• Aucun résultat trouvé

Applications of Fixed Point Theorems for Coupled Systems of Fractional Integro-Differential Equations Involving Convergent Series

N/A
N/A
Protected

Academic year: 2021

Partager "Applications of Fixed Point Theorems for Coupled Systems of Fractional Integro-Differential Equations Involving Convergent Series"

Copied!
6
0
0

Texte intégral

(1)

Applications of Fixed Point Theorems for Coupled

Systems of Fractional Integro-Differential

Equations Involving Convergent Series

Mohamed Amin Abdellaoui, Zoubir Dahmani, and Nabil Bedjaoui,

Abstract—The existence and uniqueness of solutions in an appropriate Banach space is established for a coupled system of integro-differential equations involving convergent series, with derivatives of non-integer order on the unknown functions and integrals of Riemann-Liouville in the nonlinearity as well as in the initial conditions. Some illustrative examples are also presented to demonstrate our main results.

Index Terms—Caputo derivative, convergent series, differen-tial system, fixed point, existence and uniqueness, Riemann-Liouville integral.

I. INTRODUCTION

T

HE differential equations of fractional order arise in many scientific disciplines, such as physics, chemistry, control theory, signal processing and biophysics. For more details, we refer the reader to [5], [9], [16], [17], [18] and the references therein. Recently, there has been a significant progress in the investigation of this theory, see [1], [2], [3], [4], [6], [9], [21], [23]. Moreover, the study of coupled systems of fractional differential equations is also of a great importance. Such systems occur in various problems of applied science. For some recent results on the fractional systems, we refer the reader to ([7], [8], [11], [14], [20], [22], [24].

Let us now present some results that have inspired our work. We begin by [10], where the authors studied the following problem:              Dαx (t) + f 1 t, y (t) , Dδy (t) = 0, t ∈ J, Dβy (t) + f 2(t, x (t) , Dσx (t)) = 0, t ∈ J, x (0) = x∗0, y (0) = y∗0, x 0 (0) + x 00 (0) + y 0 (0) + y 00 (0) = 0, x000(0) = Jpx (η) , y000(0) = Jqy (ξ) , (1) where α, β ∈ ]3, 4] , δ ≤ α − 1, σ ≤ β − 1, η, ξ ∈ [0, 1] , Jp, Jq are the Riemann-Liouville fractional integrals, Dα,

, Dδ, Dσare the Caputo fractional derivatives, J = [0, 1] ,

x∗0, y0∗ are real constants

Then M. Li and Y. Liu [14] studied the following fractional differential problem:        cDα 0+u (t) = f1 t, u (t) , v (t) ,cD p 0+u (t) , cDq 0+v (t) = 0, cDβ 0+v (t) = f2 t, u (t) , v (t) ,cD p 0+u (t) ,cD q 0+v (t) = 0, u (0) + λ1u 0 (0) = 0, u (1) + λc2D0+p u (1) = 0, v (0) + λ1v 0 (0) = 0, v (1) + λc 2D q 0+v (1) = 0, (2)

Manuscript received January 17, 2015; revised April 30, 2015. M. A. Abdellaoui and Z. Dahmani (corresponding author e-mail : zzdah-mani@yahoo.fr) are with the Department LPAM, Faculty SEI, UMAB of Mostaganem, Algeria

N. Bedjaoui is with the LAMFA laboratory of mathematics, UPJV, Rue St Leu, Amiens 80000, France

wherecDγ0+denotes the Caputo fractional derivative for γ > 0, 1 < α, β ≤ 2, 0 < p, q ≤ 1, t ∈ J = [0, T ] f1, f2 ∈

C [0, T ] × R2+× R2, R+ .

Recently, in [24], the authors discussed the following coupled system with integral boundary conditions:

                             cDα 0+u (t) = f t, v (t) ,cD p 0+v (t) , cDβ 0+v (t) = g t, u (t) ,cD q 0+u (t) = 0, 0 < t < 1, au0(0) + u (η1) = R1 0 φ (s, v (s)) ds, u (η2) + bu 0 (1) =R1 0 ψ (s, v (s)) ds, cv0(0) + v (ξ1) = R1 0 ϕ (s, u (s)) ds, v (ξ2) + dv 0 (1) =R1 0 ρ (s, u (s)) ds, (3) where 1 < α, β < 2, 0 < p, q < 1, α − p − 1 ≥ 0, β − q − 1 ≥ 0, 0 ≤ η1< η2 ≤ 1, φ, ψ, ϕ, ρ ∈ L1[0, 1] and f, g ∈ C (0, 1) × R2, R ,cDγ

0+are in the sense of Caputo.

Very recently, A. Taieb and Z. Dahmani [19] established some results on the existence and uniqueness of solutions for the problem:

                                           Dα1x 1(t) = m P i=1 fi1(t, x1(t) , x2(t) , ..., xn(t)) , t ∈ J, Dα2x 2(t) = m P i=1 f2 i (t, x1(t) , x2(t) , ..., xn(t)) , t ∈ J, .. . Dαnx n(t) = m P i=1 fn i (t, x1(t) , x2(t) , ..., xn(t)) , t ∈ J, k = 1, x(k−1)k (0) = 0, k = 2, x(k−2)k (0) = x(k−1)k (1) = 0, k = 3, x(k−3)k (0) = x(k−2)k (0) = x(k−1)k (1) = 0, k = n, x(k−n)k (0) = ... = x(k−2)k (0) = x(k−1)k (1) = 0, (4) where k − 1 < αk < k, k = 1, 2, ..., n, J := [0, 1] and the

derivatives Dαk, are in the sense of Caputo.

In this paper, we discuss the existence and uniqueness of solutions for the following coupled system of fractional

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_04

(2)

integro-differential equations:                                                        Dαu (t) = f 1(t, u (t) , v (t)) + +∞ P i=1 Rt 0 (t−s)αi−1 Γ(αi) ϕi(s) gi(s, u (s) , v (s)) ds, t ∈ J Dβv (t) = f 2(t, u (t) , v (t)) + +∞ P i=1 Rt 0 (t−s)βi−1 Γ(βi) φi(s) hi(s, u (s) , v (s)) ds, t ∈ J n−2 P k=0 u(k)(0) + v(k)(0)  = 0, u(n−1)(0) = γIpu (η) , η ∈ ]0, 1[ , v(n−1)(0) = δIqv (ζ) , ζ ∈ ]0, 1[ , (5) where Dα, Dβ denote the Caputo fractional derivatives, with α, β ∈]n − 1, n[, n ∈ N∗, αi ≥ 1, βi ≥ 1, p, q ∈ R∗+

and J = [0, 1]. The functions f1and f2as well as the general

terms ϕi, φi, gi and hi; (i ∈ N∗) will be specified later.

To the best of our knowledge, the case of differential systems involving series, no contribution exists. So, the main aim of this work is to fill the gap in the relevant literature.

The rest of the paper is organized as follows: In section 1, we present some preliminaries and lemmas. Section 2 is devoted to existence of solutions of problem (5). In the last section, some examples are presented to illustrate our results. The following preliminaries will be used in the proof of our main results [12], [13], [15]

Definition 1.1: A real function f (t) ; t > 0 is said to be in space Cµ, µ ∈ R, if there exists a real number p > µ,

such that f (t) = tpf1(t) , where f1(t) ∈ C(0, +∞) and it

is said to be in the space Cµn if f(n) ∈ Cµ, n ∈ N.

Definition 1.2: The Riemann-Liouville fractional integral operator of order α ≥ 0, for a function f ∈ Cµ, µ ≥ −1, is

defined as: Iαf (t) =    1 Γ(α) Rt 0(t − τ ) α−1 f (τ ) dτ, α > 0, t ≥ 0, f (t) , if α = 0. (6) Definition 1.3: The Caputo fractional derivative of order α > 0, n − 1 < α ≤ n, n ∈ N∗ of a function f ∈ C−1n , is defined as: Dαf (t) =    1 Γ(n−α) Rt 0(t − τ ) n−α−1 f(n)(τ ) dτ, t > 0, f(n)(t) , if α = n. (7) The following lemma gives some properties of Riemann-Liouville fractional integral and Caputo derivative [12], [13] Lemma 1.1: Let f ∈ C−1. Then for all t > 0, we have:

IrIsf (t) = Ir+sf (t); r > 0, s > 0.

DsIsf (t) = f (t); s > 0.

DrIsf (t) = Is−rf (t); s > r > 0.

To study the coupled system (5), we need the following two lemmas [12]:

Lemma 1.2: Let n − 1 < α < n, n ∈ N∗. The general solution of Dαx (t) = 0 is given by

x (t) = c0+ c1t + c2t2+ ... + cn−1tn−1, (8)

wherecj ∈ R, j = 0, 1, 2, .., n − 1.

Lemma 1.3: Let n − 1 < α < n, n ∈ N∗. Then, for a given functionf ∈ Cn

−1, we have

IαDαf (t) = f (t) + c0+ c1t + c2t2+ ... + cn−1tn−1, (9)

for somecj∈ R, j = 0, 1, 2, ..., n − 1, n = [α] + 1.

The following result gives an integral representation for the problem (5):

Lemma 1.4: Suppose that x ∈ C−1n , n − 1 < α < n, αi≥ 1.

If F, Gi, Φi ∈ C−1([0, 1], R), such that +∞

P

i=1

kΦik < ∞

and Gi is uniformly bounded, then the integral solution of

the problem Dαx (t) = F (t) + +∞ X i=1 Z t 0 (t − s)αi−1 Γ (αi) Φi(s) Gi(s) ds, (10) associated with the conditions

n−2 X k=0 x (k)(0) = 0, x (n−1)(0) = γIpx (η) (11) is given by: x (t) =Γ(α)1 Rt 0(t − s) α−1 F (s) ds + +∞ P i=1 Rt 0 (t−s)αi+α−1 Γ(αi+α) Φi(s) Gi(s) ds +Γ(n)(Γ(p+n)−γηγΓ(p+n)tn−1p+n−1)×  Rη 0 (η−s)α+p−1 Γ(α+p) F (s) ds + +∞ P i=1 Rη 0 (η−s)αi+α+p−1 Γ(α+αi+p) Φi(s) Gi(s) ds  , (12) whereγ 6= ηΓ(p+n)p+n−1.

Proof. Applying Lemma 1.3 to (10), we can write x (t) = Γ(α)1 Rt 0(t − s) α−1 F (s) ds + +∞ P i=1 Rt 0 (t−s)αi+α−1 Γ(αi+α) Φi(s) Gi(s) ds −c0− c1t − ... − cn−1tn−1. (13) Then, x(k)(0) = −k! ck, k = 1, ..., n − 1. (14)

Since x(0) = x0(0) = ... = x(n−2)(0) = 0, it follows then

that c0= c1= c2= ... = cn−2= 0.

Thanks to Lemma 1.1, it yields that Ipx (t) = 1 Γ(α+p) Rt 0(t − s) α+p−1 F (s) ds+ +∞ P i=1 Rt 0 (t−s)αi+α+p−1 Γ(αi+α+p) Φi(s) Gi(s) ds −cn−1Γ(n)t p+n−1 Γ(p+n) . (15)

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_04

(3)

Using (11), we get cn−1= −Γ(n)(Γ(p+n)−γηγΓ(p+n)p+n−1) ×  Iα+pF (η) + +∞ P i=1 Iα+αi+pΦ i(η) Gi(η)  (16) Substituting c0, c1, c2, ..., cn−1 in (13), we obtain (12).

Lemma 1.4 is thus proved.

II. MAINRESULTS

In this paragraph, we introduce the following assumptions: (H1) : There exist non negative real numbers mj, m0j, nj, n0j (j = 1, 2) , such that for all t ∈ [0, 1]

and (u1, v1) , (u2, v2) ∈ R2, we have: |f1(t, u2, v2) − f1(t, u1, v1)| ≤ m1|u2− u1|+m2|v2− v1| , |f2(t, u2, v2) − f2(t, u1, v1)| ≤ n1|u2− u1| + n2|v2− v1| , |gi(t, u2, v2) − gi(t, u1, v1)| ≤ m01|u2− u1|+m02|v2− v1| , |gi(t, u2, v2) − gi(t, u1, v1)| ≤ m01|u2− u1|+m02|v2− v1| , where , i ∈ N∗.

(H2) : (i) : Suppose that ϕi, φi ∈ C−1([0, 1] , R) ,

and gi and hi are uniformly bounded i.e. there exist

nonnegative real numbers L01, L02 such that for all t ∈ [0, 1]

and (u, v) ∈ R2, we have:

|gi(t, u, v)| ≤ L01, |hi(t, u, v)| ≤ L02, i = 1, 2, 3...

(ii) : Assume that

+∞ P i=1 kϕik< +∞, +∞ P i=1 kφik< +∞.

(H3) : The functions f1, f2, gi and hi: [0, 1] × R2→ R; i ∈

N∗are continuous and there exist nonnegative real numbers L1, L2 such that for all t ∈ [0, 1] and (u, v) ∈ R2, we have:

|f1(t, u, v)| ≤ L1, |f2(t, u, v)| ≤ L2.

We also need to introduce the quantities: ω1:= γΓ (p + n) Γ (n) (Γ (p + n) − γηp+n−1), ω2:= δΓ (q + n) Γ (n) (Γ (q + n) − δζq+n−1), M1:= 1 Γ (α + 1)+ |ω1| Γ (α + p + 1), + +∞ X i=1  ik Γ (α + αi+ 1) + |ω1| kϕik∞ Γ (α + αi+ p + 1)  , M2:= 1 Γ (β + 1)+ |ω2| Γ (β + q + 1) + +∞ X i=1  ik Γ (β + βi+ 1) + |ω2| kϕik∞ Γ (β + βi+ q + 1)  , L = maxmj, nj, m0j, n 0 j j=1,2.

Now, we are ready to state and prove our main results. We begin by the following theorem:

Theorem 2.1: Suppose that γ 6= ηΓ(p+n)p+n−1, δ 6=

Γ(q+n) ζq+n−1 and assume that(H1) and (H2) hold. If

L (M1+ M2) < 1, (17)

then the fractional system (5) has exactly one solution in X × X.

Proof. We apply the Banach contraction principle. To this end, we introduce the Banach space: X := C−1n ([0, 1] , R), equipped with the norm ||.||X= ||.||∞.

So, the product space X × X, k(u, v)kX×X is also a Banach space with norm k(u, v)kX×X = kukX + kvkX. We also define the operator Ψ : X × X → X × X by:

Ψ (u, v) (t) = Ψ1(u, v) (t) , Ψ2(u, v) (t)  , (18)

where, Ψ1(u, v) (t) = Rt 0 (t−s)α−1 Γ(α) f1(s, u (s) , v (s)) ds + +∞ P i=1 Rt 0 (t−s)α+αi−1 Γ(α+αi) ϕi(s) gi(s, u (s) , v (s)) ds +ω1tn−1 Rη 0 (η−s)α+p−1 Γ(α+p) f1(s, u (s) , v (s)) ds+ +ω1tn−1 +∞ P i=1 Rη 0 (η−s)α+αi+p−1 Γ(α+αi+p) ϕi(s) gi(s, u (s) , v (s)) ds (19) and Ψ2(u, v) (t) =R t 0 (t−s)β−1 Γ(β) f2(s, u (s) , v (s)) ds + +∞ P i=1 Rt 0 (t−s)β+βi−1 Γ(β+βi) φi(s) hi(s, u (s) , v (s)) ds +ω2tn−1 Rζ 0 (ζ−s)β+q−1 Γ(β+q) f2(s, u (s) , v (s)) ds +ω2tn−1 +∞ P i=1 Rζ 0 (ζ−s)β+βi+q−1 Γ(β+βi+q) φi(s) hi(s, u (s) , v (s)) ds. (20) We shall prove that Ψ is contractive:

Let (u1, v1) , (u2, v2) ∈ X × X. Then, for each t ∈ [0, 1] ,

we have |Ψ1(u2, v2) (t) − Ψ1(u1, v1) (t)| ≤  Rt 0 (t−s)α−1 Γ(α) ds + |ω1| Rη 0 (η−s)α+p−1 Γ(α+p) ds  × sup0≤s≤1|f1(s, u2(s) , v2(s)) − f1(s, u1(s) , v1(s))| + sup0≤s≤1|gi(s, u2(s) , v2(s)) − gi(s, u1(s) , v1(s))|) × +∞ P i=1  sup0≤s≤1|ϕi(s)|R t 0 (t−s)α+αi−1 Γ(α+αi) ds + |ω1|R η 0 (η−s)α+αi+p−1 Γ(α+αi+p) ds  . (21) For all t ∈ [0, 1] , we can write

|Ψ1(u2, v2) (t) − Ψ1(u1, v1) (t)| ≤  1 Γ(α+1)+ |ω1| Γ(α+p+1)  × sup0≤s≤1|f1(s, u2(s) , v2(s)) − f1(s, u1(s) , v1(s))| + m P i=1  ik∞ Γ(α+αi+1)+ |ω1|kϕik∞ Γ(α+αi+p+1)  × sup0≤s≤1|gi(s, u2(s) , v2(s)) − gi(s, u1(s) , v1(s))| . (22) Using (H1) , yields the following inequality

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_04

(4)

|Ψ1(u2, v2) (t) − Ψ1(u1, v1) (t)| ≤  1 Γ(α+1)+ |ω1| Γ(α+p+1)  ×L sup0≤t≤1|u2(t) − u1(t)| + sup0≤t≤1|v2(t) − v1(t)|  + +∞ P i=1  ik∞ Γ(α+αi+1)+ |ω1|kϕik∞ Γ(α+αi+p+1)  ×L sup0≤t≤1|u2(t) − u1(t)| + sup0≤t≤1|v2(t) − v1(t)| . (23) By (H2) , we obtain |Ψ1(u2, v2) (t) − Ψ1(u1, v1) (t)| ≤ M1L (ku2− u1kX+ kv2− v1kX) . (24) So that, kΨ1(u2, v2) − Ψ1(u1, v1)kX ≤ L M1k(u2− u1, v2− v1)kX×X. (25) With the same arguments as before, we have

kΨ2(u2, v2) − Ψ2(u1, v1)kX ≤

LM2k(u2− u1, v2− v1)kX×X.

(26) Using (25) and (26), we deduce that

kΨ (u2, v2) − Ψ (u1, v1)kX×X

L (M1+ M2) k(u2− u1, v2− v1)kX×X.

(27) Thanks to (17), we conclude that Ψ is a contraction mapping. Hence, by Banach fixed point theorem, there exists a unique fixed point which is a solution of (5).

The second main result is given by the following theorem:

Theorem 2.2: Assume that (H2) and (H3) are satisfied. Then the system (5) has at least one solution in X × X. Proof. We use Schaefer fixed point theorem to prove this result:

First of all, we show that the operator Ψ is completely continuous. (The continuity of Ψ on X × X is trivial and hence it is omitted.)

By the continuity of giand hiimposed in (H2), we can state

that the series in (5) are uniformly convergent. On the other, thanks to (ii) of (H2), for any t ∈ [0, 1] , we can write:

+∞ X i=1 Z t 0 (t − s)α+αi−1 Γ (α + αi) ϕi(s) gi(s, u (s) , v (s)) ds X ≤ +∞ P i=1 L01kϕikX Γ(α+αi+1). (28) The conditions imposed on α and αi allow us to obtain:

+∞ X i=1 L01kϕikX Γ (α + αi+ 1) ≤ L01 +∞ X i=1 kϕik< +∞. (29)

With the same arguments, we can write:

+∞ X i=1 L02kφikX Γ (β + βi+ 1) ≤ L02 +∞ X i=1 kφik< +∞. (30)

Step 1: Let us take r > C > 0, and de-fine Br := (u, v) ∈ X × X, k(u, v)kX×X ≤ r ; C :=

L (M1+ M2) , L := maxLj, L0j

j=1,2. Then for (u, v) ∈

Br and t ∈ [0, 1] , we have: |Ψ1(u, v) (t)| ≤ tα Γ(α+1)+ ηα+p Γ(α+p+1)  sup0≤t≤1|f1(t, u (t) , v (t))| + +∞ P i=1  ik∞tα+αi Γ(α+αi+1) + kϕik∞ηα+αi+p Γ(α+αi+p+1)  × sup0≤t≤1|gi(t, u (t) , v (t))| . (31) By (29) and (H3) , yields kΨ1(u, v)kX ≤ LM1< +∞. (32)

Similarly, for Ψ2, we have

kΨ2(u, v)kX ≤ LM2< +∞. (33)

Thanks to (32) and (33), we can write

kΨ (u, v)kX×X≤ C ≤ r. (34) Hence, Ψ (Br) ⊂ Br.

Step 2: Let t1, t2 ∈ [0, 1] , t1 < t2 and (u, v) ∈ Br.

We have: | Ψ1(u, v) (t2) − Ψ1(u, v) (t1) |≤ |Rt2 0 (t2−s)α−1 Γ(α) f1(s, u (s) , v (s)) ds −Rt1 0 (t1−s)α−1 Γ(α) f1(s, u (s) , v (s)) ds | + | +∞ P i=1 Rt2 0 (t2−s)α+αi−1 Γ(α+αi) ϕi(s) gi(s, u (s) , v (s)) ds − +∞ P i=1 Rt1 0 (t1−s)α+αi−1 Γ(α+αi) ϕi(s) gi(s, u (s) , v (s)) ds | + |ω1| tn−12 − t n−1 1  | Rη 0 (η−s)α+p−1 Γ(α+p) f1(s, u (s) , v (s)) ds | + |ω1| tn−12 − t n−1 1  × +∞ P i=1 |Rη 0 (η−s)α+αi+p−1 Γ(α+αi+p) ϕi(s) gi(s, u (s) , v (s)) ds | . (35) Using (H2) and (H3), we can write

| Ψ1(u, v) (t2) − Ψ1(u, v) (t1) |≤ L1(tα2−tα1+(t2−t1)α) Γ(α+1) + +∞ P i=1 L01kϕik∞ tα+αi2 −t α+αi 1 +(t2−t1)α+αi  Γ(α+αi+1) +|ω1|L1(t n−1 2 −t n−1 1 ) Γ(α+p+1) + |ω1| +∞ P i=1 L01kϕik∞(t n−1 2 −t n−1 1 ) Γ(α+αi+p+1) . (36) With the same arguments as before, we have

|Ψ2(u, v) (t2) − Ψ2(u, v) (t1)| ≤ L2(tβ2−t β 1+(t2−t1)β) Γ(β+1) + +∞ P i=1 L2kφik∞ tβ+βi2 −t β+βi 1 +(t2−t1)β+βi  Γ(β+βi+1) +|ω2|L2(t n−1 2 −t n−1 1 ) Γ(β+p+1) + |ω2| +∞ P i=1 L02kφik∞(tn−12 −t n−1 1 ) Γ(β+βi+p+1) . (37)

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_04

(5)

Thanks to (36) and (37), we get |Ψ (u, v) (t2) − Ψ (u, v) (t1)| ≤ L1(tα2−tα1+(t2−t1)α) Γ(α+1) + |ω1|L1(tn−12 −t n−1 1 ) Γ(α+p+1) + +∞ P i=1 L01kϕik∞ tα+αi2 −t α+αi 1 +(t2−t1)α+αi  Γ(α+αi+1) + |ω1| +∞ P i=1 L01kϕik∞(tn−12 −t n−1 1 ) Γ(α+αi+p+1) +L2(t β 2−t β 1+(t2−t1)β) Γ(β+1) + |ω2|L2(tn−12 −t n−1 1 ) Γ(β+q+1) + +∞ P i=1 L0

2kϕik∞ tβ+βi2 −tβ+βi1 +(t2−t1)β+βi  Γ(β+βi+1) + |ω2| +∞ P i=1 L02kφik∞(t n−1 2 −t n−1 1 ) Γ(β+βi+q+1) . (38)

As t2 → t1, the right-hand side of (38) tends to zero.

Then, as a consequence of Steps 1, 2 and by Arzela-Ascoli theorem, we conclude that Ψ is completely continuous. Next, we show that the set

Ω := {(u, v) ∈ X × X/ (u, v) = λΨ (u, v) , 0 < λ < 1} (39) is bounded:

Let (u, v) ∈ Ω, then (u, v) = λΨ (u, v) , for some 0 < λ < 1. Hence, for t ∈ [0, 1] , we have:

u (t) = λΨ1(u, v) (t) , v (t) = λΨ2(u, v) (t) . (40)

Thus,

k(u, v)kX×X = λ kΨ(u, v)kX×X (41) By (34), we obtain

k(u, v)kX×X ≤ λC. (42) Consequently, Ω is bounded. As a conclusion of Schaefer fixed point theorem, we deduce that Ψ has at least one fixed point, which is a solution of (5).

Corollary 2.1: Under the assumptions of Theorem 2.1, if αi= βi= 1, then the fractional system (5) has exactly one

solution in X × X.

Corollary 2.2: Under the assumptions of Theorem 2.2, if αi = βi = 1, then the system (5) has at least one solution

in X × X.

III. ILLUSTRATIVE EXAMPLES

Example 3.1: We begin by the following system                              D12u (t) = sin(u(t)+v(t)) 64(t+1) + √ 2 + +∞ P k=1 Rt 0 exp(−ks) k2 sin(u(s)+v(s)) 66(k!)(s2+1)  ds, t ∈ [0, 1] , D12v (t) = sin u(t)+sin v(t) 64(t2+1) + √ 3 + +∞ P k=1 Rt 0 exp(−ks2) k2  sin u(s)+sin v(s) 66(k!)√k(s exp(ks2)+1)  ds, t ∈ [0, 1] , u (0) = 2√πI2u 1 4 , v (0) = 2 √ πI2u 1 4 , (43) where, α = β = 12, αk = βk = 1 (k = 1, 2, 3, ...) , η = ζ = 1 4, p = q = 2, γ = δ = 2 √ π and f1(t, u, v) = sin(u+v) 64(t+1)+ √ 2, f2(t, u, v) = sin u+sin v64(t2+1) + √ 3, gk(t, u, v) = 66(k!)(tsin u+sin v2+1), hk(t, u, v) = 66(k!)√sin u+sin vk(t exp(kt2)+1), ϕk(t) =

exp(−kt) k2 and φk(t) = exp(−ks2) k2 . For all (u1, v1) , (u2, v2) ∈ R2, t ∈ [0, 1] , we have |f1(t, u2, v2) − f1(t, u1, v1)| ≤ 641 (|u2− u1| + |v2− v1|) , |f2(t, u2, v2) − f2(t, u1, v1)| ≤ 641 (|u2− u1| + |v2− v1|) , |gk(t, u2, v2) − g1(t, u1, v1)| ≤661 (|u2− u1| + |v2− v1|) , |hk(t, u2, v2) − h1(t, u1, v1)| ≤ 661 (|u2− u1| + |v2− v1|) . So, M1= M2= 8.23, where +∞ P k=1 exp(−kt) k2 ∞ = +∞ P k=1 exp(−kt2) k2 = +∞ P k=1 1 k2 = π2 6 and L = max mj, m 0 j  j=1,2= 1 64, Hence, L (M1+ M2) = 0.25 < 1.

The conditions of the Theorem 2.1 hold. Therefore, the problem (43) has a unique solution.

To illustrate the second main result, we give the following example:

Example 3.2: Let us take                                          D174u (t) = cos(u(t)+v(t)) π+t2 + +∞ P k=1 t R 0 (t−s)3 Γ(4) exp(−ks) k4 e−kscos(u(s)×v(s)) k2+2 ds, t ∈ [0, 1] , h D215v (t) = sin(u(t)+v(t)) 5+t2 + +∞ P k=1 t R 0 (t−s)3 Γ(4) exp(−s2) k2√k e−ssin(u(s)×v(s)) k√k ds, t ∈ [0, 1] , 3 P j=0 u(j)(0) + v(j)(0) = 0, u(4)(0) = 2I2.1u 1 3 , v (4)(0) =5I2.3v 1 5 . (44) For this example, we have α = 174, β = 215, αk =

βk = 4; (k = 1, 2, ...) . For t ∈ [0, 1] , we have ϕk(t) = exp(−kt)

k4 , φk(t) =

exp(−s2)

k2√k and for each (u, v) ∈ R

2 f1(t, u, v) = cos(u+v) π+t2 , f2(t, u, v) = sin(u+v)5+t2 , gk(t, u, v) = e−ktcos(u×v) k2+2 , hk(t, u, v) = e−tsin(u×v) k√k .

For all k = 1, 2, ... and t ∈ [0, 1] , we have

+∞ P k=1 kϕk(t)k∞= +∞ P k=1 1 k4 < ∞, +∞ P k=1 kφk(t)k∞= +∞ P k=1 1 k2√k < ∞.

Therefore, by Theorem 2.2, the problem (44) has at least one solution.

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_04

(6)

REFERENCES

[1] M.A. Abdellaoui, Z. Dahmani and M. Houas: On some boundary value problems for coupled system of arbitrary order, Int. J. Indust. Appl. Math.. Vol. 4, Iss. 2, pp. 180-188, 2013.

[2] B. Ahmad, J. J. Nieto: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 58, pp. 1838-1843, 2009. [3] A. Anber, S. Belarbi and Z. Dahmani: New existence and uniqueness

results for fractional differential equations. An. St. Univ. Ovidius Constanta,Vol. 21(3), pp. 33-41, 2013.

[4] C.Z. Bai, J.X. Fang: The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations, Applied Mathematics and Computation,Vol. 150, Iss. 3, pp. 611-621, 2004. [5] M.E. Bengrine, Z. Dahmani: Boundary value problems for fractional

differential equations, Int. J. Open problems compt. Math., Vol. 5, Iss. 4., 2012.

[6] Z. Cui. P. Yu, Z. Mao: Existence of solutions for nonlocal boundary value problems of nonlinear fractional differential equations, Advances in Dynamical Systems and Applications,7(1), pp. 31-40, 2012. [7] Q. Feng: Interval oscillation criteria for a class of nonlinear fractional

differential equations with nonlinear damping term, IAENG Interna-tional Journal of Applied Mathematics,43(3), pp. 154-159, 2013. [8] M. Gaber, M.G. Brikaa: Existence results for a coupled system of

nonlinear fractional differential equation with three point boundary conditions, Journal of Fractional Calculus and Applications, Vol. 3 (21), pp. 1-10, 2012.

[9] V. Gafiychuk, B. Datsko, and V. Meleshko: Mathematical modeling of time fractional reaction-diffusion systems, Journal of Computational and Applied Mathematics,Vol. 220, Iss. 1-2, pp. 215-225, 2008. [10] M. Houas, Z. Dahmani: New results for a coupled system of fractional

differential equations, Ser. Math. Inform., Vol. 28, No. 2, pp., 133-150, 2013.

[11] N. Khodabakhshi, S.M. Vaezpour: Existence results for a coupled system of nonlinear fractional differential equations with boundary value problems on an unbounded domain, Electr, J. Qualitative Theory of Differential Equations,Vol. 73, Iss. 2, pp. 1-15, 2013.

[12] A.A. Kilbas, S.A. Marzan: Nonlinear differential equation with the Caputo fraction derivative in the space of continuously differentiable functions, Differ. Equ., 41(1), pp. 84-89, 2005.

[13] V. Lakshmikantham, A.S. Vatsala: Basic theory of fractional differen-tial equations. Nonlinear Anal., 69(8), pp. 2677-2682, 2008. [14] M. Li, Y. Liu: Existence and uniqueness of positive solutions for

coupled system Of nonlinear fractional differential equations, Open Journal Of Applied Sciences,3, pp. 53-61, 2013.

[15] F. Mainardi: Fractional calculus: some basic problem in continuum and statistical mechanics. Fractals and fractional calculus in continuum mechanics, Springer, Vienna, 1997.

[16] N. Octavia: Nonlocal initial value problems for first order differential systems. Fixed Point Theory, Vol. 13, Iss. 2, pp. 603-612, 2012. [17] N. Shang, B. Zheng: Exact solutions for three fractional partial

differential equations by the (G’/G) method IAENG International Journal of Applied Mathematics,43:3, pp. 114-119, 2013

[18] X. Su: Boundary value problem for a coupled system of nonlinear fractional differential equations, Applied Mathematics Letters, Vol. 22, Iss. 1, pp. 64-69, 2009.

[19] A. Taieb, Z. Dahmani: Solvability for high dimensional fractional dif-ferential systems with high arbitrary orders, Georjian Math. Journal, To appear 2015.

[20] J. Wang, H. Xiang, Z. Liu: Positive solution to nonzero boundary values problem for a coupled system of nonlinear fractional differential equations, International Journal of Differential Equations, Vol. 2010, Article ID 186928, 12 pages, 2010.

[21] T. Wang, F. Xie: Existence and Uniqueness of Fractional Differential Equations with Integral Boundary Conditions, J. Nonlinear Sci. Appl., 3(1), pp. 206-212, 2009.

[22] G. Wang, B. Ahmad, L. Zhang: A Coupled system of nonlinear fractional differential equations with multipoint fractional boundary conditions on an unbounded domain, Abstr. Appl. Anal. Volume 2012, Article ID 248709, 11 pages.

[23] S. Zhang: Positive solution for boundary value problems of nonlinear fractional differential equations, Electron. J. Differential Equation, Vol. 36, pp. 1-12, 2006.

[24] C. X. Zhu, X. Zhang and Z.Q. Wu: Solvablity For A Coupled System Of Fractional Differential Equations With Integer Boundary Conditions, Taiwanese Journal of Mathematics, Vol. 17, Iss. 6, pp. 2039-2054, 2013.

IAENG International Journal of Applied Mathematics, 45:4, IJAM_45_4_04

Références

Documents relatifs

Existence of stationary solutions for some systems of integro- differential equations with superdiffusion.1. EXISTENCE OF STATIONARY SOLUTIONS FOR SOME SYSTEMS

Deux protéases acides sont extraites à partir des fleurs de deux plantes locales appartenant à la famille des composés, Onopordum acanthium et Galactites tomentosa. Une

En s’inspirant de Hairer [ 36 ], Fontbona-Panloup [ 26 ] et Deya-Panloup-Tindel [ 22 ] dans un cadre continu et sous de bonnes hypothèses sur F et sur le bruit gaussien, nous

Dans le cadre d’un marché du travail frictionnel comme celui analysé, une taxe progressive peut avoir des effets positifs sur le fonctionnement du marché, en particulier elle peut

Armstrong ​et al ​ report no effect of white light on the activity of Chlamydomonas reinhardtii ​ ( ​Cr ​ ) and ​Clostridium acetobutylicum (​Ca ​

The FTIR spectrum of the protein after maturation (Fig- ure 1A, MeH-HydA and Table S2) displayed sharp peaks corresponding to CN - and CO vibrations typical of those

But there is another, more subtle, effect: a rise in t leads other firms to reduce the reach of their advertising, and therefore improves the outside option of all the

Il est à noter que cette microfissure (Photo III-74) épouse bien le contour des régions les plus fortement contraintes, comme le montre cette simulation numérique (Figure