• Aucun résultat trouvé

A NO-STOKES SHIFT MODEL FOR THE PHOTOLUMINESCENCE OF a-Si:H

N/A
N/A
Protected

Academic year: 2021

Partager "A NO-STOKES SHIFT MODEL FOR THE PHOTOLUMINESCENCE OF a-Si:H"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00220927

https://hal.archives-ouvertes.fr/jpa-00220927

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A NO-STOKES SHIFT MODEL FOR THE PHOTOLUMINESCENCE OF a-Si:H

D. Dunstan, F. Boulitrop

To cite this version:

D. Dunstan, F. Boulitrop. A NO-STOKES SHIFT MODEL FOR THE PHOTOLUMINESCENCE OF a-Si:H. Journal de Physique Colloques, 1981, 42 (C4), pp.C4-331-C4-334. �10.1051/jphyscol:1981470�.

�jpa-00220927�

(2)

A NO-STOKES SHIFT MODEL FOR THE PHOTOLUMINESCENCE OF a - S i : H

D. J. Dunstan and F. Boulitrop*

D.R.F. Resonance Magngtique, Centre drEtudes NucZlaire de GrenobZe, 85X, 38041 GrenobZe Cedex, France

* L . E. T . I .

Nouveaux Composants EZectroniques, Centre dtEtudes NucZgaire de

GrenobZe, 85X, 38041 GrenobZe Cedex, France

A b s t r a c t From t h e c l o s e s i m i l a r i t y of t h e a b s o r p t i o n and e x c i t a t i o n s p e c t r a below t h e gap, we deduce t h a t t h e r e i s no s i g n i f i c a n t Stokes s h i f t i n t h e luminescence of a-Si:H. We propose a model f o r t h e zero-phonon s t a t e s which accounts f o r t h e luminescence and t h e a b s o r p t i o n spectrum i n terms of d i s o r d e r r e l a t e d f l u c t u a t i o n s of t h e band-gap.

The photoZuminescence of a-Si:H shows t h r e e p r i n c i p a l emission bands, a t -0.8eV, -1.25eV and a t -1.4eV, depending on sample p r e p a r a t i o n . The low energy bands a r e thought t o be d e f e c t - r e l a t e d and w i l l n o t b e considered h e r e , w h i l e t h e 1.4eV band i s u s u a l l y considered t o be i n t r i n s i c , due t o recombination between b a n d - t a i l s t a t e s . The mechanism i s n o t y e t d e f i n i t e l y e s t a b l i s h e d ; both d i s t a n t - p a i r (1,2,3) and c o r r e l a t e d p a i r (geminate) (4,5,6) models have been proposed. Evidence f o r a d i s t a n t - p a i r model i s given by ODMR ( 3 ) , i n which t h e t r a n s i e n t response of t h e resonance t o t h e microwave f i e l d i s d i f f e r e n t f o r t h e two models; while t h e temper- a t u r e dependence of t h e luminescence decay h a s been i n t e r p r e t e d i n terms of a gemin- a t e model ( 6 ) . The decay i t s e l f , measured by time-resolved s p e c t r o s c o p y , h a s been i n t e r p r e t e d by both models, d i s t a n t - p a i r (1,2) and geminate ( 5 , 6 ) . I n e i t h e r c a s e , however, i t i s u s u a l l y assumed t h a t t h e depth of t h e emission below t h e gap (-0.5eV) and t h e a c t i v a t i o n energy of thermal quenching (-l3OmeV) r e q u i r e a Stokes s h i f t of t h e o r d e r of 0.4-0.5eV, and S t r e e t ( 7 ) h a s shown t h a t such a Stokes s h i f t i s s u f f i c i e n t t o account f o r t h e width of t h e emission band. However, both t h e

a b s o r p t i o n and e x c i t a t i o n s p e c t r a show e x p o n e n t i a l t a i l s below t h e band-gap, and t h e s i m i l a r i t y of t h e s e t a i l s and t h e i r independence of temperature l e a d s us t o propose a no-Stokes s h i f t model f o r t h e 1.4eV emission band.

The e x p o n e n t i a l t a i l s may be d e s c r i b e d by cxaexp(ghv) where 8 i s about 2 0 e ~ - I , a s i n most amorphous m a t e r i a l s (8). However, t h e v a l u e of $ v a r i e s somewhat from

sample t o sample, s o we have measured t h e a b s o r p t i o n spectrum a(hv) and t h e e x c i t a t i o n

c m - j

- 5

Although we were unable t o c a r r y t h e spectrum a,(hv) i n t h e same sample (Fig I ) . measurements f a r below t h e gap because of 1000 s c a t t e r e d l i g h t , we s e e t h a t t h e two s p e c t r a

V1 C c a r e e x p o n e n t i a l with t h e same s l o p e , 16eTt,

100

2

t o w i t h i n experimental e r r o r . Cody e t a 1

(F

9

(9) show t h a t t h e a b s o r p t i o n t a i l remains

$

e x p o n e n t i a l t o below 1.4eV and S t r e e t (7) 10

4

g i v e s an e x c i t a t i o n spectrum e x p o n e n t i a l t o 1.7 1-8 1.9 2.0 eV 1.4eV, s o we conclude t h a t from t h e gap a t - - F i g 1: Logarithmic p l o t of t h e - 1 . 9 e ~ t o t h e emission a t -1.4eV t h e absorp-

absorption (a) and the excitation t i o n and e x c i t a t i o n s p e c t r a a r e i d e n t i c a l .

( a 3

s p e c t r a f o r a 1 . 8 ~ sample of

hydrogenated s p u t t e r e d amorphous When t h e r e i s a Stokes s h i f t , a b s o r p t i o n s i l i c o n . cx i s i n cm-', a, i s i n of photons of l e s s than t h e zero-phonon a r b i t r a r y u n i t s . energy may take p l a c e by simultaneous

a b s o r p t i o n of a phonon (phonon-assisted

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981470

(3)

JOURNAL DE PHYSIQUE

a b s o r p t i ~ . ~ ) . However, t h i s i s a temperature-dependent p r o c e s s , and t h e r e f o r e cannot account f o r t h e b u l k of t h e a b s o r p t i o n below t h e p o s t u l a t e d zero-phonon energy -1.8eV, s i n c e t h e a b s o r p t i o n i s temperature-independent up t o -400K (10). On t h e o t h e r hand, t h e photoluminescence can have a quantum e f f i c i e n c y of n e a r l y one f o r e x c i t a t i o n above t h e gap (11); i n t h e absence of a l a r g e change i n quantum e f f i c i - ency around 1.8eV (and t h i s i s r u l e d o u t by t h e s i m i l a r i t y of t h e a b s o r p t i o n and e x c i t a t i o n s p e c t r a ) , t h e mechanism of a b s o r p t i o n below t h e gap must be t h e same a s t h a t above t h e gap and ( i n high quantum e f f i c i e n c y samples) t h e same a s t h e mechan- i s m of t h e a b s o r p t i o n t h a t g i v e s luminescence ( a ~ ) . Thus a Stokes s h i f t r e q u i r e s t h a t t h e a b s o r p t i o n below t h e gap should b e temperature-dependent; i t i s n o t , and we conclude t h a t t h e r e i s no s i g n i f i c a n t Stokes s h i f t . The decrease i n B above 400K may be due t o a small Stokes s h i f t , b u t w i t h o u t a g e n e r a l l y accepted model f o r t h e a b s o r p t i o n below t h e gap, o r h i g h r e s o l u t i o n e x c i t a t i o n s p e c t r a around 1.4eV, any e s t i m a t e would be s p e c u l a t i v e .

Temperature

3 0 0 150 1 0 0 K The temperature-quenching of t h e luminescence i s g e n e r a l l y considered t o be due t o thermal a c t i v a t i o n of t h e c a r r i e r s t o t h e bands, followed by d i f f - u s i o n t o n o n - r a d i a t i v e recombination c e n t r e s . I n t h e absence of a Stokes s h i f t , we might expect t h e a c t i v a t i o n energy of t h i s p r o c e s s t o be 200-300meV, r a t h e r t h a n t h e 13OmeV observed (12).

The observed v a l u e may be understood, however, i n terms of t h e v e r y wide range of decay times, from lOns t o t e n s of ms

( 5 ) . The p o s i t i o n of t h e elbow of t h e

0 5 1 0 quenching curve depends on decay time,

1 0 0 0 / T and t h e s u p e r i m p o s i t i o n of curves w i t h d i f f e r e n t decay times, and hence with F i g 2: The family of curves B a r e t h e

t h e o r e t i c a l quenching curves f o r decay t h e i r elbows a t d i f f e r e n t t e m p e r a t u r e s , l e a d s , f o r t h e d i s t r i b u t i o n of l i f e t i m e s times from 1011s t o Ions, weighted f o r given by Tsang and Street (5), and f o r a i n t e n s i t y according t o t h e d i s t r i b u t i o n

given i n Ref. 5. Curve A i s t h e sum r e a l a c t i v a t i o n energy of 250meV, t o a of curves B; we see between points curve d i s p l a y i n g an a p p a r e n t a c t i v a t i o n and ii an a p p a r e n t a c t i v a t i o n energy energy of 130meV ( F i g 2) up t o about of 13OmeV. Below p o i n t i t h e t r u e 250K.

a c t i v a t i o n energy of 250meV a p p e a r s .

The d o t t e d l i n e s show t h e s l o p e s c o r r - Absorption measurements by Cody e t esponding t o a c t i v a t i o n e n e r g i e s of a 1 (9) and Pankove e t a 1 (13) show

13OmeV and 250meV. evidence of a peak, o r a t l e a s t a

p l a t e a u , i n t h e spectrum of about 1Ocm"

around 1.3eV. This peak may correspond t o t h e i n v e r s e of t h e luminescence t r a n s i t i o n s , and t h e n c o n s i d e r a t i o n s of d e t a i l e d balance (14) g i v e a v a l u e of N / T - 1 0 ~ ~ c m - ~ s - ' where N i s t h e d e n s i t y of e m i t t i n g

" c e n t r e s " and T i s a mean l i f e t i m e . O p t i c a l s a t u r a t i o n would t h e n be expected a t - 1 0 ~ ~ ~ h o t o n s ~ r n - ~ s - ' , compared with s t r e e t ' s measured v a l u e more than one o r d e r of magnitude h i g h e r ( 7 ) . This d i s c r e p a n c y i s a r e a l d i f f i c u l t y f o r a no-Stokes s h i f t model, and n e c e s s i t a t e s f u r t h e r work. Meanwhile, we r e c a l l t h a t t h e a n a l y s i s of Fowler and Dexter (15) shows t h a t d e t a i l e d b a l a n c e should h o l d s t r i c t l y only f o r r e s o n a n t systems i n high symmetry. The i n c r e a s e of 6 above 400K shows a small phonon i n t e r a c t i o n , t h e symmetry of amorphous s i l i c o n i s c e r t a i n l y not h i g h , and furthermore t h e system does not c o n s i s t of s e p a r a t e c e n t r e s . N e v e r t h e l e s s , i t i s d i f f i c u l t t o s e e how t h e s e c o n s i d e r a t i o n s can account f o r a breakdown of d e t a i l e d b a l a n c e by more t h a n one o r d e r of magnitude.

The a b s o r p t i o n t a i l s of amorphous semiconductors a r e r e m i n i s c e n t of t h e Urbach t a i l s seen i n many c r y s t a l l i n e semiconductors, w i t h t h e d i f f e r e n c e t h a t t h e l a t t e r a r e temperature-dependent with B-(l/kT). U n f o r t u n a t e l y , t h e r e i s no s i n g l e accepted e x p l a n a t i o n of t h e Urbach t a i l (16). However, t h e i n t e n s i t y of t h e Urbach t a i l i s s u c c e s s f u l l y p r e d i c t e d by assuming an e x p o n e n t i a l d i s t r i b u t i o n of l o c a l v a l u e s of

(4)

f i t t o t h e experimental s p e c t r a ( t a k e n from Ref. 8) i s e x c e l l e n t . I n c r y s t a l l i n e semiconductors, S k e t t r u p (17) shows t h a t t h e e x p o n e n t i a l d i s t r i b u t i o n of band-gap

a r i s e s from t h e Poisson d i s t r i b u -

200

-

-

t i o n of phonon p o p u l a t i o n d e n s i t y

and i s thus r e l a t e d t o t h e r m a l l y induced d i s o r d e r . That t h e same

-

mechanism a p p l i e s i n amorphous m a t e r i a l s i s suggested by t h e c l o s e f i t of F i g 3, and s o we

-

propose t h a t t h e t a i l i n amorphous

.-

m a t e r i a l s i s due t o s i m i l a r

d i s o r d e r , w i t h t h e d i f f e r e n c e t h a t i n t h i s c a s e t h e d i s o r d e r i s f r o z e n i n , a t an e f f e c t i v e temp- e r a t u r e e v i d e n t l y r e l a t e d t o t h e r e c r y s t a l l i s a t i o n temperature.

1.6 2.0 eV Tauc (18) s i m i l a r l y suggested

t h a t t h e t a i l i s due t o f r o z e n - i n F i g 3: The curves a r e t h e experimental absorp-

t i o n s p e c t r a of a-As Se ( d a t a of JT Edmond, phonons, b u t accounted f o r t h e t a k e n from Ref 8) and a-Si:H (same sample a s by the Franz-Keldysh

e f f e c t of t h e e l e c t r i c f i e l d s due i n F i g 1 ) . The p o i n t s show t h e o r e t i c a l f i t s t o t h e phonons. Brodsky (19) u s i n g e x p o n e n t i a l d i s t r i b u t i o n s of band-gap. suggested t h a t band-gap f l u c t u - The t h r e e f i t t i n g parameters a r e a. and

Eo,

determined by t h e p a r a b o l i c p a r t of t h e curve, a t i o n s (quantum w e l l s ) due t o compositional d i s o r d e r c o u l d and i a l t a i l ) .

B

(determined by t h e s l o p e of t h e exponent- We s e e t h a t t h e i n t e n s i t y of t h e account f o r the absorption tail

i n a-Si:H. However, an explan- t a i l i s c o r r e c t l y p r e d i c t e d .

a t i o n i n terms of band-gar, -

-

f l u c t u a t i o n s due t o t h e amorphous n a t u r e of t h e m a t e r i a l i s g e n e r a l l y a p p l i c a b l e t o a l l amorphous m a t e r i a l s , and a s we s e e i n F i g 3 accounts f o r t h e i n t e n s i t i e s of t h e t a i l s .

s h i f t i s expected i n t h i s model, s i n c e t h e Valence Band

c a r r i e r s a r e l o c a l i s e d by a slowly changing F i g 4: Schematic band diagram p o t e n t i a l ( t h e s l o p e of t h e f l u c t u a t i o n s of band

gap and chemical p o t e n t i a l ) and s o t h e l o c a l i s e d f o r a-Si:H, showing t h e proposed

partly correlated fluctuations s t a t e s a r e l i t t l e p e r t u r b e d from t h o s e of t h e of t h e bands. Absorption (A) bands a t kzO.

Now, i f t h e band-gap f l u c t u a t e s , e x c i t e d c a r r i e r s w i l l t e n d t o l o c a l i s e a t t h e s p a t i a l minima ( i n energy) of t h e bands. I f , a s i s probable, t h e chemical p o t e n t i a l f l u c t u a t e s with a s i m i l a r coherence l e n g t h , t h e minima of t h e conduction band w i l l n o t always b e s p a t i a l l y c o i n c i d e n t w i t h t h e maxima of t h e valence band, and t h e

and luminescence (L) t r a n s i t i o n s F i n a l l y , we c o n s i d e r t h e s p a t i a l d i s t r i b u - a r e shown, w i t h t h e t h e r m a l i s - t i o n of l o c a l i s e d c a r r i e r s i n r e l a t i o n t o a t i o n i n t o band extrema. geminate recombination and recombination k i n -

Conduction Band

e t i c s . A t low temperature, w i t h no thermal r e - e x c i t a t i o n t o t h e bands, t h e s e p a r a t i o n of a c a r r i e r s w i l l g e n e r a l l y n o t be t r a p p e d a t t h e same p l a c e ( F i g 4 ) . Recombination can t a k e p l a c e by t u n n e l l i n g w i t h t h e t r a n s i t i o n probab- ility depending on t h e s e p a r a t i o n . Thus t h e main f e a t u r e s of t h e time-resolved s p e c t r a a r e accounted f o r . E l e c t r i c f i e l d s o r thermal e x c i t a t i o n permit de-trapping and d i f f u s i o n t o n o n - r a d i a t i v e c e n t r e s such a s dangling bonds.

Furthermore, t h e shallower c a r r i e r s w i l l de-trap more e a s i l y t h a n t h e deeper ones, c o n s i s t e n t with t h e s h i f t of t h e luminescence t o lower energy with temperature. No s i g n i f i c a n t Stokes

(5)

JOURNAL DE PHYSIQUE

geminate pair of excited carriers will have a distribution independent of excitation density. Consequently, at low excitation powers the average pair separation d may be much less than the average separation between pairs, A, and recombination will be geminate. As the excitation density increases, recombination ceases to be geminate when A-d. However, recombination remains monomolecular until A decreases to less than or of the order of the diameter a of the wave-function of a localised carrier (20). Depending on the relative magnitudes of a and d there may be a regime where the recombination is monomolecular but not geminate (a<A<d) and is termed distant- pair. Given the long lifetimes of most of the 1.4eV band, the range of excitation power in which this is the case is large. Clearly, it is not correct to take, as has been done in the literature, the excitation power density at the onset of bimolecular recombination as indicative of the diffusion distance d; rather, this measures the wave-function size a. Thus, although the recombination will be geminate at sufficiently low excitation density, much lower than that at which it will be monomolecular, this is not an essential feature of the 1.4eV band.

Acknowledgements: We are grateful to Mr P Bouchut for providing the absorption data of Fig 1 and to Dr A Chenevas-Paule, Dr R Cox and Dr A HervC for helpful discussions.

References:

1. Morigaki K, Dunstan DJ, Cavenett BC, Dawson P, Nitta S and Shimakawa K, Sol St Comm 2 (1978) 981-985

2. Searle TM, Nashashibi TS, Austin IG, Devonshire R and Lockwood G, Phil Mag B s (1979) 389-403

3. Depinna S, Cavenett BC, Austin IG, Searle TM, Thompson MJ, Allison J and LeComber PG, Phil Mag B to be published

4. Biegelsen DK, Knights JC, Street RA, Tsang

C

and White RM, Phil Mag B E (1978) 477-488

5. Tsang C and Street

RA,

Phys Rev B E (1979) 3027-3040

6. Hong KM, Noolandi J and Street

RA,

Phys Rev B g (1981) 2967-2976 7. Street

RA,

Phil Mag B z (1978) 35-42

8. Mott N and Davis EA, Electronic Processes in Non-Crystalline Solids Clarendon Press, Oxford (1979) chapter 6

9. Cody GD, Abales B, Wronski CR, Brooks B and Lanford WA, J Non-Cryst Sol 35/36 (1980) 463-468

10. Connell GAN and Street RA in Handbook on Semiconductors (ed TS Moss) North-Holland Amsterdam (1980) Vol 3 chapter 13

11.

Street

RA,

Knights JC and Biegelsen DK, Phys Rev B z (1978) 1880-1891 12. Engemann D and Fischer R, Phys Stat Sol b E (1977) 195-202

13. Pankove JI, Pollak

FH

and Schnabolk C, J Non-Cryst Sol 35/36 (1980) 459-462 14. Nelson DF and Sturge MD, Phys Rev 137 (1965) A1117-A1130

15. Fowler WB and Dexter DL, Phys Rev 128 (1962) 2154-2165 16. Hopfield JJ, Comments on Solid State Physics 1 (1968) 16-18 17. Skettrup T, Phys Rev B g (1978) 2622-2631

18. Tauc J, Mat Res Bull 5 (1970) 721-730 19. Brodsky MH, Sol St Comm 36 (1980) 55-59

20. Dunstan DJ and Davies JJ, J Phys C E (1979) 2927-2943

Références

Documents relatifs

If the breast is pendulous elevate the breast (infra-mammary area/undersurface of the breast). Notice any changes in the breast skin such as dimpling, puckering, or asymmetry..

In addition, because Coxiella-like bacteria are present in tick salivary glands, they may be transmit- ted during blood meals and therefore directly represent an infection risk

spectrum from Au-Si(N) Schottky diodes after pulsed Ruby laser at 1 J/cm² beam energy density which is higher than the melting energy thershold.. The spectrum exhibits three

As we mentioned before, if we only look for a short time solution, the fully explicit scheme for the nonlinear convection term may be analyzed accordingly as well.. Moreover,

Our research showed that an estimated quarter of a million people in Glasgow (84 000 homes) and a very conservative estimate of 10 million people nation- wide, shared our

In the Eastern Mediterranean Region we have been collaborating with national authorities in developing their national capacity to guarantee the quality and safety of vaccines,

However, there are limited capabilities for strategic planning in health development in most countries, including in human resources development which is a priority in most

ASSOCIATION OF CANADA LANDS SURVEYORS - BOARD OF EXAMINERS WESTERN CANADIAN BOARD OF EXAMINERS FOR LAND SURVEYORS ATLANTIC PROVINCES BOARD OF EXAMINERS FOR LAND SURVEYORS ---..