• Aucun résultat trouvé

PERTE DE CHARGE LE LONG D'UN RIDEAU DE PALPLANCHES

N/A
N/A
Protected

Academic year: 2022

Partager "PERTE DE CHARGE LE LONG D'UN RIDEAU DE PALPLANCHES"

Copied!
3
0
0

Texte intégral

(1)

80 L A H O U I L L E B L A N C H E N " 1 - J A N V . - F É V . 1 9 5 0

NOTULE HYDRAULIQUE HYDRAULIC BRIEF

Perte de charge le long d'un rideau de palplanches

The head losses along a sheet p i l i n g w a l l

Calcul de la perte de charge sur la face aval d'un rideau de palplanches, pour un écoulement plan en milieu poreux homogène et isotrope. Les résultats numériques sont donnés sons la forme d'un réseau de courbes.

The head losses on the downstream side of a sheet pilin'g, calculated as a two dimensional flow in a porous, homogeneous isotropic medium. Numerical results are given as a curve net.

D a n s u n a r t i c l e p r é c é d e n t ( № 1, 1955, p . 109), n o u s a v o n s c a l c u l é le d é b i t d ' i n f i l t r a t i o n s o u s u n r i d e a u de p a l p l a n c h e s . N o u s a l l o n s m a i n ­ t e n a n t c a l c u l e r le r a p p o r t d e la p e r t e de c h a r g e s u r la face a v a l , à la p e r t e d e c h a r g e t o t a l e . Ce r a p p o r t i n t e r v i e n t d a n s l ' é t u d e de la f o r m a ­ t i o n d e s r e n a r d s [ 1 ] .

1. — R a p p e l s

N o u s a v o n s v u q u e le r é s e a u i s o t h e r m e q u i r e p r é s e n t e l ' é c o u l e m e n t (flg. 1 ) a p o u r é q u a t i o n :

z = a log [ V ^ ' s n Z ]

+ fclog [ V F s n ( K + i K ' — Z ) ] (1) Z = $ -(- i W e s t le p o t e n t i e l c o m p l e x e ,

z — x-\- iy e s t la v a r i a b l e c o m p l e x e d u p l a n s u r l e q u e l o n r e p r é s e n t e le r é s e a u .

A u p o i n t le p l u s b a s de la p a l p l a n c h e , le p o t e n t i e l $c est d o n n é p a r :

s n $„ = - — / 1 d

v u

(2)

a v e c :

V

a 1 - f k

L e m o d u l e k est d é t e r m i n é p a r l ' o r d o n n é e du p o i n t C :

ijc = a A r c t g a - f b A r c t g ß (3) avec :

Fia. i 1- — V

V ' ( a / 6 ) — kx

Article published by SHF and available athttp://www.shf-lhb.orgorhttp://dx.doi.org/10.1051/lhb/1956022

(2)

JANV.-FÉV. 1 9 5 6 - N " 1 L A H O U I L L E B L A N C H E 8 1

o n p e u t é c r i r e , d ' a p r è s (4) :

kr = 1 — A- 1 + k

2 . — P e r t e d e c h a r g e

Il s'agit d ' é v a l u e r le r a p p o r t : ft0 — AD K ( * ) — $ , ,

hB — hD K ( A )

La f o r m u l e (2) p e r m e t d ' é c r i r e : 1 + k s u2 $e

1 — k s n2 <I>

b 1 — k a • 1 + A

ou, en p o s a n t

, 1—k j , , 2 \ 7 7 T , 1 + A-

/CX =

1 + 7c 2 # „

. 1 + / m (4)

(voir, p a r e x e m p l e , [ 2 ] , p . 2 3 ) . D ' a u t r e p a r t , ( [ 2 ] , p . 4) :

K (k) = - l i ^ - K (k\) = i - ± ^ L K' (*,)

et

u = 1 2

(1 + Ax) K'

On p e u t r é s o u d r e l ' é q u a t i o n (4) p a r a p p r o x i - m a t i o n s s u c c e s s i v e s , d e la f a ç o n s u i v a n t e ( [ 3 ] , p. 243) :

O n p a r t de la f o r m u l e :

dn (», A^) 1 + 2 S q'» cos 2 nx 1 + 2 S (— 1 )" q"2 cos 2 nx

ou

q — e x p

E n p o s a n t

K(A-1)- K' {kx)_

% v

2 K ' (Ax)

2 <I>FF

1 + V

1 — V B / A i + V B T Ä

= - 2 g ' cos 2 x -j- </'8 cos 6 x -L . . . 1 + 2 ç'* cos 4

x

+ 2 r /U i cos 8 x +

4-

= - (fig- 2) A a

Fin. 2

L e s f o n c t i o n s q' s o n t i n f é r i e u r e s à 1; d e s t a b l e s ( [ 2 ] , p . 114) d o n n e n t I o g1 0 q' e n f o n c t i o n d e A ]2. P o u r c h a q u e v a l e u r d e kl3 la f o r m u l e p r é c é d e n t e p e r m e t de c a l c u l e r x p a r a p p r o x i m a t i o n s s u c c e s - s i v e s .

O n c a l c u l e xL p a r l ' é q u a t i o n : 1 — V B / A

2 q' cos 2

x

x

1 + Y / B / A

p u i s x.,, q u i d o n n e u n e m e i l l e u r e p r é c i s i o n , p a r : 1 — V B / A

2 q t, cos 2

x

2 + r /8 cos 6

x, 1 + "ä^cösTxr

1 + V B / A et a i n s i d e s u i t e .

L e r a p p o r t d e s p e r t e s d e c h a r g e est : 2 . r

n — 1

7

(3)

82 L A H O U I L L E B L A N C H E № 1 - J A N V . - F É V . 1 9 5 6

P o u r c h a q u e v a l e u r d e ku o n c a l c u l e yc b p a r la f o r m u l e (3) d u p a r a g r a p h e 1, p u i s :

- ^ = 1

13 b

O n p e u t a l o r s t r a c e r les c o u r b e s d o n n a n t u en f o n c t i o n de c / B , p o u r d i v e r s e s v a l e u r s de A / B (fig. 2 ) .

L o r s q u e kx e s t v o i s i n d e 1 ( A / B v o i s i n de 1 et c / B p e t i t ) , q' e s t a s s e z p e t i t p o u r q u ' o n p u i s s e n é g l i g e r q'a o u m ê m e qri, o n o b t i e n t a l o r s r a p i d e - m e n t la v a l e u r d e u. Mais l o r s q u e kx t e n d v e r s 0, ( c / B v o i s i n de 1), q' t e n d v e r s 1 et le c a l c u l d e u d e v i e n t p l u s p é n i b l e . D a n s ce c a s , o n p e u t u t i - l i s e r la f o r m u l e a s y m p t o t i q u e s u i v a n t e .

3 . — F o r m u l e a s y m p t o t i q u e

L o r s q u e A't e s t p e t i t et c / B v o i s i n de 1

Uc Va

b ~ 2 B

Uc y,: _ o / / , A B et

<ln (u, k'i) ~ 1 ch v d o n c , d ' a p r è s (.4) :

4 A ch-

1 + * ,

et, en n é g l i g e a n t

4 A 2 * . 1 + * :

d e v a n t 1 8 A

Vue

log D ' a u t r e p a r t

K (ft1 i ) — log —r ~ log 8 A _ F i n a l e m e n t

log 8 B

, 8 B . . 8 A loa \- l og

% yL

Cette f o r m u l e a été o b t e n u e p a r M . M A N D E I , p a r u n a u t r e p r o c é d é [ 1 ] . O n p e u t a u s s i l ' é c r i r e :

log 8 B

Si A / B ^ 1 0 , l ' e r r e u r est i n f é r i e u r e à 5.10—"

p a r d é f a u t , à p a r t i r de C / B = 0,7.

R . J A C Q U I O T . Ingénieur à la SOGREAH,

ii Grenoble.

RÉFÉRENCES

[1] J. MANDEL. — Ecoulement de l'eau sous une ligne de palplanchcs. Abaque pour la condition de renard.

Travaux, mars 1 9 5 1 , p. 2 7 3 .

[2] OHERHETTINGEH MAGNUS. — Anwendung der ellip- tischen Funktionen in Physik und Technik. Springer Berlin, 1 9 4 9 .

[ 3 ] MONTESSUS DE BALLOHE. — Leçons sur les fonctions elliptiques. Gauthier-Villars, 1 0 1 7 .

Références

Documents relatifs

Experimentally, it has long been known that a non linear relationship between the flow rate and the pressure drop imposed on the porous medium is obtained for non-Newtonian fluids

The two dimensional viscous case where the obstacle shrinks homothetically to a point was studied in [6], where it is proved that in the case of small circulation the limit

Based on the obtained results a simple equation is presented for the equivalent permeability of a randomly cracked porous material as a function of the matrix permeability and the

suggests a branching process and hence the following representation of the results : for each value of W, the mean number Gk of atoms belonging to the kth generation is

The surface tension model, known as continuum surface force (CSF) model, proposed by Brackbill et al. The results are presented in function of time. For

This numerical study, which may model any Lagrangian evolution of orientation, shows that the scalar gradient does not align with the equilibrium direction if nonstationary ef-

More generally, our model based on (1), if com- bined with the assumption that the functions f and g are only controlled by the medium’s geometry, suggests that for a given

• None among the first two schemes R and M R converges towards the correct solution when refining the mesh, if one computes approximations of solutions in very simple