• Aucun résultat trouvé

Stabilisation par feedback de systèmes quantiques ouverts (

N/A
N/A
Protected

Academic year: 2022

Partager "Stabilisation par feedback de systèmes quantiques ouverts ("

Copied!
56
0
0

Texte intégral

(1)

Stabilisation par feedback de systèmes quantiques ouverts ( Collège de France, 14 mars 2014)

Pierre Rouchon

Centre Automatique et Systèmes Mines ParisTech

1 / 52

(2)

Feedback for quantum systems: the back-action of the measure.

A typical stabilizing feedback-loop for a classical system

system

controller

Two kinds of stabilizing feedbacks for quantum systems

1. Measurement-based feedback: measurement back-action onS is stochastic (collapse of the wave-packet); controller is

classical; the control inputu is a classical variable appearing in some controlled Schrödinger equation;udepends on the past measures.

2. Coherent/autonomous feedback and reservoir engineering:the systemSis coupled to another quantum system (the controller);

the composite system,HS⊗ Hcontroller, is an open-quantum system relaxing to some target (separable) state or decoherence free subspace.

2 / 52

(3)

Outline

Feedback stabilization of photons: the LKB photon box The closed-loop experiment (2011)

Quantum stochastic model

QND measurement and the quantum-state feedback Dynamical models of open quantum systems

Discrete-time: Markov process/Kraus maps

Continuous-time: stochastic/Lindblad master equations Stabilization of "Schrödinger cats" by reservoir engineering

The principle

Discrete-time example: the LKB photon box

Continuous-time examples and Fokker-Planck equations Conclusion

Appendix

Design of a strict control Lyapunov function State estimation and stability of quantum filtering Schrödinger cats and Wigner functions

Reservoir engineering stabilization: complements Books on open quantum systems

3 / 52

(4)

The first experimental realization of a

quantum state feedback The LKB photon box:group of S.Haroche and J.M.Raimond

1

Stabilization of a quantum state with exactlynphoton(s) (n=0,1,2,3, . . .).

Experiment:C. Sayrin et. al., Nature 477, 73-77, September 2011.

Theory:I. Dotsenko et al., Physical Review A, 80: 013805-013813, 2009.

R. Somaraju et al., Rev. Math. Phys., 25, 1350001, 2013.

H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.

1Courtesy of I. Dotsenko. Sampling period 80µs.

4 / 52

(5)

Three quantum features emphasized by the LKB photon box

2 1. Schrödinger equation: wave function|ψi ∈ H, density operatorρ

d

dt|ψi=−~iH|ψi, d

dtρ=−~i[H, ρ], H=H0+uH1 2. Origin of dissipation: collapse of the wave packetinduced by the

measure of observableOwith spectral decompositionP

µλµPµ:

I measure outcomeµwith proba.pµ =hψ|Pµ|ψi= Tr(ρPµ) depending on|ψi,ρjust before the measurement

I measure back-action if outcomeµ:

|ψi 7→ |ψi+= Pµ|ψi

phψ|Pµ|ψi, ρ7→ρ+= PµρPµ

Tr(ρPµ) 3. Tensor product for the description of composite systems(S,M):

I Hilbert spaceH=HS⊗ HM

I HamiltonianH=HSIM+Hint+ISHM I observable on sub-systemM only:O=ISOM.

2S. Haroche and J.M. Raimond.Exploring the Quantum: Atoms, Cavities and Photons.Oxford Graduate Texts, 2006.

5 / 52

(6)

The composite system

I SystemS

corresponds to a quantized mode in

C:

HS = (

X

n=0

ψn|ni

n)n=0∈l2(C) )

,

where

|ni

represents the Fock state associated to exactly

n

photons inside the cavity

I MeterM

is associated to atoms :

HM =C2

, each atom admits two energy levels and is described by a wave function

cg|gi+ce|ei

with

|cg|2+|ce|2=

1; atoms leaving

B

are all in state

|gi

I

When atom comes out

B, the state|ΨiB ∈ HS⊗ HM

of the composite system atom/field is

separable

|ΨiB =|ψi ⊗ |gi.

6 / 52

(7)

S: quantum harmonic oscillator

I Hilbert space:

HS ={P

n≥0ψn|ni, (ψn)n≥0∈l2(C)}.

I Quantum state space:

D={ρ∈ L(HS), ρ =ρ, Tr(ρ) =1, ρ≥0}.

I Operators and commutations:

a|ni=√

n|n−1i,a|ni=√

n+1|n+1i; N=aa,N|ni=n|ni;

[a,a] =I,af(N) =f(N+I)a;

Dα=eαa−αa. a=X +iP= 1

2 x+∂x

, [X,P] =ıI/2.

I Hamiltonian:HS/~=ωcaa+uc(a+a).

(associated classical dynamics:

dx

dtcp, dpdt =−ωcx−√ 2uc).

I Coherent state of amplitude α∈C:|αi=P

n≥0

e−|α|2/2αn

n!

|ni;|αi ≡π11/4eı

2x=αe(x−

2<α)2 2

a|αi=α|αi,Dα|0i=|αi.

|0

|1

|2 ω

c

|n

ω

c

u

c

... ...

7 / 52

(8)

M: 2-level system, i.e. a qubit

I Hilbert space:

HM =C2={cg|gi+ce|ei, cg,ce∈C}.

I Quantum state space:

D={ρ∈ L(HM), ρ =ρ, Tr(ρ) =1, ρ≥0}.

I Operators and commutations:

σ-=|gihe|,σ+-=|eihg| σx-+=|gihe|+|eihg|; σy=iσ-−iσ+=i|gihe| −i|eihg|; σz+σ-−σ-σ+=|eihe| − |gihg|; σx2=I,σxσy =iσz,[σxy] =2iσz, . . .

I Hamiltonian:HM/~=ωqσz/2+uqσx.

I Bloch sphere representation:

D=n

1

2 I+xσx+yσy+zσz (x,y,z)∈R3, x2+y2+z2≤1o

| g

| e ω

q

u

q

8 / 52

(9)

The Markov model (1)

C

B

D R

1

R

2

I When atom comes outB:|ΨiB =|ψi ⊗ |gi.

I Just before the measurement inD, the state is in general entangled(not separable):

|ΨiR2 =USM |ψi ⊗ |gi

= Mg|ψi

⊗ |gi+ Me|ψi

⊗ |ei whereUSM is the total unitary transformation (Schrödinger propagator) defining the linear measurement operatorsMgand MeonHS. SinceUSM is unitary,MgMg+MeMe=I.

9 / 52

(10)

The Markov model (2)

C

B

D R

1

R

2

The unitary propagatorUSM is derived from Jaynes-Cummings HamiltonianHSMin the interaction frame. Two kind of qubit/cavity Halmitonians:

resonant,HSM/~=i Ω(vt)/2

a⊗σ-a⊗σ+ , dispersive,HSM/~= Ω2(vt)/(2δ)

N⊗σz, whereΩ(x) = Ω0ex

2

w2,x =vt withv atom velocity,Ω0vacuum Rabi pulsation,wradial mode-width and whereδ=ωq−ωc is the detuning between qubit pulsationωqand cavity pulsationωc (|δ| Ω0).

10 / 52

(11)

The Markov model (3)

Just before the measurement inD, the atom/field state is:

Mg|ψi ⊗ |gi+Me|ψi ⊗ |ei

Denote byµ∈ {g,e}the measurement outcome in detectorD: with probabilitypµ=hψ|MµMµ|ψiwe getµ. Just after the measurement outcomeµ,the state becomes separable:

|ΨiD=1p

µ (Mµ|ψi)⊗ |µi=

Mµ

hψ|MµMµ|ψi|ψi

⊗ |µi.

Markov process(density matrix formulationρ∼ |ψihψ|)

ρ+=





Mg(ρ) = MgρM

g

Tr(MgρMg), with probabilitypg= Tr

MgρMg

; Me(ρ) = MeρMe

Tr(MeρMe), with probabilitype= Tr

MeρMe . Kraus map:

E

+/ρ) =K(ρ) =MgρMg+MeρMe.

11 / 52

(12)

A controlled Markov process (input

u, stateρ, outputy

)

Inputu: classical amplitude of a coherent micro-wave pulse.

Stateρ: the density operator of the photon(s) trapped in the cavity.

Outputy: quantum projective measure of the probe atom.

Theideal modelreads

ρk+1=













DukMgρkMgDuk Tr

MgρkMg yk =gwith probabilitypg,k = Tr

MgρkMg

DukMeρkMeDuk Tr

MeρkMe yk =ewith probabilitype,k = Tr

MeρkMe

I Displacement unitary operator(u∈R):Du=eua−uawith a=upper diag(√

1,√

2, . . .)the photon annihilation operator.

I Measurement Kraus operators in the linear dispersive case Mg=cosφ

0N+φR

2

andMe=sinφ

0N+φR

2

:MgMg+MeMe=I withN=aa=diag(0,1,2, . . .)the photon number operator.

12 / 52

(13)

u =

0: Quantum Non Demolition (QND) measure of photons.

ρk+1=













cos

φ0N+φR

2

ρkcos

φ0N+φR

2

Tr

cos2

φ0N+φR

2

ρk

with prob. Tr cos2φ

0N+φR

2

ρk

sin

φ0N+φR

2

ρksin

φ0N+φR

2

Tr

sin2

φ0N+φR

2

ρk

with prob. Tr sin2φ

0N+φR

2

ρk

Steady state:any Fock stateρ=|n¯ihn¯|(n¯∈N) is a steady-state (no other steady state when(φR, φ0, π)areQ-independent)

Martingales:for any real functiong,Vg(ρ) = Tr(g(N)ρ)is a martingale:

E

Vgk+1)/ ρk=Vgk).

Convergence to a Fock state when(φR, φ0, π)areQ-independent:

V(ρ) =−12

P

nhn|ρ|ni2is a super-martingale with

E

(Vk+1)/ ρk) =Vk)Q(ρk)

whereQ(ρ)≥0 andQ(ρ) =0 iff,ρis a Fock state.

For a realization starting fromρ0, the probability to converge towards the Fock state|¯nihn¯|is equal to Tr(|n¯ihn¯|ρ0) =h¯n|ρ0|n¯i. 13 / 52

(14)

Structure of the stabilizing quantum feedback scheme

With a sampling time of 80µs, the controller is classical here

I Goal: stabilization of the steady-state|n¯ihn¯|(controller set-point).

I At each time stepk:

1. readyk the measurement outcome for probe atomk. 2. update the quantum state estimationρestk−1toρestk fromyk 3. computeuk as a function ofρestk (state feedback).

4. apply the micro-wave pulse of amplitudeuk. Anobserver/controllerstructure:

1. real-time state estimationbased on asymptotic observer: here quantum filteringtechniques;

2. state feedbackstabilization towards a stationary regime: here control Lyapunovtechniques based on open-loop martingales

Tr(g(N)ρ).

It takes into accountimperfections,delays(5 sampling) and cavity decoherence.

In finite dimension (truncation tonmaxphotons), all the mathematical details and convergence proof are given in the Automatica 2013

paper 14 / 52

(15)

LKB photon-box: Markov process with detection errors (1)

I With pure stateρ=|ψihψ|, we have ρ+=|ψ+ihψ+|= 1

Tr

MµρMµMµρMµ

when the atom collapses inµ=g,ewith proba. Tr

MµρMµ .

I Detection error rates: P(y =e/µ=g) =ηg∈[0,1]the probability of erroneous assignation toewhen the atom collapses ing;P(y =g/µ=e) =ηe∈[0,1](given by the contrast of the Ramsey fringes).

Bayes law: expectationρ+of|ψ+ihψ+|knowingρand the imperfect detectiony.

ρ+=





(1−ηg)MgρMgeMeρMe

Tr((1−ηg)MgρMgeMeρMe)ify=g, prob. Tr

(1ηg)MgρMg+ηeMeρMe

;

ηgMgρMg+(1−ηe)MeρMe

Tr(ηgMgρMg+(1−ηe)MeρMe)ify=e, prob. Tr

ηgMgρMg+ (1ηe)MeρMe .

ρ+does not remain pure: the quantum stateρ+becomes a mixed

state;|ψ+ibecomes physically irrelevant (not numerically). 15 / 52

(16)

LKB photon-box: Markov process with detection errors (2)

We get

ρ+=





(1−ηg)MgρMgeMeρMe

Tr((1−ηg)MgρMgeMeρMe), with prob. Tr

(1ηg)MgρMg+ηeMeρMe

;

ηgMgρMg+(1−ηe)MeρMe

Tr(ηgMgρMg+(1−ηe)MeρMe) with prob. Tr

ηgMgρMg+ (1ηe)MeρMe .

Key point:

Tr

(1−ηg)MgρMgeMeρMe

and Tr

ηgMgρMg+ (1−ηe)MeρMe are the probabilities to detecty =g ande, knowingρ.

Generalization:with(ηµ0)a left stochastic matrixηµ0≥0 and P

µ0ηµ0=1, we have ρ+=

P

µηµ0MµρMµ Tr

P

µηµ0MµρMµ when we detecty =µ0. The probability to detecty =µ0knowingρis Tr

P

µηµ0MµρMµ .

16 / 52

(17)

Continuous/discrete-time Stochastic Master Equation (SME)

Discrete-time modelsareMarkov processes

ρk+1=

Pm

µ=1ηµ0MµρkMµ

Tr(Pmµ=1ηµ0MµρkMµ), with proba. pµ0k) =Pm

µ=1ηµ0Tr

MµρkMµ associated toKraus maps(ensemble average, quantum channel)

E

k+1|ρk) =Kk) =X

µ

MµρkMµ with X

µ

MµMµ=I

Continuous-time modelsarestochastic differential systems dρt = −~i[H, ρt] +X

ν

LνρtLν12(LνLνρttLνLν)

! dt

+X

ν

√ην

LνρttLν− Tr

(Lν+Lνt ρt

dWν,t

driven byWiener processdWν,t =dyν,t−√ην Tr

(Lν+Lνt dt with measuresyν,t, detection efficienciesην ∈[0,1]and

Lindblad-Kossakowskimaster equations (ην ≡0):

d

dtρ=−~i[H, ρ] + +X

ν

LνρtLν12(LνLνρttLνLν)

17 / 52

(18)

Continuous/discrete-time diffusive SME

With a single imperfect measuredyt =√η Tr

(L+Lt

dt+dWt

and detection efficiencyη∈[0,1], the quantum stateρt is usually mixed and obeys to

t =

~i[H, ρt] +tL12(LttLL) dt +√η

ttL− Tr

(L+Lt ρt

dWt

driven by the Wiener processdWt

WithIt¯o rules, it can be written as the following "discrete-time" Markov model

ρt+dt= MdytρtMdyt + (1−η)LρtLdt Tr

MdytρtMdyt + (1−η)LρtLdt withMdyt =I+

~iH12

LL

dt+√ηdytL.

18 / 52

(19)

A key physical example in circuit QED

3

Superconducting qubit dispersively coupled to a cavity traversed by a microwave signal (input/output theory).

The back-action on the qubit state of a single measurement of both output fieldquadraturesIt

andQt is described by a simple SME for the qubit density operator.

t = [uσ-−uσ+, ρt] +γtzρσz−ρ) dt +p

ηγt/2 σzρttσz−2 Tr(σzρtt

dWtI+ıp

ηγt/2[σz, ρt]dWtQ withIt andQt given bydIt =p

ηγt/2 Tr(2σzρt)dt+dWtI and

dQt =dWtQ, whereγt ≥0 is related by the read-outpulse shapeand η∈[0,1]is the detection efficiency.

3M. Hatridge et al. Quantum Back-Action of an Individual Variable-Strength Measurement. Science, 2013, 339, 178-181.

19 / 52

(20)

Watt regulator: classical analogue of quantum coherent feedback.

4

From WikiPedia

The first variations of speedδωand governor angleδθobey to

d

dtδω=−aδθ d2

dt2δθ=−Λd

dtδθ−Ω2(δθ−bδω) with (a,b,Λ,Ω) positive parame- ters.

Third order system d3

dt3δω+ Λd2

dt2δω+ Ω2d

dtδω+abΩ2δω=0.

Characteristic polynomialP(s) =s3+ Λs2+ Ω2s+abΩ2with roots having negative real parts iffΛ>ab:governor damping must be strong enough to ensure asymptotic stability.

Key issues:asymptotic stability and convergence rates.

4J.C. Maxwell: On governors. Proc. of the Royal Society, No.100, 1868.

20 / 52

(21)

Reservoir Engineering and coherent feedback

5

System Reservoir

Engineered interaction

dissipation

κ

H

int

H

sys

H

res

H =Hres+Hint+Hsyst

if

ρt→∞→ ρres⊗ |ψ¯ihψ¯|

exponentially on a time scale of

τ ≈

1/κ then . . . .

5See, e.g., the lectures of H. Mabuchi delivered at the "Ecole de physique des Houches", July 2011.

21 / 52

(22)

Reservoir Engineering and coherent feedback

5

System Reservoir

Engineered interaction

dissipation

κ

H

int

H

sys

H

res

γ

H =Hres+Hint+Hsyst

. . . .

ρt→∞→ ρres⊗ |ψ¯ihψ¯|+∆, ifκγ

then

k∆k

1

5See, e.g., the lectures of H. Mabuchi delivered at the "Ecole de physique des Houches", July 2011.

21 / 52

(23)

Reservoir stabilizing "Schrödinger cats"

|cαi= (|αi+i|

i)/√

2.

6

Cavity mode (system) atom (reservoir)

R1

R2

Box of atoms

Aim:

engineer atom-mode interaction, to stabilize |-α +|α

DC field:

(controls atom frequency) ENS experiment

Jaynes-Cumming Hamiltionian

H(t)/~=ωcaaIMq(t)IS⊗σz/2+iΩ(t) a⊗σ-a⊗σ+ /2 with the open-loop controlt7→ωq(t)combiningdispersiveωq6=ωc andresonantωqcinteractions.

6A. Sarlette et al: Stabilization of Nonclassical States of the Radiation Field in a Cavity by Reservoir Engineering. Physical Review Letters, Volume 107, Issue 1, 2011.

22 / 52

(24)

Composite interaction with

δ(t)=ωq(t)−ωc

ge

time t tr/2

-tr/2

-T/2 T/2

δ(t)δ0

0 0

0

top cavity mirror

bottom cavity mirror Ω(vt)

U =Uoff-resonant-1

U =X(ξN)Z(φN),

23 / 52

(25)

Composite interaction with

δ(t)=ωq(t)−ωc

ge

time t tr/2

-tr/2

-T/2 T/2

δ(t)δ0

0 0

0

top cavity mirror

bottom cavity mirror Ω(vt)

U =UresonantUoff-resonant-1

U =Y(θNr) X(ξN)Z(φN),

23 / 52

(26)

Composite interaction with

δ(t)=ωq(t)−ωc

ge

time t tr/2

-tr/2

-T/2 T/2

δ(t)δ0

0 0

0

top cavity mirror

bottom cavity mirror Ω(vt)

U =Uoff-resonant-2UresonantUoff-resonant-1

U =Z(−φN)X(ξN) Y(θrN) X(ξN)Z(φN),

23 / 52

(27)

Composite interaction with

δ(t)=ωq(t)−ωc

ge

time t 0 tr/2

-tr/2

-T/2 T/2

δ(t)δ0

0 0

top cavity mirror

bottom cavity mirror Ω(vt)

U ≈e−iφKerrN2UresonanteKerrN2

23 / 52

(28)

Convergence of

K

iterates towards

i+i|

i /√

2

Iterationsρk+1=Kk) =MgρkMg+MeρkMein the Kerr frame ρ=e−ihKerrN ρKerreihKerrN yields

ρKerrk+1=KKerrKerrk ) =MKerrg ρKerrk (MKerrg )+MKerre ρKerrk (MKerre ). withMKerrg =cos(u2)cos(θN/2) +sin(u2)sin(θN/2)

N a and MKerre =sin(u2)cos(θN+1/2)−cos(u2)asin(θN/2)

N .

Assume|u| ≤π/2,θ0=0,θn∈]0, π[forn>0 and limn7→+∞θn=π/2, then (Zaki Leghtas, PhD thesis (2012))

I exists aunique common eigen-state|ψKerriofMKerrg andMKerre : ρKerr =|ψKerrihψKerr|fixed point ofKKerr.

I if, moreovern7→θnis increasing, limk7→+∞ρKerrkKerr. For well chosen experimental parameters,ρKerr ≈ |αihα|and hKerrN ≈πN2/2. Sincee−iπ2N2i= e−iπ/4

2i+i|-αi :

k7→+∞lim ρk = 12

i+i|-αi

|+ih-α|

6

= 12ihα|+12|-αih-α|.

24 / 52

(29)

Wigner function

Wρ

for different values of the density operator

ρ

Wρ:C3ξ→ 2π

Tr

eiπND−ξρDξ

∈[−

2/π, 2/π]

Re(ξ)

Im(ξ)

−0.6

−0.4

−0.2 0 0.2 0.4 Fock state |n=0> Fock state |n=3> Coherent state |α=1.8> 0.6

Coherent state |-α> Statistical mixture of

|-α> and |α> Cat state |-α>+|α>

-3-3

0 0

3 3

25 / 52

(30)

An approximation by a continuous-time model

7

Cavity mode (system) atom (reservoir)

R1

R2

Box of atoms

Aim:

engineer atom-mode interaction, to stabilize |-α +|α

DC field:

(controls atom frequency) ENS experiment

In the Kerr frameρ=e−iπ/2N2ρKerreiπ/2N2:

d

dtρKerr=u[aa, ρKerr] +κ Kerra−(NρKerrKerrN)/2 Identical to the Lindbald master equation of adamped harmonic oscillator(κ >0) driven by a coherent input field of amplitudeu.

Simulations: convergence from vacuum inidealandrealisticcases.

7A. Sarlette et al: Stabilization of nonclassical states of one and two-mode radiation fields by reservoir engineering. Phys. Rev. A 86, 012114 (2012).

26 / 52

(31)

Convergence of the quantum damped harmonic oscillator

Lemma:the solutions of

d

dtρ=u[aa, ρ] +κ aρa−(Nρ+ρN)/2 converge exponentially towards|αihα|withα=2u/κ.

Elementary proof:under the unitary change of frame ρ=ea−αa) ξe−(αa−αa) the new density operatorξis governed by

d

dtξ=κ aξa−(Nξ+ξN)/2

; its energyE = Tr(Nξ) = Tr a

converges exponentially to 0 since it obeys todtdE =−κE; thusξconverges exponentially to|0ih0|. Computation only based on commutation relations:

[a,a] =1, af(N) =f(N+I)a, e−(αaa)ae(αa−αa)=a+α.

27 / 52

(32)

Quantum Fokker-Planck equation: damped harmonic oscillator

d

dtρ=u[aa, ρ] +κ aρa−(Nρ+ρN)/2 ρcan be represented by itsWigner functionWρdefined by

C3ξ=x +ip7→Wρ(ξ) =π2 Tr

eiπNe−ξaaρeξa−ξa With the correspondences

∂ξ = 12

∂x −i ∂

∂p

, ∂

∂ξ =12

∂x +i ∂

∂p

Wρa=

ξ−12

∂ξ

Wρ, W =

ξ+12

∂ξ

Wρ Wρa =

ξ+12

∂ξ

Wρ, Waρ=

ξ12

∂ξ

Wρ we get the followingPDEforWρ=2u/κ):

∂Wρ

∂t = κ2

∂x

(x−α)Wρ + ∂

∂p

pWρ

+14∆Wρ

converging toward theGaussianWρ(x,p) =π2e−2(x−α)2−2p2.

28 / 52

(33)

Reservoir with the cavity relaxation (1/κ

c

photon life-time)

8

Cavity mode (system) atom (reservoir)

R1

R2

Box of atoms

Aim:

engineer atom-mode interaction, to stabilize |-α +|α

DC field:

(controls atom frequency) ENS experiment

In the Kerr representation frame

ρ=e−iπ/2N2ρKerreiπ/2N2

:

d dtρKerr=

reservoir relaxation

z }| {

u[aa, ρKerr] +κ Kerra−(NρKerrKerrN)/2c eiπNKerrae−iπN−(NρKerrKerrN)/2

| {z }

cavity decoherence

.

8A. Sarlette et al: Stabilization of nonclassical states of one and two-mode radiation fields by reservoir engineering. Phys. Rev. A 86, 012114 (2012).

29 / 52

(34)

The steady-state for

κc >

0

The steady stateρKerr in the Kerr frame

0=u[aa, ρKerr ] +κ Kerra−(NρKerrKerrN)/2

c eiπNKerrae−iπN−(NρKerrKerrN)/2 is unique

ρKerr = Z αc

−αc

µ(x)|xihx|dx.

The positive weight functionµ(Glauber-ShudarshanPdistribution) is given by

µ(x) =µ0

((αc)2−x2)c)2ex2rc

αc−x ,

withrc =2κc/(κ+κc)andαc=2u/(κ+κc). The normalization factorµ0>0 ensures thatRαc

−αcµ(x)dx =1.

Conjecture: global (exponential) convergence towardsρKerr ofρKerr(t) ast 7→+∞.

30 / 52

(35)

Robustness of the reservoir stabilizing the two-leg cat.

SinceWeiπNρKerre−iπN(ξ) =WρKerr(−ξ) the master Lindblad equation

d dtρKerr=

reservoir relaxation

z }| {

u[aa, ρKerr] +κ Kerra−(NρKerrKerrN)/2c aeiπNρKerre−iπNa−(NρKerrKerrN)/2

| {z }

cavity decoherence

.

yields to the followingnon localdiffusion PDE (quantum Fokker-Planck equation):

∂WρKerr

∂t (x,p)

=κ+κ2 c

∂x

(xα)WρKerr +

∂p

pWρKerr

+14∆WρKerr

(x,p)

c (x2+p2+12) WρKerr (−x,−p)

WρKerr (x,p)

!

+161 ∆WρKerr (−x,−p)

∆WρKerr (x,p)

!!

−κc

x 2

∂WρKerr

∂x (−x,−p)

+ ∂WρKerr

∂x (x,p)

+p2

∂WρKerr

∂p (−x,−p)

+ ∂WρKerr

∂p (x,p)

Convergence towardsWρKerr (x,p) =Rαc

−αc 2µ(α)

π e−2(x−α)2−2p2dα remains to be proved.

31 / 52

(36)

Quantum information processing with cat-qubits

9

It is possible withcircuit QEDto design an open quantum system governed by

d

dtρ=u[(a2)a2, ρ] +κ

a2ρ(a2)−((a2)a2ρ+ρ(a2)a2)/2

whereais replaced bya2. The supports of all solutionsρ(t)converge to thedecoherence free spacespanned by the even and odd

cat-state;

|Cα+i ∝ |αi+|-αi, |Cαi ∝ |αi − |-αiwithα=p 2u/κ.

The corresponding PDE forWρ is oforder 4inx andp.

A similar systemwhereais replaced now witha4could be very interesting for quantum information processing where the logical qubit is encoded in the planes spanned by even and odd cat-states:

|C+αi,|Ci+α

i ,

|Cαi,|C

i .withα=p4 2u/κ.

The corresponding PDE forWρ is oforder 8inx andp.

9M. Mirrahimi et al: Dynamically protected cat-qubits: a new paradigm for universal quantum computation,arXiv:1312.2017v1, 2014.

32 / 52

(37)

Conclusion: convergence issues of open-quantum systems

Discrete time model (Kraus maps):

ρk+1=K(ρk) =X

ν

MνρkMν with X

ν

MνMν =I Continuous-time model (Lindbald, Fokker-Planck eq.):

d

dtρ=−~i[H, ρ] +X

ν

LνρLν−(LνLνρ+ρLνLν)/2

, Stability induces by contraction for a lot of metrics (nuclear norm

Tr(|ρ−σ|), fidelity Tr p√ρσ√ρ

, see the work of D. Petz).

Open issuesmotivated byrobustquantum information processing:

1. characterization of theΩ-limit support ofρ:decoherence free spaces are affine spaces where the dynamics are of Schrödinger types; they can be reduced to a point (pointer-state);

2. Estimation of convergence rate and robustness.

3. Reservoir engineering:design of realisticMν andLν to achieve rapid convergence towards prescribed affine spaces (protection against decoherence).

33 / 52

(38)

Collaborators and scientific environment

I Former PhDs and PostDocs:Hadis Amini, Hector Bessa Silveira, Zaki Leghtas, Alain Sarlette, Ram Somaraju.

I LKB Physicists: Michel Brune, Igor Dotsenko, Sébastien Gleyzes, Serge Haroche, Jean-Michel Raimond,Bruno Peaudecerf, Clément Sayrin, Xingxing Zhou.

I Quantic project (INRIA/ENS/MINES):Benjamin Huard, François Mallet, Mazyar Mirrahimi,Landry Bretheau, Philippe Campagne, Joachim Cohen, Emmanuel Flurin, Ananda Roy, Pierre Six.

I Mathematicians: Karine Beauchard, Jean-Michel Coron, Thomas Chambrion, Bernard Bonnard, Ugo Boscain, Sylvain Ervedoza, Stéphane Gaubert, Andrea Grigoriu, Claude Le Bris, Yvon Maday, Vahagn Nersesyan, Clément Pellégrini, Paulo Sergio Pereira da Silva, Jean-Pierre Puel, Lionel Rosier, Julien Salomon, Rodolphe Sepulchre, Mario Sigalotti, Gabriel Turinici.

I Centre Automatique et Systèmes:François Chaplais, Florent Di Méglio, Jean Lévine, Philippe Martin, Nicolas Petit, Laurent Praly.

I And also: Lectures at Collège de France, ANR projects CQUID

and EMAQS, UPS-COFECUB, . . . 34 / 52

(39)

Quantum state feedback to stabilize the set-point

|¯nih¯n|

The Lyapunov feedback scheme is based on astrict control Lyapunov function:

V(ρ) =X

n

−hn|ρ|ni2nhn|ρ|ni

where >0 is small enough and

σn=





1 4+P¯n

ν=1 1

νν12, ifn=0;

P¯n ν=n+1

1

νν12, ifn∈[1,¯n−1];

0, ifn= ¯n;

Pn ν=¯n+11

ν +ν12, ifn∈[¯n+1,+∞] Feedback law:u=f(ρ) =:Argmin

υ∈[−¯u,¯u]

V

Dυ

MgρMg+MeρMe Dυ

.

Achieveglobal stabilizationsince the decrease isstrict

∀ρ6=|n¯ihn¯|, V

Df(ρ)

MgρMg+MeρMe Df(ρ)

<V

ρ .

35 / 52

(40)

The control Lyapunov function used for experiment.

0 2 4 6 8

0 0.2 0.4 0.6 0.8 1

photon number n

Coefficients σn of the control Lyapunov function

V(ρ) =P

n −hn|ρ|ni2nhn|ρ|ni

for

n¯=

3.

σn∼log(n): key issue to avoid trajectories escaping ton= +∞.

36 / 52

Références

Documents relatifs

The quantum feedback operation injects energy and entropy or information into the system and thus modifies the energy balance the first law as well as the entropy balance the

So there is a dear difference between this CB spectrum and the spectra that were calculated before: interference terms between photons coming from different atomic rows show up,

2 - فيراـعتلا :ةيـئارـجلإا حاـيترلإا يسفنلا يصخشلا ( subjective well-being :) دكؤي &#34;رنيد Diener &#34; نأ ثلاث حايترلال يهو تناوكم : )ةايلحا عم

Abstract: We address the standard quantum error correction using the three-qubit bit-flip code, yet in continuous-time.. This entails rendering a target manifold of quantum

In this part, we have described three modes of quantum control on the qubit. Mea- surement based feedback allows us to stabilize a state by extracting information, via

The reliable estima- tion of the cavity state at each feedback cycle allows us to follow in real time the quantum jumps of the photon number and then to efficiently compensate

La r´ecente th´eorie math´ematique des syst`emes dynamiques quantiques, r´esum´ee par Pillet [ P3 ], donne une solide formulation g´en´erale de l’´etude d’un syst`eme

When tumors evidenced a diameter of approximately 8 mm, distribution of [ 18 F]ICF15002 was undertaken in the three melanoma xenograft models (pigmented B16BL6 murine and SK-MEL-3