• Aucun résultat trouvé

Hierarchical Energy Management System for Optimising Self-consumption in Building MicroGrids

N/A
N/A
Protected

Academic year: 2022

Partager "Hierarchical Energy Management System for Optimising Self-consumption in Building MicroGrids"

Copied!
1
0
0

Texte intégral

(1)

Journées SEEDS 11-14 Juin 2019 - Ile d'Oléron

Ministère de lʼEnseignement supérieur, de la Recherche et de lʼInnovation

GT Micro-Réseau

Hierarchical Energy Management System for

Optimising Self-consumption in Building MicroGrids

Three-level hierarchical control structure for a grid- connected building microgrid.

Control Strategy

Aiming to keep adequate

ranges of self-consumption and self-coverage indexes under PV power generation and building power

consumption uncertainties, the EMS was divided into

three modules:

• Upper Model Predictive Control (MPC1)

• Lower Model Predictive Control (MPC2)

• Power Sharing Module with state machine

Data prediction of PV power generation (𝑷𝑷𝑽), building power consumption (𝑷𝒄𝒐𝒏𝒔) and number

of PEVs plugged to the BMG (𝑵𝑷𝑬𝑽)

State of charge of each Plug-in Electric Vehicle (PEV).

(a) Ideal case without any disturbance.(b) Case with error in data prediction.

Power sharing Power sharing

Hierarchical Control MPC. (a) MPC1 variables in Daily Market time frame. (b) MPC2 variables in Intraday Market time frame. (c) Li-ion batteries SoC, self-consumption and self-sufficiency index in the three days.

Without disturbance With disturbance

Hierarchical MPC Hierarchical MPC

Building MicroGrid Overview

Renewable energy sources are increasingly deployed as

distributed generators,

restructuring the traditional electrical grid toward smart

grids. Their intermittent power generation makes difficult the development of a complete

carbon-free MicroGrid. The

Hierarchical Control structure

has demonstrated very suitable to manage multivariable

systems with different time frames like those of Building MicroGrids (BMG).

D. Y. Yamashita

1,2

, I. Vechiu

1

, J. P. Gaubert

2

(1) ESTIA Institute of Technology

(2) Université de Poitiers, Laboratoire d’Informatique et d’Automatique pour les Systèmes (LIAS) – ENSIP

$ Electricity price Energy exchange

Data prediction

PGRIDDM

P GRIDIM

$

$

Transformer

PPEV1

PPEVn

PBATIM

PIMall_PEV Pmax&min All_PEV

Pall_PEVDM PBATDM

......

SOCDMy x = {PEV1 n, BAT}

y = {PEVall, BAT}

MPC1

PEV1

POWER SHARING

PEVn

Grid

Aggregator

SOCmeasx SOCIMy

Grid signals

MPC2

Building MicrogridMain Grid LC

DC DC

MPPT

DC DC

LC

DC DC

LC

DC DC

C1

Cn wpv

wd

Load

DC AC

Références

Documents relatifs

Unit´e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex Unit´e de recherche INRIA Rhˆone-Alpes, 655, avenue de l’Europe, 38330 MONTBONNOT ST

optimal profiles for the battery current i b and voltage v b are generated by an optimization problem with continuous−time constraint validation ensured by the B−splines properties;

The closed loop results in error dynamics comprising an inner loop associated with the angular velocity error, and an outer loop associated with the attitude error.. We then

Dans cette thèse, le dimensionnement, le contrôle et la gestion d'énergie optimale de Microgrid sont proposées dans les deux modes: mode îloté et mode connecté au réseau..

Because being able to instrument real buildings with a set of sensors and implementing control schemes for managing energy is not easy, a building mock-up has

The control objective is threefold: (i) transferring the extracted active power from the wind turbine generator to the power grid; (ii) cancelling harmonic currents and reactive

A smart grid ready building energy management system based on a hierarchical model predictive control..

The microgrid considered for exemplification is connected to an external grid via a transformer and contains a local consumer, a renewable generator (wind turbine) and a