem 1.16 in [5], it can be written as an orthogonal asymptotic decomposition by means of elementary concentrations of type gn(j)

(

x

)

=

αn(j)

2π

ϕ

(j)

(

log|x| αn(1)

)

. Then in the second step, taking advantage of a cut-off argument, we reduce to gn(1) and extract the first core

(

x(n1)

)

and the first profile

ψ

(1) which leads to the extraction of the first element

αn(1)

2π

ψ

(1)

(

log|xx

(1) n | αn(j)

)

. This step constitutes the heart of the matter and relies on capacity arguments: the basic idea is to show that the mass does not scatter and is mainly concentrated around some point that will constitute the core. In the third step, we study the remainder term. If the limit of its Orlicz norm is null we stop the process. If not, we prove that this remainder term satisfies the same properties as the sequence start which allows us to extract a second elementary concentration concentrated around a second core

(

xn(2)

)

. Thereafter, we establish the property of orthogonality between the two first elementary concentrations and finally we prove that this process converges.

As it is mentioned above, one can reduce to studying the case of a nonnegative sequenceun satisfying un

(

x

) =

α

n

2

π ϕ

log

|

x

| α

n

.

(13)

Now, the heart of the matter is to extract cores and profiles and the key point in that process relies in the following lemma.

Lemma 1.There exist

δ

0

>

0and N∈Nsuch that for any nN there exists xnsuch that

En

B

xn

,

ebαn

δ

0A20

|

En

|,

(14)

where En:= {x∈R2; |un

(

x

)

|√

2

α

n

(

1−ε100

)

A0}, B

(

xn

,

ebαn

)

designates the ball of center xnand radiusebαnwith b=12

ε

0 and0

< ε

0

<

12.

Sketch of proof. We argue by contradiction. Hence, up to a subsequence extraction, we have for any

δ >

0,n∈Nandx∈R2

En

B

x

,

ebαn

δ

A20

|

En

|.

(15)

In particular, property (15) occurs for any ball centered at a point in Tn:=

(

ebαnZ

)

×

(

ebαnZ

)

. Since the ballsB

(

x

,

ebαn

)

constitute a covering of R2 when the points x describe Tn and each point of R2 belongs at most to four balls among Bn:= {B

(

x

,

ebαn

),

xTn}, we deduce that

un

2L2(R2)

1 4

B∈Bn

un

2L2(B)

.

(16)

Now, the idea is to get a contradiction by proving that for

δ

small enough the sum 14

B∈Bnun2L2(B)exceeds the energy of un. For this purpose, making use of capacity arguments we estimate the energy of un on the set B˜n of balls BBn

(5)

satisfying|EnB|e10αn. To do so, we take advantage of the fact that the values of|un|onBvary at least from√ 2

α

n

(

1− ε0

10

)

A0 onEnBto

2

α

n

(

1−ε20

)

A0on a set of Lebesgue measure|B2|, for allnNε0, where0 is an integer big enough which only depends on

ε

0. It follows by standard capacity arguments [9] that

un

2L2(B)

C

ε

0

2

ε

0

10

2

α

nA0

2 1 logeαn(12ε0)

|EnB|

C

ε

02A20

.

Hence,

4

un

2L2(R2)

#

(

B

˜

n

)

C

ε

20A20

.

(17)

But by (15), the covering ofR2 byBn and the fact that mass concentrated inEn is mainly due to balls ofB˜n, we necessarily have

#

(

B

˜

n

)

1 2

δ

A20

which yields a contradiction for

δ

small enough in view of (17). 2

To extract the profile, we first consider

ψ

n

(

y

, θ )

=

2π

αnvn

( α

ny

, θ )

where vn

(

s

, θ ) = ( τ

xnun

)

escos

θ,

essin

θ

andxn is given by Lemma 1. Using energy estimate, we deduce that

θ

ψ

n

0

,

y

ψ

n

g inL2

(

y

, θ ),

asn

→ ∞ ,

whereg only depends of yand is null for y0. Finally, we prove that 1

2

π

2π

0

ψ

n

(

y

, θ )

d

θψ (

y

) =

y 0

g

( τ )

d

τ ,

and that there exists an absolute constantC so that

ψ

L2C A0. References

[1] H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, Springer, 2011.

[2] H. Bahouri, A. Cohen, G. Koch, A general wavelet-based profile decomposition in the critical embedding of function spaces, Confluentes Mathe- matici 3 (3) (2011) 1–25.

[3] H. Bahouri, I. Gallagher, Weak stability of the set of global solutions to the Navier–Stokes equations, arXiv:1109.4043, 2011.

[4] H. Bahouri, P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, American Journal of Mathematics 121 (1999) 131–175.

[5] H. Bahouri, M. Majdoub, N. Masmoudi, On the lack of compactness in the 2D critical Sobolev embedding, Journal of Functional Analysis 260 (2011) 208–252.

[6] H. Bahouri, M. Majdoub, N. Masmoudi, Lack of compactness in the 2D critical Sobolev embedding, the general case, arXiv:1112.2998, 2011.

[7] H. Brezis, S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Communications in Partial Differential Equations 5 (1980) 773–789.

[8] P. Gérard, Description du défaut de compacité de l’injection de Sobolev, ESAIM: Control, Optimisation and Calculus of Variations 3 (1998) 213–233, http://www.emath.fr/cocv/(electronic).

[9] A. Henrot, M. Pierre, Variations et optimisation de formes, Mathématiques et Applications, vol. 48, Springer, 2005.

[10] S. Ibrahim, M. Majdoub, Comparaison des ondes linéaires et non linéaires à coefficients variables, Bulletin de la Société Mathématique de Belgique 10 (2003) 299–312.

[11] S. Jaffard, Analysis of the lack of compactness in the critical Sobolev embeddings, Journal of Functional Analysis 161 (1999) 384–396.

[12] C.E. Kenig, F. Merle, Global well-posedness, scattering and blow-up for the energy critical focusing non-linear wave equation, Acta Mathematica 201 (2008) 147–212.

[13] S. Keraani, On the defect of compactness for the Strichartz estimates of the Shrödinger equation, Journal of Differential Equations 175 (2001) 353–392.

[14] P.-L. Lions, The concentration–compactness principle in the calculus of variations. The limit case. I, Revista Matemática Iberoamericana 1 (1985) 145–

201.

[15] M. Majdoub, Qualitative study of the critical wave equation with a subcritical perturbation, Journal of Mathematics Analysis and Applications 301 (2005) 354–365.

[16] J. Moser, A sharp form of an inequality of N. Trudinger, Indiana University Mathematics Journal 20 (1971) 1077–1092.

[17] M.-M. Rao, Z.-D. Ren, Applications of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 250, Marcel Dekker Inc., 2002.

[18] B. Ruf, A sharp Trudinger–Moser type inequality for unbounded domains inR2, Journal of Functional Analysis 219 (2005) 340–367.

[19] M. Struwe, Critical points of embeddings ofH10,ninto Orlicz spaces, Annales de l’Institut Henri Poincaré Analyse Non Linéaire 5 (1988) 425–464.

Références

Documents relatifs

- We study the structure of the critical set generated by the general mountain pass principle of Ghoussoub-Preiss.. In

1 Andrzej Hulanicki : A functional calculus for Rockland operators on nilpotent Lie groups (1984) 2 Daryl Geller, Azita Mayeli : Continuous wavelets and frames on stratified Lie

The study of the lack of compactness in the critical embedding of Sobolev spaces supplies us with a large amount of information about solutions of nonlinear partial

Firstly, we prove the global well-posedness and the scattering in the energy space both in the subcritical and critical cases, and secondly we compare the evolution of this

Universit´ e de Tunis El Manar, Facult´ e des Sciences de Tunis, D´ epartement de Math´ ematiquess, 2092, Tunis, Tunisie. E-mail address

In Section 4 we deal with the existence of radial extremals with critical exponent and finally in Section 5 we prove that there exists a radial extremal for every ball if 1 &lt; q

called concentration-compactness principle- was shown, indicating, roughly speaking, that for general classes of minimization problems with constraints in unbounded

domain in JR..2, and showed that if the set of local maximum points of the boundary datum consists of N connected components, then the interior critical.. points