• Aucun résultat trouvé

Evolutionary Probes

N/A
N/A
Protected

Academic year: 2022

Partager "Evolutionary Probes"

Copied!
143
0
0

Texte intégral

(1)
(2)
(3)
(4)
(5)

Glycg!ytic Genes from Escher-lchla Coli as .

Evolutionary Probes

Newfoundland By

Depart ment

o. r

Biochemistry

September UI86 S~~diesinpartialrUlCillm~nt.of-t~e

requireme~tsCorthedegree of M~terOCScieDce

<:

MemorialUniversity,crNewrcuedlend

. . . /

-'':''~,_ . . A.

thesis submitted

to

the

SC~Graduate

(6)

.> " .

ISBN 0_ 3 15 - 450 9 6-7

(7)

'c "

~.,.

. '

' ,( "

Abstract

, .." , - ' " "--." .

~omparativestudiesbast!0D the,struct ureor ribosopl e5a~dthein:omponents ..

.suggestedthat ther earethr ee primar ykingdoms:eubecterle,archaebll.c,terla-end

urkar yot'es.,:HoweverIthevalidityof thishypoi hesisisbeing"questioned..ln.crder toresolv,he

eV~~i1tio~~I)',

.releticaehipeamong

.bac,te;i~

itis

' ~ee,es!a;y '

to

~O~l\~e

the primar y struct ure8? r.mo) eculesothe r then those'Of'the'tro.uslati ooo.l .apparati;s."

.Th~

main objectiv;-DC

th~ pr~j~ct was

todeteemlnewhether'oc"n-ot hybrid

re~6mbiDa~t pla'smid~

thatcontain

~~queDces to~, glycoly~iri~yni~~ 'rro~

..

'E8cheri~hia

co,ti

coul~

beused

to ~et~ct.' corr~sp~ntling s~quetic~5

in

p'ripa~;tfOni

or genomi<

DN~

.

r~6m

-

dist~~t1y r~la~ed C?r~aD~ms: ',"·~h:'~~( ~I~mids: fro~ t~e::

CIa.rk,~CarbonE.c~li'genomiclibrar ywere chosen fof this study:"The plesmld

. ~LC 16.4· ~contains

thegenesfor

hiose-·pbospba.~e ' iso~erase

and

PhosphOfr~~t()o

kiaese , whereasit had'

b~~D

reporte.dthat'pLC

i~4T

and

P~C>l1·8:

bothcontain

the genefor enolase':'Restr iction.nn:"~~'.'...."",!,,~~~""'''''_J'LJn.'''_----,~-j

J

pl:ismid~,.andtheJocationofitie-~loningvectorwas determ inedin each'eese by Sou t hern

bl~ttilig

and probing withCorEL"Comp arisonof the r,eStriction,mnps

I - ' , , " .

ofpte10-47 andpLe 11·8indicated , that therewer enoseque ncesin commonin, • the',genomic insertsof these plesmlds. Subsequent studies'at'~prot~i,olevel..

she wedthat oolypLe10-47ecat elne a gene,coding forenolase..GenomicDNA'·

was'prepared from

represe·ntll.ti~

species ofthe

Enteroba.cteri~'ue,

,othetgram-

negative:

b~cte~ia.'gra~-posi tive

bacteria,andarcbae "n cteria.

Th~' g~n~mic, DN~··/

was,subject ed to Sout hern'blotting and.probed:withradioaf tively-lil.belle4I

'.'pLCIo--t7-or

pi.~

'16-4.lThe

r~~~~s

fromthese:hybridization studies

indic,o.~e'd :

th,!,t,genese,~C~iDgglycclytlcenzymes in

E :

cof~wet,·n,~t,a~le'~croSNeac~/~i~h .D~AIrom species that had di:erged CromE.coli moretlia.n4Q,milliotlre~r~ago.

Therefore ,'the~eDes,ior'glycoly~icen:rm~willnot beo~use:~ 1~,II'g,:Q.uge

~lutioQaryprobes." - J / '

-

." .~

(8)
(9)

\

iv

Table' of Contents

,I 1.Introliu ct lon

l.l."fbeOriginofLde~

L2.lmJ;llications

of

theFossilRecord .'i, I'

13.MorphologicalEvolution \

14.MolecularEvolution

15 TheEvidenceforThreePrimaryKingdoms ~ 16 How Good is theEvidence Cor Three PruvaryKigdoms!' 17.Can GlycolyticEnzymesand TheirGenesSer~eee Evolutionary

. Probes! . ;-,, '

2. ResearchP.ropo8~1 ..

.a.r.Purjose .; . 2.2.Approach of Investigationv 3. Ma te rials"and Met hods .

'a.l.M~terials· - 3.2. St ra ins and Plasmids •. 3.3.GrowthMe.dia'and'Suffers

"- -""3,>.-t .j,j,~e I3t_ion__oE_Pfasrri_id-DN'k

.3:5.RestrictionEndonucleaseDigestions 3.6.Agaros,eGel Electrophoresis 3.?GrowthctPrcka eyctes 3.8.Isolationof Bacterial DNA 3.g.'Southern iJlottint 3.10.NickTranslation

3.11.Hybridization and Washing Conditions 3. 1~.Prepara.tion'or Extracts - 3.13.EnolaseAssaJ'

3.14..-SDS Polyacrylamide GelEleetropbcresls 3.15.,OEAE-Seph"adexChromatogra.phy ______

4.Chuacte rlz a tl on'o~pLC16·4 '~

• 4.1.Background 4.2.Reeulta

::;:~: ::~~~:~o:f~?~I~~~~ ~~c~rlon ~LC

16-4.

4,3.Discussion . "

.-4.3.1.R~trictioDmap

of

pl.O 16-4

1

\ ~

\

10

:

11 13

16 15 15 17 17' 17 10 10 120

'0

, '0

"

: ',

'3 '3

"

,~

-' 5.

27 '5

2;

(10)

.2

55 '5 55

.58

61 51 .68

:82 85 85 85

8' -

88 91

., .

.g~

94 94 100.

!,~~

;- '(:

v

. \

4'3.2.Tb'E.

,,IN:J..h

00pLC16-4 38

.6. Charad erbat tonof pLC1()"47"an d pLCU·8 t1

5.1.Background'. 41

5.1.1.Propeties

or

enolase '-.... 41

5.1.2.Enolase inE.coli ."'• 42·

S.2..Results " , . ' ' . 43

5.2.1.Restriction Endonuclease Analysis

or

pLC 10-47and pLO.11-8 '43 .5.2.2.Locationsofth~CloningVector

cersi

on pLC10-,47 and "47

pLC11-8 . . •

5.2.~,Furt herSearches forHomologousSequences . 47 5.2.4.PostlbleExplanations.rorResults ObtainedusingRestriction 50

Endonuclease!'

5.2.5~Searchtor MultipleFo'~orEnolaseinE.coli ' ,' 50 5.2.6.Enolase Activityin ExtractsorE.colicootaining"PLC10-47, '52

pLC11-8

or

pLC 16-4 , .' . .,"',..,

I

5.2.7.50S Polyacrylamide Gel Electrcphcreeis(PAGE)ofExtracts .S2

oCE.colicontaining pLC1'0-47,pLO 11-8 or pLC16-4'),

.5,3rDiscussi.on ' ..' • " ' .

f .

5.3.1.EnolaseGenes I

5.3.2-..Hew-Ma ny EnolaseGenes inE.com

6.Evolu ti onary.Studl~l!Iushig pLC,16·4 and pLC ",10-47 as

. H;yb r ld lzatibnPro bes ' ,f

"6'. 1:Background

6.2. Sequence Ocmperjsccs of Glycolyti cEnzymesand' Genes

~ ::;:~: g~:~~:~:,~: ~~S;~:::::s

;

~2.3~ComparisonorEnolaseSequences

6.3.Potentialor pLC16-4and pLClo.~j

as

Evolutionary.Probes 6,4.Res~lts

6.4.1. Characterization

or

GenomicDNAs 6.4.2.Hybridizo.tion Studies:EnterobacteriaceaeDNAs

6.4.2.1. Hybridization usingK30 cloning vectorasprobe 6.4.2.2.Hybridization withpLe1~4as Probe • 6.4.2.3.Hybridizationwith pl.C.10-4-7asProbe 6,4.3.Hybridization Studies:Prcker yotlcand EukaryoticDNAs.

6.4.3.1.'Hybridizationwith pLC 16-4asProbe ._ 6:4.3,2,Hybridization withpLClO:~7asProbe 6.5:Discussion' .

"6.6.Conclusion

1,References 8,Append ix1

(11)

List of T ables

45

58,

.67

i .

Table1-1: UEPstorSeve'talProteins n

.__~.'.Tabl e 3-11

\-sburces

or Bacteria. . 18

Tab le 3-21 RestrictionEedceucleeses aed theirRecognition Sequence» 21 .T';'ble....1: ~roleclliar'Sizes.andDistances Migrated by'')., DNA 30

·Digested with Hind

m

or Ecc RI

labte4-2:.

A.

\'Summa ry

or

th~'Fragm~ot Sizes Generated bY. 33.

~able

5-1i

~:~~:t;;Do~:e:St~:::~7g~~\r

pLe-II-S

~~d·~PLC.1O.47

TTa.,bbll••5-e-2,',-Enol~e.ActivityorE.-coliContainingPlasmlds

" Per~~DtAmino Acid aodNucleotide Sequence Dirterences

d r

TP'Is-Crom.E.coli(EC),,B.'8Ieafolhormophilu8.(BS};":.:.~~

Yea.sti~Coelacanth(Coel), Chick,Rabbitand Human _. Table8-2: ferCe~t'AminoAcld-SequeeeeDltrerecceeb;tweenE.

4 oli,

bacillusstearolhermophilu8nod RabbitPFKs" "

Tabl e6-3:"PerCent'AminoAcidSequenceandNucleotideSequence 81

, rreren,,~

between Y,'" and Rat Enol"es

(12)

II \

.

-'c•

) \ . I

List of Figyres

75 Figure

l·i:

Figu re1·2:

Figure1·3:

Figure1-4 :

Figure 4-2:

F,lgure4·3:

Figure4-4:

Figure '4.6:

.Flg' r e'4-6:

,

Geological Era and,the Fossi,1Recor~ f 'lI

Evolutionary Progression

or

Eukaryotes a,ndPrckaeyctes Ratesof Protein~volu~ion

I

Ind ependent EvolutionorAlebaebacteria,Eubeeterle aad 12

,!rkaryo~es ' .

r ' .

Figure4·1 : ASemi-logarit hmicPlot 9r. Molecular Weight Marker '31 Versus'DistanceMigrated00"anAgarceeGel

Restr iction EndonucleaseAnidysisof pLC 16-4

1325

FourSite MapofpLe16-4

A RestrictionEndc nueleese Map of pLCl6-4

A RestrictionMapal Col~1 37

Analysis of pl.C16-4,usingResrrlctlou Enzymes and 39 Southern.Blottingwith the Cloning Vector-K30 as

Radioactively-LabelledProbe. •_ -

Figure5-1: Restriction Eod.oDuclease'-Analysis ct pbO11-8.and pl.C 44"

10-47 .. _ l.. - .

?

Figure6·2: Restriction Endonuclease Maps torpLC~10-47 anl( pl.C 46

11-8 . ' . ' -,

Figure 6--3: Search torSequence Homology betweenpt e 1O·.j7 and '48

-, .pl.C11-8 . \ \

....Figure6-4:'Restrict ionDigest AnalysisoC~10-·11,pte lkB.and 4Q K30usingFour BaseRecc gnlticnEndonucleases

Figure 6--6: Chromato gra phyotE. coliJA200 in 'l>EAE-Sepbadex 51 Fig u re&-6: 50SPAGE AnalysisoCExtractsoCE.coliCarryingpte 54.

10.41',pLeJI-8orpte 16-4. . .

Fig u r e 6-11 TheCompariso n

of

Amino Add SequencesoCTPIfrom. 62 .E. coli, B. ~te.(Jrothermophi/tJs;·Yeast, Coelacanth,

Chi~ken·,J.bbbifandHuma n__ __..

Fig~re6·2: Nucleotide Sequen cesCcmperlson

or

TPICrom·E,iofi, .64

Yeast and Chicken ' " . _ ,

Figure6·3: Amino acidsequencecomparisonoCPFK ,CromE.coli, 69.

""'8aciltu8 titearoth ermophil u8 and ro.b.bit \ :~

FJgu re 8.41-AminoAcidSeql.\.eo~e,Compar isonotYeastandRo.t 73

EnoltlSes .

Figure6·6: Nucleo tideSequencesoCEnola.s~CromYeast-and Rat.

\

(13)

· . .' .')

.

'../"'Viii

'to. I

Figure6-11! Comparisonor£heAmounto£ SequenceDifr~rence:!lat the 83 Amino Acid and-NucleicAcidLevel .

Figure8-7: Analysis of 'Prokaryotic Genomic DNAs by Gel 86.

Electrophoresis •

'Figure~8: Electr ophoretic Pattern or Genomic DNAs from 87

Enterobacteriaceae Digest edwithHindIll -

""'Flgure6-g: Sout hernBlotor' Enterobacteriaceae DNAprobedwith 80 K30 atHfgbStringency

Fig ur e'6-10:.,s.9.ut bern Blotof.EnterobacteriaceaeDNA probedwith'00 '-' , .- . '01<.30etLow~trin gency

~,Fjgure6~11:,So~Blo~ofEnterobncterill.ceneDNA-PrObed with 02

pLCJ6-4 ' .

Figur~}I-l~: Southe rnBlotOfEnterobacteriaceaeDNAProbedwith 03

. , .pL,C

lo-·n

~ .

. .

,~Figu r e8-13: SouthernBlot ofGenomicDNAs'frobedwithpLe 16--1 0.')

:,.FigW e6·14:'SouthernBlotofGenomicDNAs·ProbedwithpLe10--17 06

' / '

.. .. ' " " '

; ! ,

/ / '

/ '

(14)

List of A bbr evi ations

,','

" ',,,"'. ,, ' ,

.,"' ... ".

""'~"",,

5 ,r.\.

absorbanceatxom counts perminute deoxyribonucleic"acid Escherichiacoli ethylillediaminetetraaeeti~.add enolase-gene ~.. -.

glyceraldehyde-3-phosphate dehydrogenase"

kilobasepairs polyacrylamidegel. electrophoresis phosphofructo-kin as eprotein phoephofruetc-kin aaegene ribosomalribonucleicadd sodiumdodecylsulphate'

N,N,N',N'-tetram~thylenediamine triose-phosphate isomerase protein triose-phosphat eisomerasegene unitevolutionaryperiod volts-.

,

.

..

A, cpm DNA

e.o«

EOTA

",#

kbp F;AGE PFK ..

plk..

·rRNA SOS TE~IEO TPI lpl' UEP V eno GAPOH

(15)

,.'~..,

' .

:::'.'',:

Chapter '1 Int r:oduction

1.1.The'Origin

or

Life,

,The

a,;i~

Iat .lite has,

l~ng be~c-.a· matt~'

ot

speculiLti~~

...It·is unrart1,\nate .:

;~:.

that one.maynever be ab.l,etoascerta in't he truth:EvenSD,continuouSresearch using

.

II,variet'y,.of

appro~ches

.. ,. ,'may provide'

valull.bl~' infQrmati~n

, .upon'which

lnteBfgen t. .speculation may be based..Fcrinstance,it has'. been wellr "istablished· . .. that·our~Iarsystem,includingtheEar~,.originatedasear'lyas4.8·b·i1li~n~ear~

ago-andthat the historyatthe Earth~ay'bedelineated.byan orderlysequenceot' fossilsth a.t'isusedto'asllign.geological

eras

and periods (Figu ret-r;Futuyma, IQBJ).Thefirstevidence',afbiochemicalrea ctionsandcellularactivity'cccurain tire Jrecambrian et lf.·T heearliest

P~ecambria~

rocks areri;h .i'Dunoxidized.iroD.

co.mp~undsthat couldnot ha.yetermedin:i.hepresenceor,~xygen.This indicntes th:' 'h••tmoiph;"

.

'

i,

tho'tim. lackedoxygen and-. oecne. Precernbdeu ,"'k', "

dat ed 3.7biU.ion year s old~re ~mewh~tdifte,rentio,thntt~containpeculiar ~, layers'on ron,~hichalmostcertainl yevincethepresenceoflife (Futuyma.IQS3).

Iossilsotba.eteria.like.Iorme'thatwete.

. ..

sediments. Redlceetlve da.ting orthese

. ' . . ' .

3.2to3,5'b·il.1io~'yearsold{Dayhoi t,'197~i

(16)

,.

_10··

. .

~ ,~.

I

- T ... ... I

,-~

/

'" ,-

~~=

~

- , .

~

- '

-- '" ....

- m

-

. '" ... - ~J-}~ .

" -

- , . , . - n"""...

~

- ..

~ L

- - I '='-d

~

'

.... ~ - ,1 -

...

~

_WiI ... ,

-L....i

0.-.., ~

1 '· ' - .

F1gqr~ i~l : Geological

E ra.

andtbeFossilRecord

•. ,Source: Futuyme,tQ83

l ./

(17)

Doolitt le, 1980), .These inhabitan ts"of the earth were simp le microscopic organisms. )'I~nyofthem were.comperablein sizeandcomplexity tomodern bacte riaalt houghthecon,dition~under wh!ch these organismslived.dirrt'rrl'~1 grcntly from those prevailingtoday. Fossils-forme done billio nyearslaterindic ate

.t he presence of,blue-green alga~ (cyanobacterial wh ich were capab le or

pho tos\:ll hesis andtheproductionofoxygen, Rocksprod uceddur ing thisperio,1 >:;

p and,since then.revealanoxygen-etchatmosp here, There fore,it :lp'p'earsth:'!.t

' .

.,

, \. " \

prokaryotic cellsw~rethefirs tlife-fo rmson Earthandthnt~theydomin at edI1In~t ofthe Precambrlnne ra .

1.2.Implications of,t he Fossil ,Record

Definingth~ti~eortheappeara nceor

the

first euka ryotesrrOl'lUh~~'fosiiil record Is difficult.'T his is~ecnusethe.crite ria.bywhi,ch·the.J!'nrlies t elika ryo tes differredfro m Iheirprckji ryc riecounte rpa rtsarefewa~inm~nyceses open to .debate, S~h?pr( 11l78)has.listed,aseries?~cr~tetbas edonsize,sh ape~nd.'

•morpho logicalcomplexitythat maybe'usedto~d irCl!rentia.~ebetween eukar yo t ic"

, ,

and prokaryotic Icssils. ~tructuralt~aracteristics'oCcukaryotesincludebran~ h('d'",

~l3mentswith intern alcrosswalls,complex[e.g.flask-shaped) microfossils,large-' .\

nlgal crsts••internaldense-bod ies resem bling the residues01euknrycr lcorga nelles, endtetr~ds~fcells, possibl yrepresenti ngthe prcd ucu.of meiosis, The presen ce ofthesewelts havebeen

us~d

tJmark tbe ori ginoC

e~kilrrotes.

Unjcrt umet ely, some ofth~sepr~ll.medeuk eeycuest ruct ur esare.dubiouss,incein experiments

, , '. ' I " . ' . f

performe dwitheult ures.cr hving blue-greenalgaeKnoll.!lndBarghoo~(lg75)

.showed thatanorganelle--li~emassappear ed in degeneratingblue-green ~lg41

.

(18)

•4

cells. Oehle rand co-workers(1976)have foundthatblue-green algaecan Corm ooo-meiotictetra di.Theseresults eastdoubton thedireetentdat esthat have been reportedlotthe tirst appear anceoCtheeukeryctic cells. RecentlyVid al (lQS4)indicat edthat theoriginoCeukaryotes begec 1.6billion years ago inaCorm

,

' .

\

orgreenalgae.Itisreasona blethen , tc.eceepethatadiver sity oreuk eryo tlccella was presentbefore0,9billi~arsago, but animal fossils dooat appear in profusionuntil thebeginiog of the Cambrianperiod - 580to6~Omillionyea rs ago.

. " -

', " ,

Based onec mps ratlv e morphology,thefossilrecord seemsto suggest.tha~

" . I,

the proka ryotic-genealogiesare r,at more:aileieni than their eukaryotic-"

.

counterpart s.,~a,resultit,isgenerall

.

yacceptedwhho,:!tother:evidence, that.

.'eukeryotee evolvedr~om'prokaryotes:-However,th.e,questions of:how.andwhen

this.evolutionaryeventtookplaceremain'unanswered. Thefossilevidence

eecumulet eds~Carsuggeststhat lireisflionophyl~t.ic:It~atis,~nliving organisms aredescendedfromanan~ien~anaerobichet~rotrophic prokarYote,'simiiarto.that of amodernClostridium(Fox etal.,19S0). T'he firsteukeryc ricc~11was'

.' . . - .

"

.

probably a unicellularalga,derivedCroina.prokaryotic blue-greena~!a,andit -was from this

sl~~le

euka eyot iccell

thlltbiglf~r

plants arose.Algaethatlost.their photo.syntheticability evolvedtoCO,rmorganisms such~protists,fungi

ind

,animals(Figure1-2;~oolit~le'"'UI8D;1~821;'Th e blue-green,~acteriaare viewed as theint:: medlateb~twee~-the'prokaryctesaDd-Iowe; -phOtOSYDih~ticeukeryctes and thuSrepr,~sent ~steady~evotutlonaryp:rogre'ssion:

"

(19)

:Figure1.~: Evolutio~aryProgression ofEukaryotes alldProk:lryotes.

Source;Doolittle,IgSO

~ ,

-,2BILLION

~ '

:-J, BI LLION

~ .

\ EUKA RYOIES..

ICo)TI plllCells,Wllh N~ C I.II PLANTS FUNGI ANIMAl S

' ~ ~t .f '~ '~ ·

~~ ,

FI RSTEUKARYOIICCElLS"

' IPROTISTSI'

INANI MATE MATTER . .,".

, 0

.::

"

~4 BILLION

PRO KARYOTES (Simple Cell s.~NoNuclell

-...

NOW BACTE RI ABLUE-GREE N

1

ALGAE

I

'~

;,;:

0'0=";

-I BlLlION

\

.".;. -

f

.

'

(20)

1.3 .Morphological Evolution

,

Atacitas.sumptioD.ot the fossilrecordisthatmorphological changes renect g,enomic change" Itisgenerallyaccepted

~t th~re

isa.rela tionship between morphologicaiand'genomic evolution, but morphologicalcomplexity'maynot in .teet.bean accurate indexoCthe extent~tgenomicevolution[Sebopft:lai.,HJ7S). . , . .

\,Thisi~suppor ted-b'j evidenc~Jreviewed byWilsont:lat.;19j j j that some vertebrat esexperlenee(aSte~rates~fphenotypicevolution'than others. For

.'. . ' ..

beento.ecmper ethe sequences or specificgeneproductsfrom diCferentorganisms.

- .

example,Crogs'have remained esaentially'unchanged morphologicallysince'the

" (irst. ~ro~·~ppe~red

whereee thep;esent'day

ma~mals" show

a'

gre~t' ~~riety '~L

,sbapes

compar~ .~ith their: comm~~\ncestoh~' both

Irogs

'~~d

mammals .,

sharethe,same rateof

'e~olutio~

at.the protein

le~~l.

Itis'difficult'to assess'the

.

.

.

" " "

.

relative .ext,ent oC-genomicevolutlon,.ot'organisms (rom compariscne of morphpiogicalchara cter iStics; One approaoh to investigatethisconundrum has

1,<1. Molecular Evolution

.':"""1

Manyproteineequeneeehavebeen determined andcollected.intoav'e,ry

·useCu.t,g;.owingcompendium:~t:'Ailatl""bf.Prot~inSequence.!'a'n~5.'ruclures (Dayho(!"1078) , Aminoacid,sequence compariseneofho~ologousproteinsfrom dirrere~ 8p~durevealed thatth~primarystr uctures.',0.'proteins(li~rer i~':a phylogenetieatly,consistent, manner,' T hatis,themorecloselyrelatedthes"pecie~,

t~e.'·more - sim~l.ar

'

iJ, t~

·t he·aminoacidsequencesottheir

homOI~g'ou~

'protei.ns.

Divergenee

ti mes

'"oforg·a.nis~·een'beobtainedtro.m thegeologic~re~ord,Thus. the

r~tes

of amino atid

s~bs ~'it~'tion

can b'e calculated'(or severalproteins.It was

, . .\'.

'.

(21)

round thatthe rateofamino acid5~bstitutioois coos'taot·within a particularset or bcmclcgousproteins,but ther~tes~renot nec'essarily the.5a~etorproteins havingdirterentJunctions (WilsontIai.,19,i7'J, Thisis~~Iustratedin Figu're1.3, Theseo~servat~onsIcrm the'basisferthe concept'or theeMoleculnr Clock"

(Dkk~rsqnandGeis,~IDeO),

•The

rat~

or'prJein evolutionis

. me~ured ~n te~ms' "

orunit

eVOI~tiOnnry

period(UEP},.i.e.the time in million ofyearsrequired for cueper cent ebengein amino acidsequence to accumulate'betweentwo~diverg~ntli~eages...Theg~eater the UEP:thesl~we~the rat e orc~ange:.,Ithasbeen observedthat there isagood C:or.r~la~ionbetween-:the,rates'ofmOlec'ular evolut iono~proteins and-!!l eir b~ologicalIuneticne.Fo~exa~ple, fibri~opeptidesevolve,rasterthan,cyto~hrome .~,·Fibrinopeptid·es hav~little known runctionarter'they~re .cu~ ~uforfibri~?gen .~benit~cdnve~tedto'fib~itiin a'-b1ood clot, Vlrtunlly'any aminolici d change thatpe~m.,thepeptidee to,b,ere01:0vedmay be acceptabie. Ontheother hand,.' cytochromee iote.ncts .with.macromoleculessuch,as cytochromeoxidaseend

I,.cytochrornecreductase. Itsrunctionismore sped'fic,andany.e~angeIn the ,st ruct.ure. that.,alters

t~.e

ru.actionis d.

~trim.n'.1.

Thererore,'iY[O'hrom.clsmore

conserved and itsUE?isgreaterth~~that or tibrin,opeptide,Table 1·1shows

theUEPsfor several~teins, .' • '.I ' .

.

.~'"

. '

'. ,

,

Cytoeh~ome

c

b

roundin mitochondria of nUcleatt d ellst;'nd

&\

protein

\

.

hasbeenused to examine the evolutionaryrelntioDships ongeukeryctesT~e amino acidsequencesorcytochromeehavebeen deter laed rormorethan 35

t

speeles end e _ , ,"treebaeedcn • •

,~.f~· ·-····

,,~:ii(;;.,~~~,,~," ':-I~~',;~',~',-,'J,' ,j..A'"_,~,::i~:l>"':;.:""\.:;~•.f.:"':.~,,_,,:,)-..: I.;z~-<.;~,.~,; ~, '~';~;:>:~;:~;";~-':;";'.,,,';~

(22)

. ..

• --1.", •

\F.lg~~e

1. 3.1"Rates orPrct elaEvolution

. "soure!:

Di~k!r:so~:

Ul!l"

, . I

i .

•,1r

i

"1-

.'

"~"

(23)

.CAP DHdenotesClyeeraldebyde-3-pb~p.hatedehydrcgenase'

. .. .

Table 1-1: uEPstor

Se~eral Prot~ins

-I.

U,E.P,(mililion years) Protein

Fibrinopeptide

•Albumin Myoglobin Cyetoebromee Triose-phosphateisomerase GAPDH

Histone4

(24)

constructed (Dickerson: 1011): This phylogenetic tree isconsistent,with

':i'<i

conventionaltaxonomic relationships that have been~erived fromclassical'

~ethodssuchas comparat iveanatomy,embryology and.paleontology. Thus,

, I

evolutionary data at the;'molecular'level provide an invaluabletool for determiningrelationshipsamong orgi:l:nism's,10 perttcular,itispossibletopredict • whe~org'anisms lastshar~d'a common~ncestor'even in theabsence ofafossil record.:

Althou"gh'so~~'prok'~rY~tes

contain a proteinwithsimilar Iunctionto the->q cyt~rlJ~~me

: ' c

fro,:':eukaryoticmitoch~ndria,'.it:is'not kn::rwhetherthe~~

proteinsore homologous.!herdore;eytoehrome~c~nnoibe':~sedto "determine the evolutionaryrelationshipsbetweenprekarycees and eukaryctes.

~.5.,T h eEVhi'~~e~ro~Th~eePri'maryKingd~ms

The.:bilitytei translatemessengerRNAinto~rotein'is',acommonre~tureof

nlllh:ing,otga~isms.~~nce,,"molecule$~ciat~~.wi~tr,ansl~tio~alapparatu s

b'---'-'----,~--'c---

to investigate the..

~volutio'nary

originof prokaryotesand

·eukaryotes. RibosomalRNA (r.RNA)~~mthe smallribosomalsubunit was'onep.r

.theCirst components,10be investigatedindetail[woeeeand Fox,,HI;;), Comparative.enalyses of thestructures'of the res and 18SrRNAsIrorn prokaryotcsandeukeryctes involving ailoligonucleotide catalo gingapproachwere .'.

us~d

io examinethe

Phy;~ge~etic' relation~h~p: ,~~g 't~e:e

orgsnisrns. Each rll.dioa~tiJeIY~labelledi'RNA.was digested with ribonuclease T1and"theresulting fr~gme~tswereresolr ed:bytwc-dimenslonelp~per electrophoresisand.then 's~que,~ced,Thus

a

cataiog•or oligonucleotidesequencescharacterlsticcl a specific o;ganism'was

obta.i~ed. Associati~n

coefficientswere

caiculate~, r~r

all.thepair-

,_;"1,,

" ~';'bi:.tiOO~

',or'thm

s~-talo

..,Althougblb. "I.tion,bip b' lw_S,o"b" y

(25)

\ 11 • ' . association coerleieate

id

the actualDumber or nucleotidesequencedlUerencesi!.

UD,kDOwn,,these valuesw~reusedtoecnetruetdendro~ams. Thep~yloge~ythat

•res~ltedi~omthisa~aIYs~iadieatedthatlivingsystemscan becategorized"into

" \

threeprimarylineages:lhreubacteria,theurka.ryotes and the eecbeebeeteele

"

(Woeseand~OX'.1071;

F l ox

tl al.,IQBO). Itappear! thtlt these Ilneegeeare equidistantCrom"one another ,and thatth~ydivergedindependentlyfrom a

\

'

common'a~cestor(Figure 1

14

).•

The

eUbaete~ial

kinJJ:mcontainsall the\ypkal bacteria. Itcan

b :

" . I , '

eubdlvldedinto..the cyanobacteria,the_gum_positive,andthegram -neglltive bacteria.The urkaryotes,'

t t; -predec~~r

or'the

euka.ryot:~, -~are

defined

-b~ the simi~ariti~

in

t~e ~ttucturJ I '~r thei~ ",'

cytoplasmid

. . . l~S r~As. . .

'Eubacteria and

. '

·urkarrotes"correspond to pr.okaryoteand,eukaryotein,the cOD,ventiona.!sense.

The thirdkingdom,the"archlebacter ia,compriSemethanogens,

thermoa9;~~Phile9

.

and halobact eiia{tor

rev'iew~

'see Doolittle,lOaO}.'T hlshypothesishas,re'ceived suppct tlromiedependen,etudlesonthe three dimmion'lstructure s of ribosoins!

I . :

small s.~buoits

(Lake dat,

lO~2;

Lake,

lO~).

.. (

, \ "

LO:'HowGoodlatheBvlden eefor Thr eePr imaryKlng d o ma1

, . \ ' -

.

Sequence compariso nsor complete165'or155-like'rR~As(ISS) Cram

, I

org~nisl1l3 repre5entative,oC';the<eubaeteria,.urk~ryotl!!l and.archaebacteria

·reveal~dthat the primary !ltr~cture,o! the'archaebact~rial165rRNAillmore similar to both its'eubecterle land eukeryctlccounterparts, tban these twoareto

I • . .

oneao~ther(Gupt a dal." 1,983),Thl!!l_ere!l~lts;ugg~tthat'therat~'oCev~lutloD. in the'~ a;chaebacteri&l'.

ii~eage

, isslower' thanin.

th~

other

t~o

. 'lineages," aDd

th~t

;

(26)

" ", :',-1 .. . .

" . , ••• 0f-

;·><.i~;;L~l,;~;,,~·~·t:

I'

; UKARYOIIC

cmy ."

•CHl OROPl A.STS NU9{EUS' .MI TOCHONDRIA PROKARYOIES

.J

".1.

'·1

Flgu,re1-41'.IndependentEv6111tioQorArchaebacteria,Euba~teriaand' Urkaryotes; . ,

"·4

BILLION"

YEARS

Souf5e:Doolittle,

loao

(27)

,.:.,0" ,"" .,>,,: '."-',":'' """;"~,.",

13

thestru ctureo!the 165 rRN Ainirchaebacter!1.iJclosertothatorthe"commOD ancestor. OneoCt~ebasicBSS}lmptioDsDCphylogeneticst udies at. themolecular levelis thMthe rate orevolut ioniscoostantaloogeach:'lio'e-age. T~eterore,tbe

~parisoDortp~155rRNA sequeaeeecasu doubt on thedeDdfl!Tgr~msderived

~11he'rRNA catalogi~gexp eriments.

-r.

"'

Otherstudies,DOribosomalcl,mpODl!Db.namely comparisonsorth.eam~D~

~erinin&lsequences.

o r

riboso malprot eins (Yagucbietal.,H182;Kimura ad'd.

. . I ' ,

Langner, 19S4), a~_.question the,relat ionshipsamoogthe three'prima.ry. .'

~ing~O~s.

,These

c~~parisons

indicated that

athDeb~cier.i~

are.moreclOJely

rel~~edto eukaryo te'-t hantothe eubacteria. Since'the'dataaccumulatedfrom

co~~~rative

stu'dies OD th, molecules of,the

tr~nslatioJial

appa; atus are

,

iBSurric!en~ ~d~termine

unequivocallythe phylogenetic

~rigins ~f p~~~r)'o:'tes

',/,\ •ead

eukaryo,~ ~olecul~~other

those.pre:sent in

ri~me5

should

b'~

exami'ned,

,ThesemacromoleculesmustsatisfY_t~Win,crheri&:,. ..themoleculesmustbe ubiquitcuainnature,thatisbe present inall

organisIIlllregardless oftheirtaxoa..~micorganization,

.~th~lmllstbe conserved molecules,with aslowbut const:1n t rate of

evclutice;and '

.'',

th~,.

shouldcon;ain

jurti~ie~t iDhe;~D't

information,'derivedfrom a commongeneticlocus,.toanowaIo~g rangt1lhYlog:~et~cst udy.

i.T.Can

Glyc~iytic

EJ;uiymesandTheir

G~nes Scr~e

as

" "Evolutlon~ryProbe~f .' " .

.' -""hqco'!ytie

eDZY~es ~eem

to's atisty the

a~ve

·criteria.··Th;-UEPjof,the

. ~ . ;

.glycolyticenzymes.examinedtodate, are surpwe:,only byth?s~ofhutanes

;>; I

t' .t~:__ .,.

"';~"";-'~.;:.::.:t-'~:~:~.}, ,,,,,,,::;4:'~l1 -;" '~"~':l-.';...:...;:;: ;~'·i\;o. ~~~~~~":::"· ~:j '~.;$& ~"k~

..

{>;~~!.u:C\>:'>':~'~'i-~~," " ~,~.:

...

,:-~:;.~.;:.-~

....

(28)

.... 14 , '

, ~

'V

.. (Willlonel et.,1077;Fotbergill-G llmct e,1086;Table1-1). Thisia dieeteeth;Lt glycolyt ic enzymes arehighlycon served. In addition, glycolyti c enzymesare found in"311organisms,and are easilyisolated(Sp ring andWold,197 i ;Chinet»t..

19!3la )".

?\-I~{lY

01theenzymesinvolved

iD~his

pathway

h~ve

been

inv~tigated.in

gre~td,tail(Fothergill-Gilmore,1986).

, /

For:,example,the'amine acid seq~nces'orglyceraldebyde-S pbosphate

dehydrogellMe (GAPDH) havebeen det ermined Ior a variety

o r

eukaryctes .including,human,,'pig,rat,~hi~ken,lobsterandfeast~ rind three prokaryctes (Therm"u8aqua[icu8,Bacill u8', lea rolhef'1tlophilu,'and Escherichi acoli)(Milner

_.¥.••. ",' '. .. . '.

dal.,~983;Branlaot dal.,1983; Hollandetal.,1083;Hock ing.andHarris,1980;)... ....

Thesesequences'areolsim~~arle~gth',~pproXimatelY333a~inoacid residu es,and"

th eiralignmentclearlydemonstr at esthatthey are.homologousproteins(Dayhorr d,al.,lOiBI.Sequence

compa~~ons

orth e primary.struct ureso·c'G APDHsfrom th e aboveorganismsshowedtha tthe reisapprox·imately.fiftypercent!tomolo~

between theeinyrn~o~prckeryctes andeukaryo tes. Thisind ica te,that this' glycolyt ic enzyme containssur£icient, informat ion to resolvethe relati onship amoDg prokaryotesand eukaryct ee. Moreover, the similarit yin len gt hoC

.

. "

. .

glyc olyticenzym esamongorgo\nismsprovid~an,dditionaledvantegeover rRNAs in which"the"alignment

~r thei~ ~eq~ences

requires

iilserti~ns '

andio;

+ . ' . . : . , , '

deletions togive.maxlm um mat ch ing (Brimaeom~,:; 1M" ).T,hus,glrc~IY~ic en zymes andtheir geaeeshouldprcnd ean,e~~elle~tmea os.rcest~,({)'inglong

. .. ...

. : . " ,- '

.

\

rangeevo~~tio"n.

(29)

\

I

Chaptee.z Rese arch Proposa l

. .

Kr12{str~in C~20;'H/rCllrpA58Im~tB,g~yV,u581 g:.n~micDNA'into,Irngment!

withan average'size018.4.x'lOG daltcna. Thes~',lragmentswere treatedwith~. ~.'.

,. '..

. . . .

....

-- , .

5'-exoDuclease andtheninsertedintotheEcoRlsiteorthe ColElcloning-vector

. ' . .

.;.{;::-

The main purposeM this project~~to investigatethe,possibilityotUSlllg cloned E,,coU~ene!lencodingglycoly,ti~~nzymestor,long rangeevofu.tion~·rY·

·'studies-.

B~ed

on t.heavailabiep\otein data,itwasanticipated th:t

.the':9~~dy'ot

..7' these'geneswouldprovjdesomecluestoJ,he..phylogenetic relat!onship8lw,ithin prokaryctee;:and between

proka;~es~

'an deuknfy otes.,This'project

~~

a'lso

designedto formthefoundationtor tut:urestudiesc~ncernilig'the,re,g:uiation and e:C,~teSSioD'.of'glycolytic.genesin prokary'otes,.and to deter.mlnehow these

·'proka.ryotic·gen~ ~iffer.(romtheireukaryotic~o.u~terpll.r}s.

. 2 . i.

Purpose

2.2.ApproachofInveet lgatlon"

Thesourceat~hecloned E,coli glycolyticge'Des wee the91~rke-'CarboO:

·clone b.• nk,·

Th~

cion.bank was,,'n,t,nct.dby CI"k.andC.d"m in19'6; H

~ ­

,, is

a

gencmielibrarywhichc,ontainshybrid recombib,nnt.pleemidere~resentingthe

,entire' E,coli genome. Thepleernlde wereconstructedby.,~hearingto,tal,E.coli

:, \

(30)

' .I )

" , .

"

I

U~iDgP?!ydT·d.Aexte usioue. The resultan t hybr idpla9~idsweretransformed into anotherE.coliK·12 (strainJA200: F+, alrpES,recA,lhr ,leu, iacY)(Clarke andCa~bon.1076): Thehybridplasmid!pLe16--4,pLeIlJ-:i7andpL.C

n-e

wereeeleetedtorthis project.These plasmid!Werefi~gtident ifiedbyThomsonet

,

ai.(lg7(J)tor.,theirabilitytocom plement E.colimuta tionsat the triose- phosphate isomerase(tpi)locus(pte16-'4) or in the enolasegene(pte10-41and pLe 11-8).

Tbi~'proj eet

was

dividedinto twosectio~s.In thefirst part{Chapters4and S} these three plasmid!werecharacte rised.Thisinvolvedcon~tructiogrestr iction. .endon ucleasemap4,lo,dl ingthe positio n,or the1ector ineachhybridrecombina nt

plesmld;anddetermining the app roximate.positionot. the glycolyticgenes. The secondpart,(Ch~pter6)i~volvedusing.thethe clonedE.coliglyeolyt lc genes to• examine.the'extent ofrelate dnessb! ;eenorganisms:

G~nomic

DtiAfrom

represen tat ives01theeubacteria,archaeb acte ria..and euka ryotes'wasdigested witlir~strietion en~oDu.sleasesan? subjectedtoSout hernblotanalysesusi~gthe plasmidspLe

16-.t'~~d

pLe10-47 as radioacti;ely-Iabelledhybridizat ionprobes.

.~

··'i;

(31)

11·

Chapter 3 Materials, and Mjethods

\

3.1.Mater iall!l

Salmon sperm DNA" t\-licroCOCCU8 IY4od~jkticu4 DNA, Clo4lri~ium per/ringens DNA,ribonuclease,pro~einase, K,an~chemicalsunlessotherwise stated were purchased trom"Sigma Chemical

ce.,

St Louie,MO" USA, Acrylamide:bisacrylamide,TEMED,and"a mmooium'pereulphete were BioRad produete (BioRad~an'adaLtd"·Mississa.uga~ ~ot.)'.'DEA.E.Sepbadexwa?bought• tra mPharm~ci~(Canad"a)Ltd".Dorval,·Que.Restrict ion enzymeswere'obtll.in~d tram:'Bethesda Resear~b,Labofatc ries (BRL) lac" Gait bersburg,MD.,liSA.

(l32p~dCTP'and reagentstor nicktransla tion were'bco ght"from~er'sh3m, Oakville,Ont:

3.2.Strain sand.P.las m ids

CulturesotE8cheric~iacoli (JA200) andE.coli'containingeithe rpLC 1()"41.pLe'11·8orpLC16-4,,:,ereobtainedfromDr.Barbara'J.Bachmannatthe

: I ." . . ,

E.coliGenetic'Stock Center,New Haven,CT,~·USA. E.coli (\yAS02'l harbouringCol Elwee a girt tramDr,·L,Visentin,N.R,C,Ot!awa,On't~ The namesandsourcesatotherorganis.nuusedin'these studiesaregive~io Table i.L

(32)

",:"

'l"

ATCC denot.e s Americ anTypeCulture Collection

N/A denotes~otAvailabl'e . ,"

,

-

'.:~

:~

) .

~ ' .

. t~A

,j -:,'i ,,~~

12011 NIA 8090 .25~31" ;

9240 •

EIJ048 E 495 ,. E!"'3S80

E13883 NIl..

N7A.~."

NIA E238S6

7469\"

NI A H/A • ATCC

Biologyuept• , HemorialU~i ve,rs i ty Biology~pt..,,Memo ~ ia lUn ive rs ~ ty Biolog yDept.,MemorialUn iv ers ity. Biology Depl., Memorial Universi t y

Biolo~yDep t.,He~daluni've rsit y .nr,J.Wright.He~r.ialun ~v~rB i t;

Dr•.J."Wright,HelDOrial~Uni v er sity

Dr,

J:

Wright,HemorialUnivers it . Biology'Dept. ,Hemo r i a ~Un ive rsi ty Dr•.J.Wright,,Hemor ial University D.r .J;Wright ,Memorial University Dr.E.Bams.leY~Hemori;l'Urii y ersit y

Dr.E.'Ba m Sl ey,Hemorial,U-rtiversity

Biology 'Dept.,Memorialt:Jniversity . ,Dr.~W',F.,Doo lit't\e .Dalhousie Universii'y

Dr,W. F ."Doo li tt l e,Dal~usie U~iyersid

Sou r c e T.i.ble3-1:.SOurc esofBac',,",ria

, ~r~;~~

S,ll'm,'lll'fl',lrll,'f/'t'lt' ~lI i~

ISalmonella.tlJphiftll/u.um"

CU'l.obac::teJt6~ew1d.U.

Sh..igeUa6DI1I'l"-<' ,Pl(oteubI!Wl.ab.l.Ub·

{tttVlQb~ct~a.VlOgelll!.6' E1UII&Li.acaJtotOV01la SeM.a..ua. IIlo'tJlCUCl!.~

Ktl!.b,iclta. pneumorUal!.

''''''''''''illA

tMd4

YeJl.&.in.ia I!.ntVl.Oc.ot.i..Uca.

P6w dottanah'pu.t.ida.

Baeil.ltJ.6-6ubt.i1..i.6 Lae tobttc.i.l..lu.!l CMei Halob~c.t~luttobiwn Ha1.obactVLi.wn vofCitttU

-,:,)~

~:'

"

/.

(33)

J.

10 3.3.Growth MediaandBurfers

Yeast extract, beeto-tr ypt cee and beeto-egsr were'purchasedtromBritish DrugHouse(Canada)Ltd., Halifax.TherecipestorLB,Mg and othermediaarc giveninAppendix1.-Pheconstituentsorthe commonlyusedbujters(e,g,LamM TE,

sse,

TBE,Denbeedt's solution) aredescribedinAppendixI.'

3.4.Iaolat~onof PleemldDNA

Acult ureor.E.'coli containin gtheplaSmid""~finter estwasgrow~overnigb t ,at

37°C with~ut

shaklng) n 10 PII·LS.1 mlorthe

c~ltu~e w~

used

~o

inoculate

250 ml LB and the

E:

coliweregrownwithvigourous

shakin~310C.

W'henthe

Aeooreached0.5,cblcrempbenie cl wasadded toa finaleoaceut raticn of 170

I .

us/mland'theculture wasallowed toshakeJoranother 12 to. 15'hours.The~ells wereharvestedby centrifugationandplasmid DN.A."W88 prepar edBc~or~ingtothe procedure.of Maniatis.

e l

ai, •(1082),_usi~g the_BlkBIi/~DS lysismethod..

.~ovalently_.dosed circularplasmidDNA

w as

purifiedfromcrudeextrac~by·

equilibrium centrlfugationIn cesium chloride containing-,ethidium bro·mid'e.

PlasmidDNA .wesextrac ted fromtheultracentritug etube-bypuncturingthe side'

witha 21'gauge needle,anddra~iDgthesolutionintoa syringe. Ethidium...

bromidewas removed

fr~m '

theDNAbyisoomyl alcoholextrac'tionand the eeslum -ehlorlde wasremoved by extensivedialysisagainst10m.~lTE. -T he purified plasmidDNA~asrecovered.by ethanolp~ecipit4tionat.2~~CrfOIl~...ed bycentrirugation .The plasmid

DNA'

was dissolved in 10m.\ (TE.Theinte gri'ty orDNAprepar~tionswaschecked by agarose gel elect rophoresis.

(34)

20

.3.5.Rea~rletloDE:"~ODUclc_enicellt lo n s

Table3-2,howlthereeopition Seque nces01tber~tri c tioDcndODudeun usedi~ tbilll_pr~ject. S.~plesorD~~'weredilnt~dovunightat

370t

in30.1:11 reseuee midura. Core"buUe.,(suppliedby thern.aDulactu~er)...a"usedin all restrict ioneD~oDudeaseru ctioDS excepttorSmatwho 20mM

xci.

10rn.'-t' TrisfHCl.pH.8.0,10m,\t:MgCI2and 1mMdit h iot breitol wasused.

3.0. Agarollc GelEle~tropb~'resis

DNA'fragments (cDu ate d by re neteuce endceuejease digestion were separatedbyelectrop horesis~D'0.8or"1.0%ag.roscgels.TheburCers~stemused

. ' . ..

was.TBE.-.4J'tereleetro,phoresis'~he'_ge~-were .tainedin0.5ug/mlethi~iu~

b;om ide tor'balt anhour

.

and.the DNA wes vi.s~~liz.ed by ult~a.viotet tr'~i.llumiVatioD(~Itr,~violdPro'duets ,tee.,'Sa.nGabri~~l,?alilorni a.U.S:A.):

The-results wererecorded~y_photographing thegel"usinga Pclar cldMP-4· ·

.

;. . ... . .· · : .01

3.7 .Growi'hor Pro karyo tes.

Bacterial cult u ret.wer e,atarte d (rom siDlle colonies rro~ agar plates.

Enteric bact eria

..a':r

BlJeil h,.'e u6tilieweregrown in'LBat

3t'~.

P,e udomon lJe pulid o

w~

gr9wn in

~

at

~C.

Species

~r H~ob""cteria

werecult ure dat

~C·

.

.inbr~th ~ntainibga hlgb~oncentrationor salt

(S;.

AppeDd~.1). .

\

(35)

21

Restrict ion Endonuclease Recogni\ ioliSite G"GATCC GCCNNNN"NGGC A"GATCT .G"AATTC GO"Ce A"AGCTT G"ANTG GGT AC'C

e-cce

CTCGA"C CAG'CT~

GAGOT"C C"T CGA C CCC"GGG T"CGA T"CTAG A

T"ble3-2: Restri ct ion Endonucleases

8 f

~heirRecognitio~Sequences

d4!DOt~thesiteatwhic h the endonucl easeeleaves Bamm

Bgll Bgi D EcoR1 Hae m Hindm HinEr KpnI

","pi PstI Pvu'U Sael .SaI l

"SmsI Taql Xb>l

(36)

22 3.8:Isol~tion

' or

BacterialDNA

Bacterialcultu ree'from theorganisms listedinTable3-1'were.allowed to

, I . ",

grow untilstatio~aryphase. The cellswere harvested,Iyzedandgenomic DN!,- was Isolatedby the procedureof Mar mur(ig61). These crudeprepara tions

o r

DNA and.Microcouu!fysodeikll'cu8DNAandClostridiu mperfrill ge1l 8.D~A purchasedfrom SigmaWerediss';lIvedi~10 rnM TEand RNA wasrem~ved,by ....,. theaddition~hent-tr eated"ribonucleasea~

a

linalcopcent ratlcnof 100ug/ro l.-.

Art~r jn.cubating~ror.~:.~?~r ,at

3!DC,'thesclutkmwas

~~ju~ted'

to,0.5%5DSand

109-ug/m l

p.roteinas~

K',was,eddedThe

~ixture, w~ ~urther'

Incuba ted

a t.

500

q

Cor2'hours endt~en:deproteln b edbyextra cti on'with,anequa lvclumeotphenol

sntu~~ted

with)O

~ T.rislHCli 1 mM E~TA~ O~'5'%

SDS,(pH7.5').

~h~

aqueous

andphenolp,h~eswe_resepeeatedby centrifugat ion at 4,OOOx'gr~r'li;mi~ut.es'~t.

~OC.

The aqueous laYier. .

'~as a~j'us

~

ted' t~

'0.2

M s6(li~'~ ac'e~ate

. (pH

~.l),

andthe

nuele.l;acids'were~reciPitated,~Y,theaddit il:mor two volu mesorethanol. The'"

purified.DN~'wasdissolvedin10~m~TE anddialyze~exte~sively'againstthe

r _ • _, - .

same bufter'berore.use;,'Tbis,procedur e yie!dsbighmolecular,weightD~Awith anA26~fA280ratioOr·1.8·te.,2.~. .

3.9.,S(J,u~hern'Blot tl n g

" . . ,

. .

, . /

.

.Afteragaresegel elect rophoresis, DNACragmenlsweredenaturedinsituby

" soakiDg 'th~ e~t1~

gel'in'

~oo ~lo'C 0 ;5 M

NaOH/ 1.5'MNaCI,

witb" Co~;tant

ag~t~tion ~~room te~per~'tur~. '~he 'geI9:' ~ere incu~~te~

twicelor45

mi~u'ies.

,

" . .

" " , ' ' " , .

.The'~elswere't1ilmne~tr.~U~,edi~:thepresencef?,~ O.5'MT~b/HCl,,3MNaCI,p.H

7.5:"~'it~ agita~iori~

-

T~iS st'e~

'wasrepeated

tWj~e

lor

30"~i~~te9 e~ch

time. Alter:\'

(37)

.-i·

23

neutralization,"theDNAfragments fromplasmid,were.trlUl5feredtoGen:esci'een.

JNew·E~~I8!'d .Nuel~':"1 BOs~n.

MASS.,USA)

uSin~.10x sse;

according

~ th . ,

manuraet~rer·s.lns~ruction,(MethodItCt!a1ogNo.NEF-072).'For_So~the;~

,

blotting

o f

genomic"DNA,~iod1DeA'Dylon~embr.nes(PallUlt rafineFiltration_ Carpe ratio n, GleoCove,N.Y.)werewed. DNAfragm entswere-ru.edODto the__

~

... . .

~

.

fdtersbybakingthemembtaneir~r2·4 hours atsoGeuDd~rVAcuum.

3.10 .Nick Transla tion.

Plasmid,DNA'Wasradlceetlvely-lebelled with.Q'3~P~dCTf'"usingII.'nick

'trans~lL~io~ ,kit' purcbased rr~~

Amersha m. Thereactio nmixture.wasincubated

at .100Cior gOminute;..nd the reastionw~stoppedbytbeadditionofEOTA

to

,8

t~ai ' con~~D{ratiori

"or 100

ll~; Plu~id

or.(A,wu.",·eparated.rtom:' u~i~~rporatedCl32p·dCT P by~btomatographj,in'S"epliadexG-50in10'm.\{

TE

coD~..iDing 0.1% SDS. The DNA.ltt-belled using thismethod.routla ely bad..'

•specificactivity'or 103 epmpetug DNA...

s.u,

Hyb'rl~latioq·:~Dd.

Was,blng

CODdltio~1I

The Geneeereeafilterswereprehybridizedina!Oll1tion cO.lltain ing50%

rorm~~de,'

.5XSSC,5X

De~hardt's

!Olution,

~

mM!Odiurt:!:

P~05Pb.ll.te (~H' ~.8j~··

...

:5oo·ugim~

salmonsp!rm

~NA(!O~icate~,

depurinated,single--stranded)

"lid'

1%

.glycine.

App'r~ximately ~o 'ui ~.r" tb.e

prebYbrid ization solutio n per'cm2 or tilter

·

'are~ w~"added

,to"8;sealable

P~a.!tic

pouch

cODt~i~;ng

the

GeneS.c~een.

The pouch

:.Wa.!

he~t~,

sealed and'

iD~bated

- 31

'00 wi~h COD,~a!1t .git~tion ··r~r, ~+36

. hour.J.,·Hybridiu tioDwu carried

~~t

in 25 ul or

hybridi~ation burre~r-..e: m2,or :·

.

· .. ...' '.''. - .' . "'~ ' .0-.

·filterpl~therad~attiveprobe (2500cp~per unit em ea~rt~e tilter)~a~42C

(38)

... .,.--; :,.:"!"~:"'::~'f

'",, '2:'

~.?'_}..-r(::,' ::':.._~...:.•,:,:",. e::'i:\{:;'; ~~_

,

process.

24

for36 hours:The hy bridlearion~urrerconsistedof50% form amide, 5X

sse,

IX \ ' Denhart's ecjuuoe, 20mMsodiumphospha~e(pll 6.8)aD~100ug/ml salmon sperm'ONA.·After'hybridizat iontheIilterswerewashedtwice in2X

sse ,

0.1%

---.

. "

SOS3-uoonr1e~peratu refor 30minutes andthentwiceinl~SSC,.O.l%50Sat :10DCforthe same periodofliine. The filtersweredriedat room temperat ure

. .

.."

nnd,subjectedt~-a'u tqradiograpbyusingKodak X-OmatRPX.r~yIilm (Kodak··

,eanad~,I~c., Toron~o,Canada)for twoto sevendays, at.70,OC.A cassette_with

t

nnint;.nsityingscreen(DupontCrcnexjwasused to enha.ncetb~autoradiograp hic

3.12.Pteparatl~,n,.orExtracts.:

E.·io li .was

~row~'i'n

Msmedle,

in"'th~ 'i>resence

orabsenceof glucose. l-q'

o - the former_case,glucosewaSadded-ata,fin.alc~~centr~t.io~0'(0.4%. Cr ude extractswere prepared fromE.coli(!A200)alone -and fromE. coli.(JA200) _containingpLC10--·i7,pLC11·8 orpLe

l~4.

,Celldensity'

WM monito;e ~y

mensuringtheab~rbanceat 600nrci.~The'cells wereharyeste~in themidlog phaseof·growth bycent rifugatiop.,,a~dthecells wereresusp ended in50..roM imi<!.l1,zole;H CI,

pH'

6.8 containing10

~

MgCI2:

Toluen~ w~

addedto tbe

;us·~en.;:~ntoa.'finalconee~trationof.1~ ~eidin lysing the cells.Furtber lysis was.completedbytwominut es ofso nicationat4~watts, using a'Scnificercell dlsruptor (H'eat'Sy;tems,

Ullta~sOD~C$

Ine.,Plainview,N.)'). The;cells were soolcated.,f9!'30eeeonus, followedbycooling on-tee 'water,fo.' Cine minute.The

sonie&ti~~·'~nd ~~JiOg ste~$

were

rep~~ted:

fourtimes.Alter

s~~ication',

the'cell

(39)

at280nm or 1.

3.13,Enolase A8say

Enolase activity was measuredbyfollowing tbeiaerease inthe absorban ce

,

?r.udeextractsp~ep'ar.edas descr'ibedabovewere dlalyeed overn'igbtat4oC,

.against~ooov~lum~,9~ 'l~\tITrisjHCI,~H-8.5.. ~hedialyzed ex.t,raciwee

applied to acohlmn·(1.5 gm x 20 .cm) ol DEJ\E..Sepbadexequilibrat ed with10- at240urnusingaPYEUNlCAMSP8-100W{V'tsspectrophotometer.The'way mixtureconsistedof 50~timidizolefflC I,'pH·6.8,10fIlI\1~tgCl2And2mM'or 2-phosphoglyceric seld.,Theprot,einc_oncentration ofanextract wuestimated,.

Ircm its absorbanceat 280 ern. Specific activities aregivenin termsor the cbangein

a~sorbi.nce

at 240 om per ;;;inute

p~r

ml01extract withanab:orban c&

. '',' .

mM TrisjH Cl.pH8.5.'.Thecolumn was washedwith50 mtot thisbutter and.

,then aHneergradi,nt10to,soornMJ(5mMper ml) o-fNa.CIinio m.\[,Trb / HC,.

pH8.5

(y app~ied. Alf~~ t~p gradi~~~ w as compl~ted,

I,MNaC! in

TrIS~HC1,

pH8.5wu a pplied·.toth~ ~olumn"r:.ractioDswere testedtor enolaseactivity

"3_14,

sop

.pOlY~il~~ide

Gel

~l~e~~~Phor eSls

Crudeextractsor·cultures,'prep\"edas~escribedinSection 3.12,were subjectedto·electroph~r~sisunderden.tu ringc~nditionsin'10%polyacrYlamid~

geb~sing

the procedure'or Laemlli (1970).,

Bo~iDese~u)n

albumin.

rabbi~ enol~e,

chickenlactate debydrogenaseand chymotrypsinogenwere used,as standards.

..r6/' pels were

s~~

with 0.1%-Coomassie Brituant

~lue G25~

in 1.75%

perchlO~iC

acid(or two'htluu

.

J.Ddthen

d~tai~;d

in 7% acetic acid.

3.~5,DEAE-Sephadex.~hromatography

(40)

..1

28 .

.usingt~e,tand3!G.way and protein'wasmonitoredby.Collowingthe absorb,anee

at280om.

(41)

Chapter 4

Characterization of pLC 16-4

4.1.Backg round

Trjose-phosphate isometa.s~ (TBl)' [E.C. 5.3·1.1.1 ctLtalyzes the

"L.

iDtere~Dversionofd~bydroxyaeetone-phosphateandg!yceraldehyde-3-pbosphnte.

This-prot eini;sone.oC"the

be~t

characterized

·giycolytic ·e.niYin~~. ~he

amino

~cid'

se~uenceof-thiswo~einh"asbeendeterminedfromeUka~yotessuch'asbUmali,. r~bbit,ClitaCen,~oelacan~th,andyeast ,(Dayhorr:1918;Lu e!al.,1(84)8oodr~om11 prckerycte,Bacillus8te;rot~ermophUIl9(Artavanis-TsakonasandHerrls,HISO;

Kolb,1980). Comparisonsoftheamino acid sequences showed thatTPIisa. highlyconservedprotei n;9~ggestingthat all TPIgenes aredescendent! ofasingle primof? ial gene(Straus andGilbel t, 1985).

F;om

genetic'map~~g

ofth'E.colichromosome,itisknownth'atth,e

geDe~"

encodingTPIand'phosphofructo-ki; ase(PF K)·are tightly linked to oneanother.

Thec~rom~somal1~cationorthetpilocusis 87.8mi.DandthepI /: A genemops ot the.87.7 min region or the~bromosome(Bachmann,·l g80).Thomsonet al,(1079) .beveshown

~h~t

the'hybrid rec6mbinant

pl~mid p~C

16-4rtofllthe Clarke- Car~DclOD~bsnk'(Clarke'andCarbo D,19i 6}:compleme.ntsbot~TPr·andPFK"

pbeactyp ee.Therefore,itwas'decided to~se

p Le

16-4 u a'soutce

of

the gene

(42)

with radioact ively-labelledC~IEl,

)

. :".',.!,',.'.~.

..

28

4.2;Re15ulta

4,2.l:Rest r let lon MaporpLC10-4'

encodingTPI,and PFK rromE.tolitoexamine the extentoCsequence homology at this"locus'among

Pt~ka~otes

and eukeryotes. It was hoped that the ... information derivedIrcmthese studieswould also indicatewhether ornotit.

would be T,easible in theluturetouse hybridpl~midscontainingE.coliglycolytic' genesaspr~bes,toisolate the geneslor glycolytic enzymesIrcm seehaebected e.

Beloretherecombinant~plasmidpLe-l~.acouldbeI1sed~forthisevolutionary, studyitwas necessary tocharacterizethe plasmid. A restrictionendonuclease map,~asc,onstructed usingsix base f'eeognitioD enzymes. Tbelocation,o~the cloning vector Col El in ptc 1~4was determ inedby comparingther~tr~ction

\ ~apsorpLe,16-4 and,~olsi,and by probingthe,~ec,ombiDantplasmidpLe16-4

(

The.restrictioD endonuclease map Icrpl.C16-4was constructed from an .analysj:! ofthefragmentsizesproduced by single,double,'andtriple digests of pLC16-4.'.·TheDumber or rJ:agmentsproduced bya restrict ion enzymedepeD~

00thenumberorrestrictioo sites itrecognizes. For 'a circular DNA,the number

.

.. . ' . ~

~r.lragments g~Deratedbya.single.en.zymeisthe~ameas thenumber or cleavage sites mad:'by.thee~z~rewhereasi~.'~d9ubt.digestion,th8total:numbet~C ,rragme·DtS..obtai~edequal! the number orCragments gen,eratedbythefirs~e~zyme

plusthe numb@roCfragm@~tsprooue~dby thesec~n~enzyme:

.:. DNA.fragmentstra~el'through:.agarose;gel

(43)

2 .

inverselyprcpc rt loaeltothe logloofth~irsizes"[Helling dat.,191"). Thus, a larger fragment migrates at'a slowerrate thana smaller fragment. Aplot'

of

..

loglO(siJeinb~epairs]versqe distance migrated bystandard markers enablesthe approximatesize ofthe unknownfragments to beestim::l.t~(Ta b!e4-~i'Figure 4-1).KoOtro'ing the distance travelledbythe DNAr; agment ofioteres t,thenits size can bedetermin~dCromt,hestand'o.rdplot.

The strategyusedf~rcons~ructing'arestri't~ionmap

.wJS

asroliows'(Referto' Figure

4-?

~ndTable,4-2):Bsln(lane2)cutsthe'plasmidpteiG-oJ.attwo !ites.

to

g~nerate rr;~ents

that migrated'

~6

mm

a.~d.

:109 mmfrpmthepoint"'\?C application. :These·'d.ist.sncescorrespondto·'size.spC11.5kbp'and'2_kb~

!espect ively. When

~

doub'jedigestusing

.~co

RIand-Bgln

w<~

carriedout

(I11.n;~

' . .

3),three Iragmea ta withsizes11.5,1.4and 0.6 kbpwereproduced(the0.6 kbp

rragyhe~t wl t~

smallto be seen all.this'gel,Figure'4-Z), Table4-Z summarizes the sizes ofthe restr iction Iragments ofthe ditest inFigure4-2.

I

This showedthat~co·RIefeevesthe

2

kbp (Bgl

Bgl0)to gi.,e.thetw~

•sm:a.ner

rrag~ents

(Figure

4-3~)J.

A.triple digest using Bg1.II, Eco

R I

and

Hi~d m

(lane 4)generate~Iourrr,agm_en t~lindicatin~that Hind

m

cuts(he11.5:kbp.

(Bgi Il - Bgl 0)into7:5and4.0'kbp;Thetwo possible permutationsorthisdigest·

a;e ,~sho~n

inFigure4-3(cland (d). The

relati~e

orien't·ation.or

t~e r;t~ict(on

siteswas achieved by-examining the'HindW/ SeoRI doubledigest. lhi.I produced

t~~

fragmentsof

'~ize

8.0and5.4

~bp

',(Figure

4-3(e)I~ ·

Therero;e,u'

illustra tedin Figure 4-3, the 5.4kbpEtc)R£

~

'Hind

m

rraVne'nimust coo.tlh" a I

(44)

.0

Ta ble"-II MolecularSizes and Di3tanctsMi~Tatedby), DNA Dige;tedwith HindmorEta RI

dbtance(mm) size(kbp)

.'V xDNA/Hind,

m

.7 23.7

4" 0.5

57 6.7

60 4.a

101 2.a

100 2."0

), DNA/ Eco RI

.7 '21.8

5. 7.6

60 ·S.Q

64 5.2.

~6

.,4

The distance migrafed by 't he DNAfragmentswas measured"in millimeters.

"

.

(mm)from-thepointoto'rigini.e,wher e~heDN~werefirs tload~din tbe~el~

(45)

/

FI~u:r;

,(,,1: ASemi-logarit hmic

PI~t

o'r·Mole cularWelgbtMarkerversus

\ Distarice Migrated onaDAgatou Gel Themarkers', \lldw~tegener at edby.d.ige~ting.).DNA with Hindill or EcoRI,and.t\eirsizes andthecorr espondingdlstanc~tro..velled

•arelist~din Table4-1.

(46)

..,.-', :.'.. "31a

30

95

)

85 65

Distanc.e(111'11).. 55

" ,

'20

" 10

9

;, 8,

"" 7,

.

'

~

·· t

t~;;~i;"~~<.w~~~(~:~;.-;:.:;'-~',i,;:,~~~:,;:~ ~"':'«"':t.;:,,~.~:~<~L.~~~.::,,~::~~~~:,;"';:,~.'\~I~~;~~,;~.,;;'t\~~'i: .. ~.~~.~;:;,,'li.'~.~':;'~:'

.;;.j'P

(47)

2 3 4 5 6 7 8 9 10 11

- - ..

~

- - - - - - - -

;

- I - •

- - . .

Ftg ure4-~: Restr ict ionEadocucleaseAnalysisorpte16-4

ThegelW:l,Selectrophoresed at100 V,in TBE buller . Lanes~-lO correspondtcpte16-1digestedwith:(~JBgiII. (3)B'1;;!U/EcoRL 1'1BglD/E coRlfHindID. (.;)HindID/E , o RI.(6) B<ID/lliod ID.

(7)B<\ U/Sac1.(8)Bgill/SacI/HindIII. 101 SecI/Hind III.

(10) Hind

m.

Lanes13D..!11correspondtoxO:-':.-\/Hindilland ),0:'\.-\/£ <:0Rlma rkers respectiv ely .

(48)

Table '-21A Summary or the FrilgmentSizesGeneratedbyRestriction

. f

Digestllor pLC 16-4. RutrictioDEn,z,...

SilII Bl lIIlEco.HI 811IIlEco HI/Hind 11.

Hi nd III/ECo RI' 8gl.II/HindIII 811II/S ac-i S'llII/BaeI/HindUI Sac t/Kisd:II I Hill.d.'III

Sin(Diltuc.) kbp'

·11,5(48). 2.0'(109)

11.5 (48). 1.4(129). 0.8 • 1.5'(52). 4.0 (11). 1.4 (128),c.s,

•.0 (13),,5.5 (80) 1.5(52), 4.0 (11).2.0(l09) 9.p,(48),' 3.0 (83). 2.11 (11:19) 8.3(61). 3,0'(83).2.0'(l09) i2.5(44). 1.0

13.5(43)

r :

SeeFigure4-2lorthegelcorrespondingto thesedata

h

(49)

..

4-3(d) bee't hecorrect fragment size and orientation. Ina similar manner,o,ther endon~aseswereml>~pedonpLe16-4 (Figure 4-4).•

4.2.2.LoeaUan

or

theClc nlng VeetoronpLC18.."

. .

The hybr idplesmld pLC16-4containsapieceorE.coli DNA insert,ligated intothe cloningvectorCol"EIby polydA • dT tailing. .TheI~ationof the cloningvectorinpLe 16-4Wa!Idetermined bya.combinationoCrestri cli?n mapping-and Southern blotting usingradioactively-labelledCol El as,the

1't.'

hybridiza,tioD?robe"

Dr:L.V19~n.tiD,·N.R.C.,Ottawavery.kindlyprovidedares~~i<:tionmapCor ColEl [Figure 4-5).'ColEl hasnuniquesite CorSma I.MpLC16-4.wuround to haveonly oneSmaIsite, thiS

~uggested~'bat

the

u~.iqu.e'

SmaIrest; ;cti.on:iiteis locat ed in the.region containingthevect or,Colsi.Using.tbisrecognitionsiteas areference position,,together'with three Pst land~vu,nrecognition"sites obtai ned trom theCol E;l restrictionmapconst ructedby"'Dr".Visentin, the map torpl.C16-4wa.s'_e.~t"abHsbed(Fi~re4-4).

To

lo~ate

.the position of thecloningvector,

Coi

EI,Southerntransfer'in"·. conjuilftion"withDNA~DNAhYbridizatjo~'was used. The Col EIpl~midwas.

usedas a

3~P~labelled

probeto

ide~tiCy

the:location or.t be

~1~niDg_

vector onthe

"'tr ietio.m.ap.The plasmid

~LC I6-4.

w..

n ,;, ~i.,,'ed ~i'h

..ricue,••

"ieti~. ?

enzymes, as s,eenin,~igur~ 4-16(~). Thett:lg~entsgeneratedweret~ent~/d. .. .. ,: to"Gen.esc:.eeQa.o.~.hYbridi~~dwjtlt.~adio·activeIY~labelledK~.O(,~i~g vecto~~. '.

, probe.T~eprobe b:iD.!~omologousto thecloningvector.annealed,totragm~nts

(50)

35

' .

. ," . FIgure:

".~l Fonrrite

Map

o r

pLC·15-4,

B, E.and,Hde~\)te.re9t~ictionsites

o r

Bgi 0, EeaR1eadHind

m

~e,p~e~~vely

Références

Documents relatifs

We found that (1) SAL1 and its related genes arose in eutherian mammals with lineage-specific duplications in rodents, horse and cow and are lost in human, mouse lemur, bushbaby

flexneri wild type strain M90T (top left), on its speE- defective derivative M90TEd (top right) and on M90T complemented with the entire ynfB-speG operon (plasmid pULS37, bottom

In a previous study [22] we have shown that Shigella has also lost speG, the gene encoding spermidine acetylase (SAT, an enzyme catalyzing the synthesis of Table 2. Analysis

1 Laboratoire de Biologie Moléculaire et Cellulaire, équipe de Microbiologie (LABMC), Unité de recherche Agrobiologie, Université des Sciences et Techniques de Masuku (USTM), BP

The main objective of this study was to evaluate the sensitivity of Salmonella and Shigella strains isolated from diarrheal faeces to colistin, using their MIC and a

For NOLH, that permutation of indices is directly used as vector e, introduced in Sec. This is the only parame- ter in Cioppa and Lucas’ method that can be modified for generating

outbreak of dysentery caused by Shigella dysenteriae type 1 on a coral island in 647. the Bay

A strong cis e-QTL was detected and, by considering the mRNA level as a covariate, we confirmed that the variation of BCMO1 gene expression was responsible for the