• Aucun résultat trouvé

in fulfilment of the requirements of the PhD Degree in Biological Sciences (ULB - “Docteur en Sciences Biologique”) and in Biologie (VUB)

N/A
N/A
Protected

Academic year: 2021

Partager "in fulfilment of the requirements of the PhD Degree in Biological Sciences (ULB - “Docteur en Sciences Biologique”) and in Biologie (VUB) "

Copied!
142
0
0

Texte intégral

(1)

0

Mangrove propagule herbivory - responses and balancing interactions

Propagule herbivory may not be a threat for mangrove establishment and early growth

Thesis submitted by Van Nedervelde Fleur

in fulfilment of the requirements of the PhD Degree in Biological Sciences (ULB - “Docteur en Sciences Biologique”) and in Biologie (VUB)

Academic year 2018-2019

Supervisors: Professor Dahdouh-Guebas Farid (Université libre de

Bruxelles)

and Professor Koedam Nico (Vrij Universiteit Brussel)

(2)

Van Nedervelde Fleur

E-mail address: fleur@vannedervelde.be Phone: 0032485582963

Systems ecology and resources management Université Libre de Bruxelles

Promotors:

Prof. Dr. Farid Dahdouh-Guebas

Systems ecology and resources management Université Libre de Bruxelles

Prof. Dr. Nico Koedam

Laboratory of Plant Biology and Nature Management Vrije Universiteit Brussel

Jury members:

Prof. Dr. Olivier Hardy Prof. Dr. Ludwig Triest

Prof. Dr. Jean-Claude Grégoire Dr. Sunita Janssenswillen Prof. Dr. Sara Fratini

Prof. Dr. Satyanarayana Behara

Photographs credit: Van Nedervelde Fleur

(3)

2

(4)

Chapter 1a

Summary p.5 Résumé p.7 Samenvatting p.9

Contents

References p.121 BEST OFF p.120

CHAPTER 5: GENERAL DISCUSSION AND PERSPECTIVES

Summary of findings p.107

Extrinsic and intrinsic factors p.115 Limits, future research perspectives and

applications p.117

Evidence and characteristics of tolerance p.113 Costs and benefits of herbivory on propagules

p.109

Propagule herbivory may not be a threat for mangrove establishment and early growth p.108

CHAPTER 4: CRAB HERBIVORY What regulates crab herbivory on mangrove

propagules? p.87 CHAPTER 1: INTRODUCTION

Research justifications and general objectives p.34

Once upon a time mangrove propagule p.15 Let’s disperse in the mangrove forest while

propagule predators are around p.18 Establishment and Seedling-Stalk growth p.31 Lived normally even after damage: tolerance, a

stable resistance p.33

Framework objectives p.38

CHAPTER 3: INSECT HERBIVORY AND PROPAGULE SURVIVAL

CHAPTER 2: INSECT HERBIVORY AND PROPAGULE ESTABLISHMENT

Mangrove propagules stand tolerant to insect infestation by efficiently bypassing necrosed tissues when forming adventitious roots. p.41

Boring insect herbivory, no worries, Rhizophora

mangle recovers. p.65

(5)

4

(6)

Summary

One of the most critical periods in a plant’s life cycle is seedling establishment. This is even more true for mangrove seedlings that immediately after abscission have to deal with high salinity, soil hypoxia, wave action and submergence by tides. Next to abiotic constraints, mangrove propagules are commonly attacked and consumed by herbivores (propagule predators).

Part one: In Florida (USA), several insects feed on Rhizophora mangle. The most represented insect herbivore in our study region is Coccotrypes rhizophorae, a Scolytinae of about 2 millimeters long. It infests exclusively Rhizophora mangle propagules and juveniles, in our study region, by digging chambers, feeding on internal tissues and raising offspring inside. C.

rhizophorae is known to be a threat to mangrove regeneration. Nevertheless, R. mangle has a mechanism of defence, propagules may react to insect attack by producing adventitious roots just above necrosed tissues. We focused our study on this phenomenon. More specifically, we examined whether development of induced roots above an attack could offer infested propagules better chances to establish and survive (several months in light and shade in natural field conditions) (Chapter 2). In addition, we investigated how early growth (one year under controlled greenhouse conditions) could be impacted by insect damage and presence of newly induced roots (Chapter 3). Induced roots could replace normal roots and make establishment possible, even for highly damaged propagules. They increased the chances of establishment and survival of infested propagules. However, some propagules that were attacked and only slightly damaged did not form induced roots but also survived and established. Moreover, early growth is affected differentially depending on damage intensity and presence or absence of induced roots. Globally, the juvenile growth rate was inversely proportional to the amount of damage. This could be compensated by presence of induced roots, but it was not always the case. Indeed, compensation depended on which part of the propagule was attacked. Damage located on the upper part of a propagule (towards the plumule) tended to have stronger impact on early growth. Following those results, we conclude that induced adventitious roots may replace initial and / or normal roots. In certain conditions they offer to infested propagules the ability to survive, establish and grow in a same way as non-infested propagules. In that context, we can confirm that those propagules are then tolerant to insect herbivory.

Hence, depending on propagule availability, tolerance ability and degree of C. rhizophorae

infestation, the insect may be not a major threat for R. mangle regeneration.

(7)

6

Part two: Crabs play a major role in mangrove ecosystems. In Gazi Bay (Kenya), some herbivorous crab families (e.g. Sesarmidae, Gecarcinidae) are known to consume propagules.

This herbivory can affect mangrove regeneration in natural and restored stands. Crab herbivory on propagules may be affected by many biotic and abiotic factors. We examined how some of the factors could determine the herbivory behavior of two cab species (Neosarmatium africanum and Neosarmatium smithi) and how those factors could stabilize herbivore- vegetation mutual interactions by answering five questions (Chapter 4). We tested whether:

(1) crab density influences propagule herbivory rate; (2) crab size influences food competition and herbivory rate; (3) crabs depredate at different rates according to propagule and canopy cover species; (4) vegetation density is correlated with crab density; and (5) food preferences of herbivorous crabs are determined by size, shape and nutritional value. We found that (1) propagule herbivory rate was positively correlated to crab density. (2) Crab competition abilities were unrelated to their size. (3) Avicennia marina propagules were removed more quickly than Ceriops tagal except under C. tagal canopies. (4) Crab density was negatively correlated with the density of A. marina trees and pneumatophores. (5) Crabs prefer small items with a lower C:N ratio.

There is a mutual relationship between stand characteristics and crab fauna, where stand composition and density influence predation and crab density, crab density impacts predation rates and crab size does not influence competition for mangrove propagules. Consequently, the mutual relationship between vegetation and crab populations seems to be important for forest restoration success and management.

We conclude that this study gives answers on how herbivore-propagule mutual relationships

are stabilized with tolerance, escape resistances and by intrinsic / extrinsic factors. However,

more research is required to investigate how these herbivore-propagule interactions may evolve

under increasing anthropic impacts, climate change and whether herbivore-propagule

interactions are altered by these impacts and changes.

(8)

Résumé

Une des périodes les plus critiques pour les plantes est l’établissement des jeunes plants. Cela est d’autant plus vrai pour les plantules de mangrove qui doivent, juste après leur abscission, gérer une haute salinité, un sol hypoxique, le courant engendré par les vagues et les marées. En plus des contraintes abiotiques, les propagules des mangroves sont souvent attaquées et mangées par des herbivores.

Partie une: En Floride (USA), plusieurs insectes se nourrissent de Rhizophora mangle.

L’insecte herbivore le plus représenté dans notre région d’étude est Coccotrypes rhizophorae, un Scolytinae d’environ 2 millimètres de long. Il infeste exclusivement les propagules et juvéniles de Rhizophora mangle, dans notre région d’étude, en creusant des galeries, en mangeant les tissues internes et en pondant ses œufs à l’intérieur. C. rhizophorae est connu pour être une menace à la régénération des mangroves. Cependant, R. mangle a un mécanisme de défense, les propagules peuvent réagir à l’attaque de ces insectes en développant des racines adventives juste au-dessus des tissues nécrosés par l’insecte. Nous avons focalisé notre étude sur ce phénomène. Plus spécifiquement, nous avons examiné si le développement de ces racines adventives au-dessus des dommages d’insectes peut offrir aux propagules infestées de meilleures chances de s’établir et de survivre (observations sur le terrain et sur plusieurs mois dans des conditions naturelles d’ombre et d’ensoleillement) (Chapitre 2).

De plus, nous avons étudié comment le début de la croissance (contrôle sur un an dans des

conditions artificielles sous serre) peut être impactée par les dommages d’insectes et par la

présence de racines adventives (Chapitre 3). Les racines adventives induites par les dommages

d’insectes peuvent remplacer les racines normales et rendre possible l’enracinement, même

pour des propagules fortement endommagées par les insectes. Ces racines augmentent les

chances d’établissement et de survie des propagules infestées. Cependant, quelques propagules

infestées ont survécu et se sont établies sans développer de racines adventives mais ces

propagules n’étaient que peu endommagées. De plus, le début de la croissance est affecté de

manière différente selon l’intensité des dommages et la présence ou absence de racines

adventives. Globalement, le taux de croissance des juvéniles était inversement proportionnel à

la quantité de dommages. Cela peut être compensé par la présence de racines adventives, mais

ce n’était pas toujours le cas. En effet, la compensation dépend de la partie attaquée. Les

dommages localisés dans la partie supérieure de la propagule (près de la plumule) tendent à

avoir un impact plus grand sur le début de la croissance. D’après nos résultats, nous pouvons

(9)

8

conclure que les racines adventives induites par l’attaque peuvent remplacer les racines initiales et/ou normales. Dans certaines conditions, ces racines offrent, aux propagules infestées, la possibilité de survivre, de s’établir et de grandir de la même manière que les propagules non infestées. Dans ce contexte, nous pouvons affirmer que ces propagules sont tolérantes à l’herbivorie de cet insecte. Donc selon la disponibilité des propagules, leur habilité à être tolérante et le degré d’infestation de ces insectes, C. rhizophorae n’est peut-être pas une menace majeur pour la régénération de R. mangle.

Partie deux: À Gazi Bay (Kenya), certaines familles de crabes herbivores (e.g. Sesarmidae, Gecarcinidae) sont connues pour consommer des propagules. Cette herbivorie peut affecter la régénération des mangroves dans des forêts naturelles et restaurées. L’herbivorie des crabes sur les propagules peut être affectée par de nombreux facteurs tant biotiques qu’abiotiques.

Nous avons examiné comment certains de ces facteurs peuvent déterminer le comportement

d’herbivorie de deux espèces de crabes (Neosarmatium africanum and Neosarmatium smithi)

et comment ces facteurs peuvent stabiliser les interactions entre les herbivores et la végétation

en répondant à cinq questions (Chapitre 4). Nous avons testé si : (1) la densité des crabes

influence le taux d’herbivorie sur les propagules ; (2) la taille des crabes influence la

compétition pour la nourriture et le taux d’herbivorie ; (3) la consommation des crabes est

influencée par les espèces de propagules et de la couverture végétale ; (4) la densité de

végétation est corrélée avec la densité de crabes ; et (5) les préférences alimentaires des crabes

herbivores sont déterminées par la taille, la forme et la valeur nutritives des aliments. Nous

avons trouvé que (1) le taux d’herbivorie sur les propagules est positivement corrélé à la densité

de crabes. (2) La compétitivité des crabes n’est pas corrélée à leur taille. (3) Les propagules

d’Avicennia marina sont plus rapidement déplacées que celles de Ceriops tagal sauf sous

couvert de C. tagal. (4) La densité des crabes est négativement corrélée à la densité des arbres

d’A. marina et de ses pneumatophores. (5) Les crabes préfèrent les aliments de petites tailles

avec un ratio C:N faible. Nous avons trouvé qu’il y a une relation mutuelle entre la structure

de la végétation et les populations de crabes. La compréhension de cette relation mutuelle peut

être importante pour le succès et la gestion des forêts restaurées. Cette étude nous apprend

comment les interactions mutuelles entre herbivores et propagules se stabilisent avec des

mécanismes tels que la tolérance et la fuite ainsi que avec des facteurs intrinsèques et

extrinsèques. Cependant, des études supplémentaires sont requises pour comprendre comment

ces interactions entre herbivores et propagules peuvent évoluer avec les variations dues à la

pression anthropique et aux changements climatiques.

(10)

Samenvatting

Eén van de meest kritische periodes voor planten is de vestiging van de zaailingen. Dit is nog meer het geval voor zaailingen van mangroven, die meteen na abscissie kampen met hoge saliniteit, hypoxie in de bodem, golfenergie en getijden. Naast abiotische factoren, worden mangrovenpropagulen ook vaak aangevallen en opgegeten door herbivoren.

Deel I: In Florida (VS) voeden verscheidene insecten zich met Rhizophora mangle. De meest

voorkomende van de herbivore insecten in de bestudeerde regio is Coccotrypes rhizophorae,

een ongeveer 2 millimeter lange Scolytinae. Deze tast bijna uitsluitend Rhizophora mangle

propagulen en jonge plantjes aan, door gangen te graven in het weefsel, intern weefsel te eten

en zich binnen de propagule voort te planten. C. rhizophorae staat bekend als een bedreiging

voor de regeneratie van mangroven. Nochtans heeft R. mangle een tolerantie en

verdedigingsmechanisme. Propagulen kunnen op de aanval van insecten reageren door net

boven genecrotiseerd weefsel adventieve wortels te produceren. Onze studie richt zich op dit

fenomeen. Meer specifiek hebben wij onderzocht of de ontwikkeling van geïnduceerde wortels

boven een plaats op de propagule van een insectenaanval meer kans geeft aan aangetaste

propagulen zich te vestigen en te overleven (waarneming gedurende meerdere maanden in licht

en schaduw, natuurlijke veldomstandigheden) (Hoofdstuk 2). Tevens hebben wij bestudeerd

hoe de vroege groei (één jaar onder gecontroleerde omstandigheden in een kas in België)

beïnvloed kan worden door insectenschade en de aanwezigheid van recent geïnduceerde

wortels (Hoofdstuk 3). Geïnduceerde wortels kunnen normale wortels vervangen en de

vestiging mogelijk maken, zelfs voor zeer beschadigde propagulen. Dit vergrootte de kans op

vestiging en overleving van de aangetaste propagulen. Sommige aangetaste propagulen die

geen geïnduceerde wortels vormden, overleefden en vestigden zich daarentegen ook maar in

dat geval waren ze slechts licht beschadigd. Bovendien wordt de vroege groei differentieel

beïnvloed, afhankelijk van de intensiteit van de schade en van de aanwezigheid of afwezigheid

van geïnduceerde wortels. Over het algemeen was de juveniele groeisnelheid omgekeerd

evenredig met de hoeveelheid schade. Dit kon gecompenseerd worden door de aanwezigheid

van geïnduceerde wortels, maar dat was niet altijd het geval. De compensatie hing af van het

deel van de propagule dat aangevallen werd. Schade aan het bovenste deel van de propagule

(bij de bladaanleg, pluimpje) heeft vaak meer impact op de vroege groei. Op basis van deze

resultaten concluderen wij dat geïnduceerde incidentele wortels oorspronkelijke en/of normale

wortels kunnen vervangen. In sommige omstandigheden geven ze aangetaste propagulen de

(11)

10

mogelijkheid op dezelfde manier te overleven als niet-aangetaste propagulen, zich te vestigen en te groeien. In deze context kunnen we bevestigen dat deze propagulen tolerant zijn t.o.

herbivore insecten. Daarom vormt het insect, afhankelijk van de beschikbaarheidsgraad van propagulen, van hun tolerantievermogen en van de infestatiegraad van C. rhizophorae, geen grote bedreiging voor de regeneratie van R. mangle in de onderzoek context van dit werk.

Deel II: Krabben spelen een belangrijke rol in veel mangrove-ecosystemen. Voor het veel bestudeerde gebied in Gazi Bay (Kenia), weten we dat verscheidene families (e.g. Sesarmidae, Gecarcinidae) van herbivore of omnivore krabben zich voeden met propagulen. De herbivorie kan de mangroveregeneratie van natuurlijke en herstelde mangrovebestanden beïnvloeden.

Deze krabbensoorten (die ook op propagulen foerageren) ondergaan zelf diverse invloeden van de in het systeem heersende biotische en abiotische factoren. Door vijf vragen te beantwoorden, bestudeerden wij hoe sommige van de factoren het herbivorie gedrag van twee krabbensoorten (Neosarmatium africanum en Neosarmatium smithi) kunnen bepalen en hoe die factoren de wederzijdse interactie tussen herbivoor en vegetatie kunnen stabiliseren (Hoofdstuk 4). Wij hebben getest of: (1) krabdensiteit de propagule herbivoorproportie beïnvloedt; (2) krabgrootte concurrentie en herbivoorproportie beïnvloedt; (3) schade door krabben op verschillende manieren gebeurt naargelang de verschillende propagulensoorten die gegeten worden en soorten die de boomlaag vormen; (4) vegetatiedensiteit gecorreleerd is met krabdensiteit; (5) voedingsvoorkeur van herbivore krabben bepaald wordt door grootte, vorm en nutritionele waarde (C:N ratio). We hebben geconstateerd dat (1) de proportie van herbivorie op propagulen positief gecorreleerd is met krabbendensiteit; (2) het competitief vermogen van krabben (voor herbivorie) geen verband heeft met hun grootte; (3) Avicennia marina propagulen sneller geconsumeerd worden dan die van Ceriops tagal, behalve onder bedekking van C. tagal zelf (boomlaag); (4) krabbendensiteit negatief gecorreleerd is met de densiteit van A. marina bomen en pneumatoforen (ademwortels); (5) krabben een voorkeur hebben voor kleine items met een lagere C:N ratio.

Er bestaat een wederzijdse verhouding tussen groepskenmerken en de krabbenfauna. Waar de

groepssamenstelling- en densiteit de predatie en krabbendensiteit beïnvloeden, heeft

krabbendensiteit invloed op de intensiteit van predatie. Krabgrootte heeft geen impact op

competitie voor mangrove propagulen. Bijgevolg zou de wederzijdse verhouding tussen

vegetatie en krabbenpopulatie belangrijk kunnen zijn voor het succes en het beheer van

bosrestauratie.

(12)

Deze studie geeft inzicht in de wederzijdse verhouding tussen herbivoren en propagulen en hoe deze gestabiliseerd kan worden door tolerantie, ontsnappingsmechanismen, intrinsieke en extrinsieke factoren. Meer onderzoek is echter vereist om te bepalen hoe de interactie tussen herbivoren en propagulen zou kunnen evolueren met verandering als gevolg van menselijke druk en klimaatverandering, en of de aard en de uitkomst van de interacties zelf wijzigen t.g.v.

de milieuverandering.

(13)

12

(14)

Pour maman

(15)

14

Introduction

Partially adapted from publication and manuscripts of chapters 2, 3 and 4.

Rhizophora mangle, Indian River, Florida

Chapter 1

(16)

Once upon a time there was a mangrove propagule

Sexual reproduction is one of the principal mechanisms that determines most living beings. It is one of the major trigger of evolution. Every living organism descends from parent or parents through vegetative or sexual reproduction. Plants are not an exception; certain species may use up to much of their storage products to increase fitness and some may die thereafter. Fitness development needs energy allocation from adult plants and progeny has not always the possibility to develop into adults. Indeed, one of the most critical phases for plants is seed dispersal and seedling establishment. Seeds need specific conditions to disperse, germinate, establish and grow. This period is crucial especially as it structures future vegetation. This statement is even more true in extreme environments limited in seed requirements such as humidity, temperature, light, space and / or nutrient availability.

Mangrove ecosystems are associated with extreme conditions since they grow along the land- sea interface in bays, estuaries, lagoons, and backwaters in tropical and subtropical regions (Mukherjee et al., 2014). This habitat between land and sea is unbalanced: salinity, soil conditions, light intensity and competition vary according to season, nyctemeral period, topography, tidal regime and phase, structure of the existing vegetation (Krauss et al., 2008) and water currents (Van der Stocken et al., 2013; 2015). Because of these conditions, many mangrove tree species have developed vivipary or cryptovivipary (Ball, 1988; Lugo and Snedaker, 1974; Macnae, 1969; Tomlinson and Cox, 2000, Tomlinson, 2016) and hence seed germination in saline environments is avoided (Joshi et al., 1972). Viviparous mangrove species have embryos that germinate and accumulate reserves, without a period of dormancy, while hanging on the parent tree before abscission and dispersal as hydrochorous propagules - the dispersal unit. In plant science, the term “propagule” is defined as: any structure that functions in propagation and dispersal as spore or seed (Allaby, 2010).

In mangrove ecosystems it is similar except that the dispersal unit of viviparous trees are

actually seedlings (Fig. 1.1). Since we did not study the fate of propagule while it is still

attached to the tree, in the rest of this dissertation, the term propagule refers to the dispersal

unit between abscission and establishment, the latter of which occurs when the plant anchors

into soil and does not disperse anymore. We assumed that propagules were established and

become seedlings when they were anchored and had at least two unfurled leaves. The

Rhizophoraceae family has the most pronounced vivipary amongst mangroves (Cheeseman,

2012), their propagules are mostly structured by a large elongated cylindrical hypocotyl topped

(17)

16

by a short plumule (embryonic stem, cotyledons that remain tied to fruit during abscission) and ended by a radicle (embryonic root) (Tomlinson and Cox, 2000; Tomlinson, 2016) (Fig. 1.1;

Table 1.1). The Avicennia genus (Acanthaceae family) is cryptoviviparous, develops smaller propagules mostly structured by two large circular interlocked cotyledons surrounding the first tiny leaves, extended by a small hypocotyl ended by a radicle (embryonic root) and entirely enclosed by a fleeting periderm (Fig. 1.1, Table 1.1). Those morphologies are similar to juvenile plants developed from a seed after abscission, called seedling in plant science terms (Allaby, 2010) and that usually are, by this time, established.

The Rhizophoraceae family has some of the largest sized propagules (Fig. 1.1, Table 1.1) and are basically composed by four types of tissue from interior to exterior: the pith, the vascular tissue, the cortex and the epidermis. Pith as well as cortex cells store abundant starch grains (Tomlinson and Cox, 2000; Tonné et al., 2016), the common energy reserve of green plants.

Similarly, cotyledons of Avicennia genus, store a large quantity of reserve. This reserve and

stored water are used for propagule survival during dispersal (Robert et al., 2015) and early

growth of established seedlings (Smith and Snedaker, 2000). Quantity of reserve, size (Robert

et al., 2015), morphology characteristics and density (Van der Stocken et al., 2019) provide to

propagules a relatively large dispersal distance, abilities to survive and establish in unbalanced

habitat. Nonetheless, for a small propagule as the ones of A. germinans (L.) L., establishment

and seedling productivity are better if the period of flotation is short (Simpson et al., 2017).

(18)

Figure 1.1: Proportional pictures of propagules; a. Acanthaceae family (Avicennia marina); b.

Rhizophoraceae family (Ceriops tagal) in Gazi Bay, Kenya and c. Rhizophoraceae family (Rhizophora mangle) from Fort Pierce, Florida. #139: individual identification number.

c a

b

4 cm

(19)

18

Let’s disperse in the mangrove forest while propagule predators are around.

Just after abscission, propagules may either self-plant in the soil depending on soil texture (soft, hard) and obstacles as tree branches and areal root network (Fig. 1.2) that can change velocity and orientation of fusiform propagules from the Rhizophoraceae family. Or they can fall directly in water depending on intertidal position of parent tree and tidal period when they abscise.

Figure 1.2: High dense network of pneumatophores (aerial roots); a. pencil roots of A. marina and b.

prop roots of R. mucronata in Gazi Bay, Kenya

Propagules which have not self-planted can lay on the forest floor and be transported by tidal currents if nothing withholds them. Hydrochorous propagules comprise a relatively high proportions of intercellular air spaces (Tonné et al., 2016) that provide them with floating abilities that drives dispersal.

Dispersal orientation and distance may depend on currents, winds, plant obstacles, propagule morphology and density (Van der Stocken et al., 2013; 2015) (Fig. 1.1, Table 1.1). This period is critical; propagules may never encounter a suitable habitat and the outcome of dispersal may be affected by abiotic factors, e.g. aridity / drought, salinity (Krauss et al., 2008), sediment biogeochemistry (Kristensen et al., 2008), tidal inundation (Gilman et al., 2008), topography (Di Nitto et al., 2008) and biotic factors (Lee, 1999), e.g. the vegetation assemblage (Berger et al., 2008), anthropogenic pressure (Walters et al., 2008) and interactions with fauna (Cannicci et al., 2008) (Fig. 1.3).

Herbivores have a greater impact on seeds and seedlings than they have on adult plants.

Seedlings are more vulnerable since they allocate more resources to rapid establishment and early growth than they do to defence (Duthoit, 1964; Dirzo and Harper, 1980; Fenner et al.,

a b

(20)

1999). Additionally, the same amount of damage has a greater influence on small entities, as the biomass removed is disproportional (loc. cit.) and has more risk to affect vital tissues or organs such as unique apical meristem or root-shoot connections.

Despite a large reserve storage, mangrove propagules have a low nutritive value, above the

critical value of C: N ratio (17: 1) considered to be under the nutritional requirement (Russel-

Hunter, 1970) and contain antinutritive tannins (Table 1.1). However, mangrove propagules

are commonly depredated by molluscs and arthropods (crabs, insects) (Table 1.1) (Cannicci et

al., 2008; Dahdouh-Guebas et al., 2011).

(21)

20

Figure 1.3: Abiotic and biotic factors affect adult tree productivity, propagule dispersal, establishment and early growth of seedlings in a mangrove forest with an emphasis on beneficial and damaging interactions with fauna; bolded boxes are factors affecting mangrove ecosystems; factors in bolded orange are faunal impacts; non-bolded boxes are stages of mangrove life cycle; grey arrows show the life cycle path and black arrows indicate the direction of influences. We took the example of a Rhizophora sp. but it is applicable to all viviparous mangrove species. Sources: [1] Kristensen and Alongi, 2006, [2] Kristensen, 2008, [3] McNae, 1968, [4] Cannicci et al., 2009, [5,6] Lee, 1998, 2008, [7] Cannicci et al., 2008, [8] Bosire et al., 2005, [9] Cannicci et al., 2008, [10] Sousa et al., 2003a, [11]

Krauss et al., 2008, [12] Anderson and Lee, 1995, [13] Tong et al., 2003, [14] Smith and Snedaker, 2000, [14a,b] Sousa et al., 2003a,b, [15] Robertson et al., 1990, [16] Minchinton and Dalby-Ball, 2001, [17] Krauss and Allen, 2003a, [18] Van der Stocken et al., 2015, [19] Di Nitto et al., 2008, [20]

Rabinowitz, 1978a, [21] Cheeseman, 2012, [22] Van der Stocken et al., 2015, [23] Onuf et al., 1977,

[24] Elster et al., 1999, [25] Brook, 2001, [26] Van der Stocken et al., 2013, [27] Robert et al., 2015,

[28] Nagelkerken et al., 2008, [29] Robert, 2012, [30] Ellison and Farnworth, 1997, [31] Hoppe-Speer

et al., 2011, [32] Sivasothi, 2000, [33] Beever et al., 1979, [34] Berger et al., 2008

(22)
(23)

22

Herbivory on mangrove propagules may affect their survival if more than 50% of the hypocotyl are damaged, if one of the apical meristems (plumule or radicule) is lost or if propagule is buried in a crab burrow (in case of crab herbivory) (Smith, 1987a). In case of a smaller proportion of damage, initial growth of mangrove seedlings may be negatively affected by the reduction of biomass and energy reserves of hypocotyl or cotyledons (Robertson et al., 1990;

Minchinson and Dalby-Ball, 2001; Krauss and Allen, 2003a; Sousa et al., 2003a). Since establishment is a crucial point in a species’ life cycle (Hulme, 1994; Scheidel and Bruelheide, 2005), seedling eaters have a pronounced impact on the composition of plant communities (Crawley, 1989; Hulme, 1994). It was proved that herbivory on mangrove propagules can affect mangrove fitness (Onuf et al., 1977; Rabinowitz, 1977; Robertson et al., 1990; Clarcke, 1992; Farnsworth and Ellison, 1997; Elster et al., 1999; Brook 2001; Minchinton and Dalby- Ball 2001; Sousa et al., 2003 a, b) and can, under certain conditions, affect considerably mangrove regeneration (Farnworth and Ellison, 1997; Dahdouh-Guebas et al., 1998; Sousa et al., 2003a,b).

Table 1.1 Characteristics of the three mangrove propagule genera studied and related herbivory pressure. We have specific data for R. mangle, R. mucronata, C. tagal and A. marina (our research species) and if there are no data on specific species, we extend research to R. stylosa and A. germinans for Rhizophora spp. and Avicennia spp. respectively. If there are no data on propagules, we extend research on leaves, pointed out with brackets.

Sources: [1] Kathiresan and Bingham, 2001, [*] personal observations or data see chapters 3 and 4, [2]

De Ryck et al., 2012, [3] McKee, 1995c, [4] Erickson et al., 2004, [5] Micheli, 1993a, [6] Skov and

Hartnoll, 2002, [7] Smith, 1987a, [8] Basak et al., 1998, [9] Giddins et al., 1986, [10] Camilleri, 1989,

[11a,b] Sousa et al., 2003a,b, [12] Farnsworth and Ellison, 1997, [13] Dahdouh-Guebas et al., 1998,

[14] Dahdouh-Guebas et al., 1997, [15] Robertson et al., 1990, [16] refer to Chapter 4, [17] Minchinton

and Dalby-Ball, 2001, [18] Clarke, 1992, [19] Elster et al., 1999.

(24)

Characteristics Propagule species

Rhizophora spp. Ceriops spp. Avicennia spp.

Family Rhizophoraceae Rhizophoraceae Acanthaceae

Vivipary True vivipary [1] True vivipary [1] Cryptovivipary (the embryo displays no dormancy period) [1]

Shape Elongated cylinder-shaped [*] Elongated cylinder-shaped [*] Roughly spherical to ovoid, flattened with one rounded side and one flatter side [*]

Fresh weight (g) Rhizophara mangle 20,7 (SD: 6.5) [*];

Rhizophara mucronata 68.5 (SD: 10.6) [2] Ceriops tagal 7.6 (SD: 1.5) [*] Avicennia marina 3.5 (SD: 0.6) [*]

Nutritional value (C : N) R. mangle 72.6 (SE : 3.0) [3] ;

R.mangle (leaves) 36.4 [4] C. tagal (Leaves) 214 [4] – 87.89 (SE : 6.4) [5]

Avicennia germinans 36.6 (SE : 1.1) [3] ; A. germinans (leaves) 24.3 [4] ;

A.. marina (Leaves) 31.7 [5] - 46.22 (SE : 3.39) [5] -78.9 [6]

Nutritional value

(Carbohydrates) (%) Rhizophara stylosa 14.7 (SD: 4.0) [7] C. tagal 10.8 (SD: 2.6) [7] A. marina 55.6 (SD: 3.8) [7]

Nutritional value (Starch) (%) R. stylosa 23.5 (SD: 3.6) [7] C. tagal 12.0 (D: 5.9) [7] A. marina 5.9 (SD: 4.6) [7]

Gallotannins (mg) R. mangle 27 (SE: 1) [3] - A. germinans 7 (SE: 1) [3]

Condensed tannins (mg) R. mangle 646 (SE: 22) [3] - A. germinans 0 (SE: 0) [3]

Tannins (%) R. stylosa (leaves) 17.43 (SE : 2.33) [5] ; R. stylosa 14.7 (SD : 5.3) [7]

C. tagal (leaves) 11.4 (SE : 0.48) [5] ; C.tagal 24.9 (SD : 8.1) [7]

A. marina (leaves) 6.76 (SE: 0.42) [5];

A. marina 1.5 (SD: 1.0) [7]

Polyphenolics (lignin or

tannins (%, mg) R. mangle (Leaves) 23% [4];

R. mucronata (leaves) 20-23% [8] C. tagal (Leaves) 150 mg [9] A. marina (Leaves) 35 mg [10]

Herbivory pressure (%)

R. mangle 71 [*];

R.stylosa 50.4 (SD: 42.1) [7];

R. mangle 90 [11b];

R. mangle 2.1-92.9 [12];

R. mucronata 10.6 (SD: 0.8)- 20 (SD: 0.9) [13];

R. mucronata 8-86 [14]

C. tagal 0-100 [2];

C. tagal 71.7 (SD: 16.5) [7];

C. tagal 0.3-1.6 [9];

C. tagal 0.0-71.1 [12];

C. tagal 20 (SD: 1.5)- 42 (SD: 2.2) [13];

C. tagal 40-66 [14];

C. tagal 7.2-8.2 [15];

C.tagal up to 100 [16]

A. marina 96 (SD: 6.9) [7];

A. marina + / -60 [11a];

A.marina 14.6 (SD: 1.7)- 32 (SD: 2.1) [13];

A. marina 59.1-64.8 [15];

A. marina 69 [16];

A.marina up to 100 [17];

A. marina 42.1-43 [18];

A. germinans [19]

Related herbivores Crab [7],

Coccotrypes rhizophorae [11a, *];

beetles and crabs [12]

Crabs [2];

Crabs [7];

beetles and crabs [12];

insects and crabs [15];

Neosarmatium smithi [9, 16];

Crab [7];

Stenobaris sp. and Phytoliriomyza sp. [11a];

Insects and crabs [15];

Neosarmatium smithi and N. africanum [17];

Subtribe Phycitina [18];

(25)

24 Herbivorous insects

In mangrove ecosystems, herbivore insects commonly feed on leaves, on flowers / fruits / seeds or on wood (Cannicci et al., 2008). Leaf consumer impact plant productivity and reproductive output (Anderson and Lee, 1995; Tong et al., 2003; Burrows, 2003) as they reduce photosynthetic area (up to 13 % of R. stylosa and 36 % of A. marina leaf material loss (Burrows, 2003)), may affect key parts of a branch (e. g. apical buds) and leaves (Burrows, 2003) and induce reallocation of resources to compensate leaf area loss and cost of anti-herbivore defences (Cannicci et al., 2008). Insect borers damage plants by digging and consuming the inner tissues and cambium of bark, trunks, and branches of trees. This may induce leaf and branch fall in trees weakened structurally by material loss and decrease of sap translocation efficiency (Sauvard, 2004). This damage may make trees more vulnerable to disease and fungal infestation and may reduce tree productivity because of resource reallocation (Anderson and Lee, 1995; Tong et al., 2003). Herbivore insects may be the most damaging propagule consumers (Farnsworth and Ellison, 1997) especially boring insects that consume internal tissues (Farnsworth and Ellison, 1997, Minchinton and Dalby-Ball, 2001) (Fig. 1.4). Insect herbivory is common on mangrove propagules both before and after abscission (Robertson et al., 1990; Farnsworth and Ellison, 1997, Minchinton, 2006, Dahdouh-Guebas et al., 2011).

Depending on amount of damage, damage localisation and environmental resources availability (Robertson et al., 1990; Sousa et al., 2003a; Minchinton, 2006), herbivory may impact propagules and seedling survival, their establishment and early growth (Table 1.3).

Some studies reveal an insect herbivory pressure with up to 90% of killed propagules (Table 1.3) (Sousa et al., 2003b).

Figure 1.4: Coccotrypes rhizophorae a. female adult and two larvae; b. two larvae and c. gallery or chamber inside Rhizophora mangle propagule, a female adult and her progeny.

a b

c

0.4cm

0.2cm 0.1cm

(26)

Table 1.3: Literature overview of insect herbivory pressure on mangrove propagules.

Propagule species Herbivore species

(insect) Country Herbivory

pressure (%) Survival establishment Early growth references Rhizophora harrisonii Leechman Coccotrypes rhizophorae

Hopkins Panama 62.5 NA no effect NA Rabinowitz, 1977

Rhizophora mangle L. C. rhizophorae Florida NA NA decrease NA Onuf et al., 1977

Avicennia marina (Forssk.) Vierh.

Insect borers Australia

59.1-64.8 no effect NA decrease

Robertson et al., 1990

Rhizophora stylosa Griff. 2.1-33.5 no effect NA no effect

Ceriops tagal (Perr.) C.B. Rob. 7.2-8.2 decrease NA NA

Rhizophora apiculata Blume 6.3-24.7 NA NA NA

For additional mangrove species see Robertson et al., 1990

A. marina Subtribe Phycitina Australia 42.1-43 decrease NA NA Clarke, 1992

R. mangle Beetle New world 2.9-92.9

NA NA NA Farnsworth and Ellison,

1997

C. tagal Beetle, lepidopteran Vanuatu,

Australia 3.0-71.1

A. marina Lepidopteran Africa 10-90

Rhizophora mucronata Lam. Beetle Micronesi

a 0-66.1

For additional mangrove species see Farnsworth and Ellison, 1997

Avicennia germinans L. Junonia evarete Cramer Colombia Up to 100 decrease decrease NA Elster et al., 1999

R. stylosa Coccotrypes fallax

Eggers Australia NA decrease NA Brook, 2001

A.marina NA Australia 69 no effect no effect decrease Minchinton and Dalby-Ball,

2001 Bruguiera gymnorrhiza (L.)

Savigny Hawaii 93 no effect no effect decrease Krauss and Allen, 2003a

R. mangle C. rhizophorae

Panama

90 decrease decrease decrease

Sousa, 2003a, b Laguncularia racemosa (L.) C.F.

Gaertn. + / -40 decrease decrease no effect

A. marina Stenobaris sp. and

Phytoliriomyza sp. + / -60 decrease decrease decrease

R. mangle C. rhizophorae Mexico + / - 80 decrease NA NA Martinez-Zacarias et al.,

2017

R. stylosa C. rhizophorae Philippines 76-82 decrease NA decrease Endonela et al., 2019

(27)

26 Herbivorous crabs

Most brachyurans are opportunistic feeders and exploit a wide range of food sources (Ng et al., 2008). Within all functional trophic groups of crabs (detritivorous, herbivorous, omnivorous and carnivorous groups) species which cause soil bioturbation can occur (changes in sediment stratification and hence biogeochemistry that may positively benefit mangrove tree productivity) (Kristensen and Alongi, 2006; Kristensen, 2008). This happens through burrowing activities (Macnae, 1968; Cannicci et al., 2009; Andreetta et al., 2014) and feeding habit of filter feeders. Deposit feeders (Kristensen and Alongi, 2006) as Mictyridae, Ocypodidae (Dye and Lasiak, 1987; France, 1998; Bouillon et al., 2002b), Sesarmidae (Micheli, 1993a,b; Bouillon et al., 2002a; Skov and Hartnoll, 2002) and herbivorous (fresh and litter plant consumers) as Ocypodidae (Nordhaus, 2004) and Sesarmidae (Beever et al., 1979;

Dahdouh-Guebas et al., 1997; Sivasothi, 2000) are responsible for retention of primary productivity within the mangrove ecosystem (Lee, 1998, 2008) and enrichment of mangrove organic matters production (Cannicci et al., 2008) that may, also, positively benefit mangrove trees productivity. Tree climber crabs, Sesarmidae and Grapsidae (Beever et al., 1979;

Sivasothi, 2000) actively forage on tree leaves (Cannicci et al., 1996a), shoot and non-abscised seedlings which cause potential costs for plants (e.g. they may damage up to 50-60% of R.

mucronata fresh leaves in Kenya (Cannicci et al., 1996a, b)) (Cannicci et al., 2008). Arboreal

herbivorous climbing species and plant litter consumers that consume pre- and post-abscised

propagules, Grapsidae, Gecarcinidae and Sesarmidae (Fig. 1.5) (Beever et al., 1979; Dahdouh-

Guebas et al., 1997; Sivasothi, 2000) may, moreover, reduce competition among saplings

(Bosire et al., 2005; Cannicci et al., 2008), affect mangrove regeneration (Farnworth and

Ellison, 1997; Dahdouh-Guebas et al., 1998; Sousa et al., 2003a,b) and thus impacts future

vegetation structure. Following site, species and season, herbivory pressure on propagules may

range between extremes (0 % up to 100%) (Table 1.4).

(28)

Table 1.4: Literature overview of crab herbivory pressure on mangrove propagules.

Propagule species Herbivore species (crab) Country Herbivory pressure (%) references

Avicennia germinans L. Sesarma reticulatum Say Florida 99 Langston et al., 2017

Exoecaria agallocha L.

Neosarmatium malabaricum Henderson India

100

Praveen et al., 2017 Aegiceras corniculatum (L.)

Blanco 93.75 (SE:4.27)

Avicennia officinalis L. 62.5 (SE: 7.22)

Rhizophora mucronata 56.25 (SE: 7.74)

Rhizophora mangle Ucides cordatus L., Goniopsis cruentata Latreille Brazil 81 Boehm et al., 2016

A. marina Neosarmatium smithi and N. africanum Kenya 100 See chapter 4

Ceriops tagal

R. mangle G. cruentata, U. cordatus Brazil 67 Wellens et al., 2015

Rhizophora racemosa G.

Mey. Grapsid crabs 69.8 Longonje and Raffaelli,

2014

R. mangle Cameroon 66.3

Rhizophora harrisonii 61.6

R. mangle

G. cruentata, U. cordatus Brazil

87 / 5

Ferreira et al., 2013 Avicennia schaueriana Stapf

and Leechman 97 / 1

Laguncularia racemosa 95 / 0

C. tagal Sesarmid crabs Kenya 0-100 De Ryck et al., 2012

Rhizophora spp. Neosarmatium malabaricum Henderson, Muradium tetragonum Fabricius, Perisesarma dusumieri H. Milne-

Edwards, Neosarmatium asiaticum de Man Sri Lanka 2-95 Dahdouh-Guebas et

al., 2011

Bruguiera gymnorrhiza 7-93

A. officinalis 63-100

A. marina var. eucalyptifolia

Perisesarma messa Campbell, N. smithi Australia 97.1 Clarcke and Kerrigan,

2002

Ceriops australis White 70.6

For additional mangrove species see Clarcke and Kerrigan, 2002 R. mucronata

Sesarmid crabs Kenya 10.6 (SD: 0.8)- 20 (SD: 0.9) Dahdouh-Guebas et

al., 1998

C. tagal 20 (SD: 1.5)- 42 (SD: 2.2)

A. marina 14.6 (SD: 1.7)- 32 (SD: 2.1)

(29)

28

Propagule species Herbivore species (crab) Country Herbivory pressure (%) references

R. mucronata

Sesarmid or Grapsid crabs Kenya 8-86

Dahdouh-Guebas et al., 1997

C. tagal 40-66

C. tagal Oceania, Australia, Malaysia 0-29.9

A. marina Madagascar 50

R. mangle

Grapsid or sesarmid crabs

South America, Hawaii 2.1-92.9

Farnsworth and Ellison, 1997

C. tagal Oceania, Australia, Malaysia 0-29.9

A. marina Madagascar 50

R. mucronata Micronesia, Malaysia, India,

Madagascar 19.2-73.3

For additional mangrove species see Farnsworth and Ellison, 1997 A. marina

Majoritary Sesarma (Neosarmatium

australiensis) Australia

100

McGuinness, 1997

Rhizophora stylosa 19.2

C. tagal 67-71

Rhizophora exaristata 63

C. tagal Ucides cordatus Belize 15 (SE:10)-100 (SE:0) McKee, 1995a

A. marina 4 (SE:4)-97 (SE:3)

A. marina - Australia 59.1-64.8 Robertson et al., 1990

C. tagal 7.2-8.2

For additional mangrove species see Robertson et al., 1990 A. marina

Neosarmatium spp.

Sesarma spp.

Australia 51.8 (SE:10.9)

Smith et al., 1989

Rhizophora apiculata 19.8 (SE:6.3)

Avicennia alba Blume

Malaysia

62.5 (SE:7.6)

Avicennia officinalis 46.4 (SE:10.8)

R. apiculata 6.3 (SE:2)

Avicennia germinans Florida 72 (SE:8.8)

R. mangle 0

R. mangle Panama 0.4 (SE;0.8)-8.7 (SE:8.6)

For additional mangrove species see Smith et al., 1989 R. stylosa Metopograpsus latifrons White,

M. thukuhar Owen, Perisesarma

messa, N. smithi Australia 50.4 (SD: 42.1)

Smith, 1987a

A. marina 96 (SD: 6.9)

C. tagal 71.7 (SD: 16.5)

(30)

Crab herbivory on propagules could be affected by many biotic and abiotic factors within which the most significant are food availability (Smith, 1987a), vegetation cover (Osborn and Smith, 1990; Farnsworth and Ellison, 1991; Clarke and Kerrigan, 2002), the amount (Beever III et al., 1979) and size (Emmerson and McGwynne, 1992; Nordhaus et al., 2006) of herbivores. The nutritional value (Table 1.1) (Smith, 1987a; Farnsworth and Ellison, 1991;

McKee, 1995a; Clarke and Kerrigan, 2002; Ditzel Faraco and da Cunha Lana, 2004; Nordhaus et al., 2011), nature (leaf or propagule) (Table 1.1) (Salgado Kent and McGuinness, 2008), size (Table 1.1) (Salgado Kent and McGuinness, 2008; Camilleri, 1989) and shape of the food can also lead to different feeding preferences and rates.

Figure 1.5: Neosarmatium africanum, a sesarmid crab present in mangrove forests, in Gazi Bay, Kenya;

a. N. africanum b. N. africanum getting out of his burrow and A. marina propagule.

2.5cm a

3.33cm

b

(31)

30

Insects and crabs are both damaging propagules threatening their survival but have different herbivory strategies. Insects usually bore small holes into a propagule to gain access inner portion without destruction of the outer portion (Lindquist et al., 2009) (Fig. 1.4; 1.6). Insects may live, grow, lay eggs, inside propagules while consuming internal tissues of established seedlings (Lindquist et al., 2009) (Fig. 1.4; 1.6). Crabs excavate the outer part of propagules to access the more nutritive inner part of it (Lindquist et al., 2009) (Fig.1.6), they may bury propagules inside their burrow as a food storage (Fig. 1.5). Here they may consume the established seedlings or leave it (Siddiqi, 1995; Lindquist et al., 2009).

Figure 1.6: Damage on propagules; a. borer insect damage (C. rhizophorae on R. mangle propagule), in Florida (USA) and b. crab damage (N. africanum on C. tagal propagule), in Gazi Bay, Kenya.

a b

0.7cm

0.4cm

(32)

Establishment and Seedling-Stalk growth

Similar to dispersal, another critical period for plants is the establishment of a seedling (concluding the dispersal period). Indeed, seeds need specific conditions to germinate or root, establish and grow into adult plants. Those conditions, following the dispersal process, may never be encountered or not at the right time. Usually plant seeds dispose of a dormancy capacity that prevents them from germinating where environmental conditions are unsuitable.

Viviparous plants do not have a dormancy period for seeds as they already develop into seedlings before abscission. It is a large quantity of reserve (nutrients and water) that enables propagules to survive long distance dispersal events (Van der Stocken et al., 2013; Robert et al., 2015) before establishment (Cheeseman, 2012). The reserve may also provide propagules with more opportunities to establish, grow and become a juvenile tree, as it provides energy for the development of the first roots, stem and leaves (Cheeseman, 2012; Farnsworth and Ellison, 1996). In the beginning of the establishment process, the roots do not provide water and nutrients, yet growth requires them. In fact, the initial function of roots is to anchor the seedling firmly in the soil thus preventing its removal by tidal action (Cheeseman, 2012).

Fusiform propagules can establish in three different ways. Firstly, directly after abscission they

can fall with their radicle end down, directly into the soil and plant themselves (Van

Speybroeck, 1992) deeply enough such as to stay anchored and avoid being removed from the

substrate for a sufficient duration of disturbance-free period (the window of opportunity

adapted from Balke et al., (2014)) to produce their first roots. Secondly, they can fall into water,

float for a period of time before sinking, and then anchor themselves in periodically submerged

soil (Davis, 1940). Third, propagules can be carried away by currents (Van der Stocken et al.,

2013) until they strand horizontally and then take root in the substrate and attain an upright

position (Rabinowitz, 1978b; Van Speybroeck, 1992; Ball, 2002; Cheeseman, 2012). They may

also be trapped in the complex stem and aerial root system in contact or not with soil (Van

Speybroeck, 1992). In each of these cases, roots play a crucial anchoring role. In the self-

planting strategy, it is not guaranteed that the propagules will be able to anchor themselves

deep enough to resist the tide’s current, unless they take root quickly. In this case, the tidal

phase can interact with the propagule’s fate. In the sinking strategy, it is clear that success

depends directly on the period of time that the propagules need first to develop roots and then

to anchor into the soil (Rabinowitz, 1978a). In the stranding strategy, the propagules need to

take root quickly before the arrival of strong tides or storms. If they are trapped by stem and

(33)

32

aerial root systems, or in a crab burrow, propagules have more time to take root but there is a risk that propagules never touch soil and establish, or are eaten. Whichever establishment strategy the propagules undergo, their success in this dynamic environment is highly dependent on how quickly their roots develop and the period of time before establishment in which could run out of all reserves. The first roots that develop are thick and unbranched, and grow downward in the propagule’s axis (Cheeseman, 2012). This considerably increases their ability to attach to the substrate. Propagule root development is triggered by self-planting in the soil (Robert et al., 2015), or simply by being in contact with the substrate if propagules strand horizontally, but in the latter case the response is slower (Cheeseman, 2012). Floating propagules rarely ever develop roots and never shoots. The great majority of freshly stranded propagules has no roots and those that have may have been uprooted. Rooting (the first visible response) takes place within days upon stranding or when inserted in soil or crab burrows.

Shoots develop with a lag time after roots (personal observations). We do not know yet which soil factor induces root formation: it could be a response to thigmotropism, changes in light, humidity, differences in density between air and water, or hypoxia or combinations of these in the part of the propagule touching soil. This process is complex and many aspects of propagules establishment remain unclear. We know that many abiotic and biotic factors are involved in establishment success (Fig. 1.3). Abiotic factors such as aridity / drought, salinity (Krauss et al., 2008), soil texture, topography (Di Nitto et al., 2008), tidal inundation (Gilman et al., 2008), the timeframe of the window of opportunity (Balke et al., 2014) and biotic factors such as vegetation obstacle (root networks) (Fig. 1.2), bioturbation (McNae, 1968; Cannicci et al., 2009) fast rooting capacity inherent to propagules, interactions with fauna (Cannicci et al., 2008), amount and type of damage (Fig. 1.4; 1.6) may affect considerably establishment process.

If establishment is successful, propagules become established seedlings that need to be fast

growing to be competitive. It is known that fast growth is an advantage in the early stages of

seedlings and even more in mangrove ecosystem which is a dynamic environment, where

salinity and inundation level vary frequently (Krauss et al., 2008), where light is limited in the

understory and where high intra-specific competition is common for seedlings (Clarke and

Allaway, 1993; Sousa et al., 2003b). Many factors may slow down that early growth of

seedlings (Fig. 1.3) and may affect crucial competitive aptitudes. Early growth is affected by

abiotic factors such as aridity / drought, salinity (Krauss et al., 2008), soil composition, nutrient

availability (Kristensen and Alongi, 2006; Kristensen, 2008), light intensity (Sousa et al.,

2003a) and biotic factors such as competition (vegetation assemblage) (Berger et al., 2008),

(34)

bioturbation (McNae, 1968; Cannicci et al., 2009), enrichment of mangrove in organic matter by herbivores (Cannicci et al., 2008), amount of storage (potentially decreased by herbivory on propagules) and herbivory on leaves of seedlings (Cannicci et al., 2008) (Fig. 1.3).

Lived normally even after damage

In all ecosystems, plants are subject to herbivory and some can defend against it, escape from it and / or tolerate it (Agrawal, 2000). Indeed, plants have three types of resistance when they are attacked: defence (antibiosis), escape (antixenosis) or tolerance (Rosenthal and Kotanen, 1994; Peterson et al., 2017) (Table 1.5).

Table 1.5: Strategies of plants to counter herbivory

Both defence and tolerance strategies cost the plants metabolic energy (Strauss and Agrawal, 1999; Strauss et al., 2002), but only a plant’s defence strategies directly reduce insect fitness (Rosenthal and Kotanen, 1994) and may induce insect resistance to the plant’s defence (Peterson et al., 2017). Tolerance is, in this context, more evolutionarily stable than defence and escape strategies (Duthoit, 1964; Olff et al., 1990; Juenger and Bergelson, 1997; Fenner et al., 1999; Peterson et al., 2017). However, the same plant can employ different strategies depending on which part of the plant is under herbivory stress, as well as on the age of the plant and on allocation of resources (Rosenthal and Kotanen, 1994).

Propagules may be damaged by herbivorous crabs but remain viable following Smith (1987a) criteria. Propagules eaten by crabs are considered non-viable if 1) it is damaged more than 50

%, 2) if the plumule is unviable, 3) root apical meristem is eaten or 4) if it is buried in crab burrow (Smith, 1987a). In case of smaller damage, propagules may survive but reserve loss and injury have a cost for propagule. Similarly, for insect herbivory, propagules may survive at low damage but establishment and early growth may be affected (Table 1.3).

Strategies Definitions References

Defence It is a strategy in which plants produce chemicals or physical features which reduce the amount of damage

and fitness in herbivores. Gong and Zhang, 2014

Escape (in space or time)

Plants may escape through seed dispersal or differential timing strategies which reduce the probability that they

will be found by their consumers. Gong and Zhang, 2014 Tolerance Plant tolerance reduces the negative effect of damage

that occurs without reducing herbivore fitness.

Hence, it does not induce insect response (resistance).

Fornoni, 2011 ;

Peterson et al., 2017

(35)

34

Research justification and objectives

Rhizophora mangle, Indian River, Florida

(36)

General objectives

ngroves as all plants and vegetation may be affected by herbivory. Herbivory damage causes biomass reduction and reduction of fitness, which in turn may affect plant productivity and hence vegetation structure. Small structures such as seeds, propagules or seedlings may be affected extraordinarily. Indeed, such structures with no or immature photosynthetic activity and limited nutrient absorption abilities are vulnerable to herbivory damage, which is sometimes called ‘predation’ because they may be entirely killed and / or consumed. Small structures or individuals have limited reserves to ensure their survival and growth. As all relations between consumers and resources, herbivory on mangrove propagules must be balanced to remain viable for both protagonists, particularly when considering specialized herbivores. From the literature overview, it appears that the number of publications on mangrove propagules and mangrove herbivory is not matching the steep rising trend of mangrove publications in general. The same trend is observed for tolerance which is poorly studied compared to other types of resistance (Peterson et al., 2017). In that context I want to position my work as it tends to address propagule-herbivore mutual interactions, costs and benefits of herbivory on propagule life. I also wished to establish to which extent herbivory is a real threat for propagule establishment and early growth, with original observations, measurements and experiments. More specifically, I concentrated my research on two different aspects of propagule-herbivory interactions; insect herbivory: tolerance strategy of propagules in a specialist insect herbivory context and crab herbivory: factors that determine generalist crab herbivory (or predation) on propagules (Fig. 1.6). The nature of the herbivores (insect vs.

decapod) is here less important than their effective dependence to complete their respective life cycle.

Specific objectives

Insect herbivory (Chapters 2 and 3)

Abiotic factors constrain mangroves and require numerous adaptations in a demanding environment. Additionally, mangrove propagules (and juveniles) are commonly depredated or grazed upon by insects (Onuf et al., 1977; Rabinowitz, 1977; Robertson et al., 1990; Clarcke, 1992; Farnsworth and Ellison, 1997; Elster et al., 1999; Brook, 2001; Minchinton and Dalby- Ball, 2001; Sousa et al., 2003a,b). In Florida (USA), several insect species infest R. mangle.

The most represented in our study region is the borer beetle, Coccotrypes rhizophorae

(Hopkins), a Scolytinae of about 2 millimeters long. Coccotrypes rhizophorae infests

(37)

36

Rhizophora mangle propagules and can kill 72% to 89% of seedlings under closed canopy (Sousa et al., 2003a,b). It infests Rhizophora mangle propagules and juveniles by digging chambers, feeding on internal tissues and developing offspring inside the propagule tissues. C.

rhizophorae is reported to be a threat to mangrove restoration (Kaly and Jones, 1998; Elster et al., 1999). C. rhizophorae commonly induces propagule mortality (Sousa et al., 2003b; Devlin, 2004) and may affect mangrove regeneration and hence future vegetation structure (Kaly and Jones, 1998; Sousa et al., 2003b). Following observations by Rabinowitz (1977) and see chapter 2 and 3, the hypocotyl of R. mangle propagule can respond to C. rhizophorae infestation by producing adventitious roots. These adventitious roots appear just above the site of attack by C. rhizophorae (see chapter 2 and 3). We focused our study on this phenomenon.

More specifically, we examined whether development of adventitious roots above an attack site could provide infested propagules a chance to survive and to establish (Chapter 2). We also investigated the capacity of established seedlings to produce biomass at an early stage (Chapter 3). We examined the tolerance strategy of R. mangle propagules to C. rhizophorae (Fig. 1.7) by answering three questions:

Evidence and characteristics of tolerance

(1) Do adventitious roots above an attack site help damaged propagules to survive, establish and early grow as seedlings?

(2) What determines development of adventitious roots?

(3) What is the cost of damage containment to seedlings?

Crab herbivory (Chapter 4)

Faunal impact world-wide to mangroves is largely due to crab activities (Cannicci et al., 2008).

Some authors refer to ‘crabs’ as a mangrove ecosystem keystone group of species (Smith III et al., 1991; Schories et al., 2003). They can contribute actively to the forest structure through two activities: the ‘engineering’ in the ecosystem (Kristensen, 2008; Bartolini et al., 2009;

2011) and herbivorous behaviour (Schories et al., 2003). Burrows and galleries in hypoxic or

anoxic soils allow a better soil oxygenation and increase the bioavailability of nutrients such

as nitrogen and phosphorus (Smith III et al., 1991), while reducing toxicity (hydrogen

sulphide). However, members of some families of herbivorous crabs are known to be a threat

to natural and artificial mangrove regeneration (Dahdouh-Guebas et al., 1998) regulating plant

competition in high stand density areas (Bosire et al., 2005), both processes driven by

(38)

consumption of mangrove propagules. The most critical period in a plant’s life cycle is dispersal and establishment. This is very true for mangrove species as well, since they deal with an environment that is hostile to most plant and tree life: high salinity, soil anoxia, wave action and tides.

This study focuses on the herbivory behavior of two herbivorous crab species: Neosarmatium africanum Ragionieri, Fratini and Schubart (formerly N. meinerti De Man) and Neosarmatium smithi H. Milne Edwards.

We examined how the crabs’ feeding habits and the factors that could determine their herbivory behavior may stabilize consumer-resource mutual interactions (Fig. 1.7) by answering five questions.

Extrinsic factors:

(1) Does herbivory rate increase with crab density?

(2) Do larger crabs outcompete smaller crabs by food competition?

Intrinsic factors:

(3) Is crab herbivory rate on propagules affected by species identity of mangrove propagules, the dominant tree canopy species, and is it characteristic for a crab species?

(4) Do higher tree densities lead to higher crab densities and a higher herbivory rate on propagules?

(5) Are crab preferences for food items, influenced by species, size, nature (propagules or

leaves), color or C:N ratio of the food items?

(39)

38 Research framework and objectives

Figure 1.7: Research framework and objectives: White boxes are stages of the mangrove life cycle; bold green boxes are thesis chapters and their resp. specific objectives; bold salmon

boxes are herbivory processes; grey arrow show life cycle path; (I) Dispersal process; (II) Establishment process; (III) Early growth process.

(40)
(41)

40

Mangrove propagules stand tolerant to insect infestation by efficiently bypassing necrosed tissues when forming adventitious roots.

Rhizophora mangle infested propagule

Chapter 2

(42)
(43)

42 1. Introduction

The most damaging herbivores (Farnworth and Ellison, 1997) and propagule herbivory can, under certain conditions, affect mangrove regeneration considerably (Farnworth and Ellison, 1997; Dahdouh-Guebas et al., 1998; Sousa et al., 2003a,b). The borer beetle, Coccotrypes rhizophorae (Hopkins) is a specialist herbivore that infests Rhizophora mangle propagules for the most part, and it can kill 72% to 89% of the seedlings in a closed canopy (Sousa et al., 2003a,b). It is an obligate parasite of R. mangle following Delvin (2004) and Martinez-Zacarias et al. (2017) but it seems also to infest R. stylosa in the Philippines following Endonela et al.

(2019). These beetles can be a threat to mangrove restoration (Kaly and Jones, 1998; Elster et al., 1999, Endonela et al., 2019) because they infest the plant before or during establishment, which is a critical phase for plant survival (Strauss and Agrawal, 1999). R. mangle is viviparous (Gill and Tomlinson, 1969; Rabinowitz, 1978; Tomlinson and Cox, 2000): the seed germinates without dormancy phase on the parent tree and abscises as a mature propagule (the dispersal unit appearing between seed germination on the parent tree and establishment) which in fact may be, ontogenetically, considered to be a seedling. The anatomy of propagules consists of a small plumule (embryonic stem), a large hypocotyl mainly composed of reserve (starch grains), vascular tissues and an undeveloped radicle (Fig. 2.1a) (Tomlinson and Cox, 2000). R. mangle are fusiform, approximately 23 cm long, and weigh approximately 20 g. The hypocotyl is anatomically root-like (Fig. 2.1b, c) (loc. cit.) but the secondary roots develop only at the radicle end (Cheeseman, 2012). Like many other mangrove species, R. mangle propagules disperse during the rainy season (Rabinowitz, 1978a; Duke and Pinzo’n, 1993). In East Florida the rainy season is from May to November so R. mangle propagules mainly fall during this period.

However, R. mangle produces flowers and propagules throughout the year (Fernandes, 1999;

Cerón-Souza et al., 2014)

The hypocotyl of R. mangle propagule can react to damage from C. rhizophorae by producing adventitious roots (Fig. 2.1a, b, c). Adventitious root development is a natural morphological adaptation, common in plants (de Klerk et al., 1999; Sauter, 2013) and largely used in horticulture. In our case, these roots appear just above the damage (loc. cit.) (Fig. 2.1a, b, c) and it is uncommon to find adventitious roots on un-damaged propagules or seedlings.

Adventitious roots can potentially replace normal roots, if there are none present, or they can

compensate for the barrier formed by tissue necrosis that makes vertical translocation in the

propagule impossible, rendering the initial roots useless for sap transport. We can also observe,

Références

Documents relatifs

Fourteen sequenced species with sampling coordinates, synonymous substi- tution rate relative to the root age for nuclear and mitochondrial genome, a radioactivity measured on

For specified θθθ n and at this rate, a Local Asymptotic Normality result was established, which allowed us, both in low and in high dimensions, to define locally asymptotically

The expression of monomer availability can be obtained by multiply the monomer density and ratio of partition functions between surface (Z Ÿ ) and bulk (Z Ô ) [21]. This ratio

The numerical results are from the simulations with the GRI2.11 scheme, the dynamic PaSR model and: a single κ for all the species (blue solid lines); κ NO = 1 and the “standard” κ

The first phase of the method generates some association rules using the Apriori algorithm which is then used in the second phase that runs a Genetic Algorithm to find the best set

The literature reviewed as applicable to this thesis can be grouped according to the following sections: sensor aiming, path following, aircraft control methods, aircraft

This paper investigates in-depth: (i) the application of Fog Computing in perish- able produce supply chain management using blackberry fruit as a case study; (ii) the

In this thesis, the water entry problems for 2-D and 3-D objects entering both calm water and regular waves are investigated numerically with a CIP-based method.. Emphasis is put