• Aucun résultat trouvé

homogeneous hypersurface singularities Derivations of the moduli algebras of weighted Journal of Algebra

N/A
N/A
Protected

Academic year: 2022

Partager "homogeneous hypersurface singularities Derivations of the moduli algebras of weighted Journal of Algebra"

Copied!
8
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Derivations of the moduli algebras of weighted homogeneous hypersurface singularities

StephenS.-T. Yaua,∗,1, Huaiqing Zuob,∗,2

a DepartmentofMathematicalSciences,TsinghuaUniversity,Beijing,100084, PR China

b YauMathematicalSciencesCenter,TsinghuaUniversity,Beijing,100084, PR China

a r t i c l e i n f o a bs t r a c t

Article history:

Received29December2014 Availableonlinexxxx CommunicatedbyStevenDale Cutkosky

Keywords:

Derivations Modulialgebra Isolatedsingularity

Let R = C[x1,x2,· · ·,zn]/(f) where f is a weighted ho-

mogeneous polynomial defining an isolated singularity at the origin. ThenR,andDer(R),theLie algebra ofderiva- tions on R, are graded. It is well-known that Der(R) has no negatively graded component [10]. J. Wahl conjectured that theabovefactisstilltrueinhighercodimensionalcase provided that R = C[x1,x2,· · ·,xn]/(f1,f2,· · ·,fm) is an isolated, normal and complete intersection singularity and

f1,f2,· · ·,fm are weighted homogeneous polynomials with

the sameweight type (w1,w2,· · ·,wn).On the other hand the first author Yau conjectured that the moduli algebra A(V)=C[x1,x2,· · ·,xn]/(∂f /∂x1,· · ·,∂f /∂xn) hasnoneg- atively weightedderivationswheref isaweighted homoge- neouspolynomialdefininganisolatedsingularityattheorigin.

Assuming this conjecture has a positive answer, he gave a characterization of weightedhomogeneous hypersurfacesin- gularitiesonlyusingtheLiealgebraDer(A(V)) ofderivations onA(V).TheconjectureofYaucanbethoughtasanArtinian analogueofJ.Wahl’sconjecture.Forthelowembeddingdi- mension, the Yau conjecturehas a positive answer. In this paperweprovethisconjectureforanyhigh-dimensionalsin-

* Correspondingauthors.

E-mailaddresses:yau@uic.edu(S.S.-T. Yau),hqzuo@math.tsinghua.edu.cn(H. Zuo).

1 ThisworkissupportedbyNSFC(grantno.11531007)andthestart-upfundfromTsinghuaUniversity.

2 ThisworkissupportedbytheNSFC(grantnos.11401335,11531007),TsinghuaUniversityInitiative ScientificResearchProgramandthestart-upfundfromTsinghuaUniversity.

http://dx.doi.org/10.1016/j.jalgebra.2016.03.003 0021-8693/© 2016ElsevierInc.All rights reserved.

(2)

gularitiesundertheconditionthatthelowestweightisbigger thanorequaltohalfofthehighestweight.

© 2016ElsevierInc.All rights reserved.

1. Introduction

LetA be aweighted zerodimensionalcomplete intersection, i.e., acommutativeal- gebraoftheform

A=C[x1, x2,· · ·, xn]/I

wheretheidealIisgeneratedbyaregularsequenceoflengthn,(f1,f2,· · ·,fn).Herethe variableshavestrictlypositiveintegralweights,denotedbywt(xi)=wi,1≤i≤n,and theequationsareweightedhomogeneouswithrespecttotheseweights.Theyarearranged forfutureconvenienceinthedecreasingorderofthedegrees:pi:=degfi,i= 1,2,· · ·,n and p1 p2 ≥ · · · ≥ pn. Consequently the algebra A is graded and one may speak aboutitshomogeneousdegreek derivations(k isaninteger).Alinearmap D:A→A is a derivation if D(ab) = D(a)b+aD(b), for any a,b A. D belongs to Derk(A) if D:A→A+k.Oneofthemostimportantopenproblemsinrationalhomotopytheory isrelatedtothevanishingof theabovederivationsinstrictlynegativedegrees:

HalperinConjecture.(See[5].) IfA isasabove, thenDer<0(A)= 0.

Assuming thatall the weights wi are even, this has the following topological inter- pretation.IfaspaceX hasH(X,C)=Aasgradedalgebras,thenitisknownthatthe vanishing of Der<0(A)= 0 implies the collapsing at theE2-term of theSerre spectral sequencewith C-coefficientsof anyorientablefibration havingX as fiber.Actually the abovecollapsing propertiesalso implies vanishing propertieswhen C is replaced by Q andX arationalspace,seee.g.[5].TheHalperinConjecturehasbeenverifiedinseveral particularcases[10]:

1) equal weights(w1=w2=· · ·=wn),see [14];

2) n= 2,3,see[9,3];

3) “fibered”algebras see[4];

4) assumingC[x1,x2,· · ·,xn]/(f1,f2,· · ·,fn−1) isreduced,see [6].

5) homogeneousspaces ofequalrankcompactconnectedLie groups(A=H(G/K)), see [8].

OntheotherhandS.S.-T. Yaudiscoveredindependentlythefollowing conjectureon the nonexistence of the negative weight derivation from his work on Lie algebras of

(3)

derivations ofthe moduli algebras of isolatedhypersurface singularities,and especially hisworkonmicro-localcharacterizationofquasi-homogeneoushypersurfacesingularities ([1,11–13]).

Yau Conjecture. Let (V,0) ={(x1,x2,. . . ,xn) Cn:f(x1,x2,. . . ,xn) = 0}be an iso- latedsingularitydefinedbytheweightedhomogeneouspolynomialf(x1,x2,. . . ,xn).Then thereisnonon-zeronegativeweightderivationonthemodulialgebra(=Milnoralgebra) A(V)=C[x1,x2,. . . ,xn]/(∂f /∂x1,∂f /∂x2,. . . ,∂f /∂xn).

In case f is a homogeneous polynomial, then it was shown in [11] that L(V) is a graded Liealgebrawithoutnegative weight.Infacttheyprovedthefollowingtheorem.

Theorem 1.1. (See[11].)Let A=ti=0Ai bea commutative Artinian local algebra with A0 = C. Suppose that maximal ideal of A is generated by Aj for some j > 0. Then Der(A)isanonnegativelygradedLie Algebra tk=0Derk(A).

This conjecture was proved in the low-dimensional case n 4 ([1,2]) by explicit calculations.

Theorem 1.2. (See[1].)Letf(x1,x2,x3) be aweightedhomogeneous polynomial oftype (w1,w2,w3;d)withisolatedsingularityattheorigin.Assumethatd≥2w12w22w3. LetD beaderivationof themodulialgebra

C[x1, x2, x3]/(∂f /∂x1, ∂f /∂x2, ∂f /∂x3).

Then D≡0if D isnegativelyweighted.

Theorem 1.3. (See [2].) Let f(x1,x2,x3,x4) be a weighted homogeneous polynomial of type (w1,w2,w3,w4;d) with isolated singularity at the origin. Assume that d≥ 2w1 2w22w32w4.LetD be aderivationof themodulialgebra

C[x1, x2, x3, x4]/(∂f /∂x1, ∂f /∂x2, ∂f /∂x3, ∂f /∂x4).

Then D≡0if D isnegativelyweighted.

Let (V,0) = {(x1,x2,. . . ,xn) Cn: f(x1,x2,. . . ,xn) = 0} be an isolated singu- larity defined by the weighted homogeneous polynomial f(x1,x2,. . . ,xn) of type (d : w1,w2,· · ·,wn).ThenbyaresultofSaito(seeTheorem 2.1),wecanalwaysassumewith- outlossofgeneralitythat2wi≤dforall1≤i≤n.Ifwegivethevariablexi weightwi

for 1≤i≤n, themoduli algebraA(V)=C[x1,· · ·,xn]/(∂f /∂x1,∂f /∂x2,. . . ,∂f /∂xn) is a graded algebra

i=0Ai(V) and the Lie algebra of derivations Der(A(V)) is also graded.

(4)

Inthispaper,wedealwithYauconjectureforhigh-dimensionalsingularities.Weprove thefollowingresult whichanswersYauconjecturepositivelyforsomehigh-dimensional singularities.

MainTheorem.Let(V,0)={(x1,x2,. . . ,xn)Cn:f(x1,x2,. . . ,xn)= 0}beanisolated singularitydefinedby theweightedhomogeneouspolynomialf(x1,x2,. . . ,xn)oftype(d: w1,w2,· · ·,wn).Assumethatd≥2w12w2≥ · · · ≥2wnwithoutlossofgenerality.Let Der(A(V))betheLiealgebra of derivationsof themodulialgebra

A(V) =C[x1,· · ·, xn]/(∂f /∂x1, ∂f /∂x2, . . . , ∂f /∂xn).

If wn ≥w1/2,thenDer<0(A(V))= 0.

In§2, we recall some definitionsand results which are necessary to prove themain theorems.In§3,weshallgivetheproofofourmaintheorem.

2. Preliminary

In this section, we recall some known results which are needed to prove the Main Theorem.

LetA=

i=0Ai beafinitelygeneratedintegraldomainoverC,withA0=C.LetA havehomogeneousgeneratorsxi∈Ani,i= 1,· · ·,s;thenAisgraded quotient

C[x1, x2,· · ·, xn]/I,wt(xi) =ni.

AderivationDofA(i.e.D∈Der(A))canbeviewedasaderivationofC[x1,x2,· · ·,xn] whichpreserveI.So,byabuseofnotation,weshallwrite

D=

ai∂/∂xi (ai∈A).

ThemoduleDer(A) ofderivationsisgradedbysayingDasabovehasweightkifai are weightedhomogeneouswithwt(ai)=ni+k,orequivalently, D(Ai)⊂Ai+k foralli.In particular,theEulerderivation

Δ =

nixi∂/∂xi

(whichisaderivation ofAsinceIis graded)hasweight0.Wewrite Der(A) =

k∈Z

Derk(A).

(ClearlyDerk(A)= 0 fork >max{ni,i= 1,· · ·,s}.)

(5)

Definition 2.1. A polynomial f(x1,x2,· · ·,xn) is weighted homogeneous of type (d : w1,w2,· · ·,wn) whered andw1,w2,· · ·,wn are fixed positiveintegers,ifit canbe ex- pressedasalinearcombinationofmonomialsxi11xi22· · ·xinn forwhichw1i1+w2i2+· · ·+ wnin=d.Here,discalled thedegreeoff.

Let f be a weightedhomogeneous polynomial of type (d : w1,w2,· · ·,wn) with an isolated singularityattheorigin.Thenthemodulialgebra

A(V) =C[x1,· · ·, xn]/(∂f /∂x1, ∂f /∂x2, . . . , ∂f /∂xn) is a graded algebra

i=0Ai(V) and the Lie algebra of derivations Der(A(V)) is also graded.

Lemma 2.1. (See [13].) Let (A,m) be a commutative Artinian local algebra and D Der(A) be any derivation of A. Then D preserve the m-adic filtration of A, i.e., D(m)⊂m.

Definition 2.2.Letf,g: (Cn,0)(C,0) begermsofholomorphicfunctionsdefiningan isolatedhypersurfacesingularitiesattheoriginrespectively.Letφ: (Cn,0)(Cn,0) be agermofbiholomorphicmap.f is calledrightequivalent tog,ifg=f ◦φ.

Theorem 2.1. (See [7].) Let f : (Cn,0) (C,0) be the germ of a complex analytic function withan isolatedcriticalpointattheorigin.

(a) f is rightequivalent toaweighted homogeneouspolynomialif andonlyif μ=τ or f ∈Jf := (∂f /∂x1, ∂f /∂x2, . . . , ∂f /∂xn)

(b) If f is weighted homogeneous with normalized weight system (d :w1,· · ·,wn) with 0 < wn ≤ · · · ≤ w1 < d and if f m3Cn,0, then the weight system is unique and 0< wn ≤ · · · ≤w1<d2

(c) If f Jf then f is right equivalent to a weighted homogeneous polynomial z21 +

· · ·+zk2+g(zk+1,· · ·,zn)with g∈m3Cn,0.Especially, itsnormalizedweight system satisfies0< wn≤ · · · ≤wk+1< wk =· · ·=w1= d2

(d) If f andf¯∈ OCn,0 are right equivalent andweighted homogeneouswith normalized weight systems (d:w1,· · ·,wn)and (d: ¯w1,· · ·,w¯n)with 0< wn ≤ · · · ≤w1 d2 and0<w¯n ≤ · · · ≤w¯1d2 thenwi= ¯wi.

3. Proofofthe MainTheorem

Proof. SincetheHalperinconjectureistrueforn= 2,byTheorem 1.2andTheorem 1.3, we onlyneed toprovethemain Theoremforn≥5.

(6)

Sincef isaweightedhomogeneouspolynomial,

A(V) =C[x1,· · ·, xn]/(∂f /∂x1, ∂f /∂x2, . . . , ∂f /∂xn) isgraded, so Der(A(V))=

kDerk(A(V)) isalso graded. Any D∈Derk(A(V)) is of the form n

i=1pi(x1,x2,· · ·,xn)∂/∂xi therefore k ≥ −w1. If Der(A(V)) has negative graded part we can take Derq(A(V)) to be the most negatively graded part, that is Der(A(V))=

kqDerk(A(V)) and Derq(A(V))= 0. Whatwe wantto proveisthat anyD∈Derq(A(V)) hasto be0.

Lemma3.1. Letf C[x1,· · ·,xn]be aweightedpolynomial of type(d:w1,w2,· · ·,wn) withisolated singularityattheorigin.Assume thatd≥2w12w2≥ · · · ≥2wn without lossof generality.Let D∈Derq(A(V))be a negativeweight derivation asabove. Then fori≥2,

∂(Df)/∂xi(∂f /∂x1, ∂f /∂x2,· · ·, ∂f /∂xi1).

Proof. Bycomparisonoftheweighteddegreesitisclearthatanegativeweightderivation D hasto bethefollowingform

D=p1(x2, x3,· · ·, xn)∂/∂x1+p2(x3, x4,· · ·, xn)∂/∂x2+· · ·+c1xkn∂/∂xn−1+c2∂/∂xn

where degpi =wi+q < wi and c1,c2 are constants.ByLemma 2.1 c2 = 0 and k≥1.

Thereforethecommutator[∂/∂x1,D]= 0 and[∂/∂xi,D],i= 2,3· · ·,nisofthefollow- ingformbyadirectcomputation.

[∂/∂xi, D] =∂p1/∂xi·∂/∂x1+∂p2/∂xi·∂/∂x2+· · ·+∂pi−1/∂xi·∂/∂xi−1. (3.1) LetJf = (∂f /∂x1,∂f /∂x2,· · ·,∂f /∂xn) betheJacobianideal.SinceDisaderivation onA(V) it has to preserveJf,thatis, D(Jf)⊂Jf.By therelation d≥2w1 2w2

· · · ≥2wn andacomparison ofweighteddegreeswehave

D(∂f /∂x1) = 0 and fori≥2, D(∂f /∂xi)(∂f /∂x1, ∂f /∂x2,· · ·, ∂f /∂xi1). (3.2) By(3.1)wehave

∂(Df)/∂xi =D(∂f /∂xi) +∂p1/∂xi·∂f /∂x1+∂p2/∂xi·∂f /∂x2+· · ·

+∂pi−1/∂xi·∂f /∂xi−1. (3.3)

Theright-handsideof(3.3)is in(∂f /∂x1,∂f /∂x2,· · ·,∂f /∂xi−1) by(3.2). 2

ThefollowingLemmaisanimmediateconsequencefromtheproofoftheLemma 3.1.

Lemma3.2. Under thesame conditionswith Lemma 3.1,thenwehave ∂(Df)/∂x1= 0.

(7)

Proof. Itiseasytosee that∂(Df)/∂x1=D(∂f /∂x1)= 0. 2

Now we continue to prove our main Theorem. By Lemma 3.2, ∂(Df)/∂x1 = 0, it is clear that Df does not depend on x1. Then by Lemma 3.1, ∂(Df)/∂x2 = q(x2,x3,· · ·,xn)∂f /∂x1. If q(x2,x3,· · ·,xn) is not 0, then degq(x2,x3,· · ·,xn) wt(xn) = wn. It follows that wt(q(x2,x3,· · ·,xn)∂f /∂x1) wn + degf w1. Since wt(∂(Df)/∂x2) = wt(D)+degf −w2. By assumption wn w1/2, we have wt(∂(Df)/∂x2)=wt(D)+degf−w2≤wt(D)+degf−wn<degf−wn≤wn+degf−w1 wt(q(x2,x3,· · ·,xn)∂f /∂x1), a contradiction. Therefore q(x2,x3,· · ·,xn) 0 and

∂(Df)/∂x2= 0 whichimpliesDf doesnotdependonx2.For3≤i≤n.ByLemma 3.1,

∂(Df)/∂xi=q1∂f /∂x1+q2∂f /∂x2+· · ·+qi−1∂f /∂xi−1.Observethatqj,1≤j≤i−1 dependsonlyonxj+1,xj+2,· · ·,xn variablesbyweightconsiderationsinceD hasnega- tive weight.Ifthere existsaqj,j= 1,· · ·,i−1 whichisnot0,then

wt(q1(x2, x3,· · ·, xn)∂f /∂x1+q2(x3, x4,· · ·, xn)∂f /∂x2+· · · +qi1(xi, xi+1,· · ·, xn)∂f /∂xi1)≥wn+degf −w1.

On the other hand, wt(∂(Df)/∂xi) = wt(D)+degf −wi wt(D)+degf −wn <

degf−wn ≤wn+degf−w1≤wt(q1(x2,x3,· · ·,xn)∂f /∂x1+q2(x3,x4,· · ·,xn)∂f /∂x2+

· · ·+qi−1(xi,xi+1,· · ·,xn)∂f /∂xi−1), a contradiction. Therefore, qj 0 for all j = 1,· · ·,i−1. Thus we have ∂(Df)/∂xi = 0 for i = 1,· · ·,n. It follows that Df is a constant and wt(D)+d= 0 whered is thedegree of f. Since wt(D) ≥ −w1, we have that d w1 which contradicts with our assumption d 2w1. The main Theorem is proved. 2

References

[1]H.Chen,Y.-J.Xu,S.S.-T.Yau,Nonexistenceofnegativeweightderivationofmodulialgebrasof weightedhomogeneoussingularities,J.Algebra172(1995)243–254.

[2]H.Chen,Onnegativeweightderivationsofmodulialgebrasofweightedhomogeneoushypersurface singularities,Math.Ann.303(1995)95–107.

[3]H. Chen, Nonexistence of negative weight derivation on gradedArtin algebras: a conjecture of Halperin,J.Algebra216(1999)1–12.

[4]M. Markl,Towards one conjectureon thecollapsingof theSerre spectral sequence,Rend.Circ.

Mat.PalermoSuppl.22(1989)151–159.

[5]W.Meier,Rationaluniversalfibrationandflagmanifolds,Math.Ann.258(1982)329–340.

[6]S.Papadima,L.Paunescu,Reducedweightedcompleteintersectionandderivations,J.Algebra183 (1996)595–604.

[7]K. Saito, Quasihomogene isolierte Singularitaten von Hyperflachen, Invent. Math. 14 (1971) 123–142.

[8]H.Shiga,M.Tezuka,Rationalfibrations,homogeneousspaceswithpositiveEulercharacteristics andJacobians,Ann.Inst.Fourier(Grenoble)37(1987)81–106.

[9]J.C.Thomas,RationalhomotopyofSerrefibration,Ann.Inst.Fourier(Grenoble)31(1981)71–90.

[10]J.M. Wahl,Derivations of negativeweight andnon-smoothability of certain singularities, Math.

Ann.258(1982)383–398.

[11]Y.-J.Xu,S.S.-T.Yau, Micro-localcharacterizationquasi-homogeneoussingularitiesandHalperin conjectureonSerrespectralsequences,Amer.J.Math.118(1996)389–399.

(8)

[12]S.S.-T.Yau, Solvability ofLiealgebras arisingfromisolatedsingularitiesandnon-isolatednessof singularitiesdefinedbysl(2, C) invariantpolynomials,Amer.J.Math.113(1991)773–778.

[13]S.S.-T.Yau,SolvableLiealgebrasandgeneralizedCartanmatricesarisingfromisolatedsingulari- ties,Math.Z.191(1986)489–506.

[14]O.Zariski,Studiesinequisingularity,I,Amer.J.Math.87(1965)507–536.

Références

Documents relatifs

Other Lie algebras of vector fields (pre- serving a symplectic or contact form, Hamil- tonian vector fields, Poisson brackets of func- tions, ...): specific methods.. Lie

2014 ’Constant Milnor number implies constant multiplicity for quasi- homogeneous singularities’, Manuscripta Math. - ’Sections planes, limites d’espaces tangents

- We define the notion of an unbounded derivation of a von Neumann algebra and discuss various necessary and sufficient condi- tions that ensure that the derivation is

complex (real) Seifert form and the collection of spectral pairs Spp( f ) of an.. isolated hypersurface singularity

Since singularities in moduli spaces of abelian surfaces arise from surfaces with non-trivial automorphism groups, and since the presence of a level structure breaks

Our result should be compared to the more explicit formulas of Siersma [22] (obtained in the very special case when f-1(0)sing is a complete intersection and all

Pellikaan: Finite determinacy of functions with non-isolated singularities, Proc.

graded rings and we apply this in the third section to prove a resolution theorem for isolated quasi-homogeneous singularities. The fifth section is devoted to