• Aucun résultat trouvé

FOR SOFT TISSUES MECHANICS BASICS OF CONTINUUM

N/A
N/A
Protected

Academic year: 2022

Partager "FOR SOFT TISSUES MECHANICS BASICS OF CONTINUUM"

Copied!
13
0
0

Texte intégral

(1)

BASICS OF CONTINUUM

MECHANICS

FOR SOFT TISSUES

(2)

Review: deformation

Deformation Mapping

Eulerian/Lagrangian descriptions of motion

Deformation Gradient

x

u(x)

e3

e1 e2

Original Configuration

Deformed Configuration

y

1 2 3

( , , , )

i i i

y  x u x x x t

const

( , ) ( , )

i

i i

i i i j i j

x

y u

y x u x t v x t

t t

 

2

const 2 const

( , ) ( , ) ( , )

i i

i i

i i i j i j i j

x x

y y

y x u y t v y t a y t

t t

 

2

const 2 const

const const

( , ) ( , )

i i

i i

i k i i i i

ik i j k j

k x y x y k

u y u y v v

a y t v y t

y t t t t y

 

 

( )

or i i i ij i ij

j j j

y u

x u F

x x x

   

y x u x F

x u(x)

e3

e1 e2

dx dy

u(x+dx)

Original Configuration

Deformed Configuration

i ik k

d d

dy F dx

 

y F x

2

(3)

Review

Sequence of deformations

x

u(1)(x)

e3

e1 e2

dx dy

Original Configuration

After first deformation

dz u(2)(y)

y z

After second deformation

(2) (1) (2) (1)

with or

i ij j ij ik kj

d z   F d x FFF dzF dx FF F

Lagrange Strain

e3

e1 e2

l0

Original Configuration

Deformed Configuration

m

l

1 1

( ) or ( )

2 2

T

ij ki kj ij

E F F

 

E F F I

 

2

2 2

0

2 2

0 0 0

2 2

ij i j

l l l l

E m m

l l l

 

  

m E m

(4)

Review

 

0

dV det

dV F J

Volume Changes

dy dx dz dr

dv

dw

e3

e1 e2

Undeformed

Deformed

dV0 dV

e3

e1 e2

Original Configuration

Deformed Configuration

t

dA0

dA n n0

x

u(x)

dP(n) dP0(n)

Area Elements

dAn JFT dA0 0n dAni JF n dAki1 0k 0

 

1 1

or

2 2

j

T i

ij

j i

u u

x x

  

ε u u

Infinitesimal Strain

y

x x

y

l0 l0





xx yy

l0 l0

e1 e2

xy

O A

B C

O A

B C



1 1

2 2

j j

i k k i

ij ij

j i j i j i

u u

u u u u

E x x x x x x

Approximates L-strain

Related to ‘Engineering Strains’

11 22

12 21 / 2 / 2

xx yy

xy yx

4

(5)

Review

Principal values/directions of Infinitesimal Strain

e3

e1 e2

Original Configuration

n(1)

n(2) n(2)

n(1)



( ) ( )

( ) ( )

or

i i

i

i i

kl l i l

e

n e n

ε n n

 

1 1

or

2 2

T i j

ij

j i

u u

w x x

  

w u u

Infinitesimal rotation

e3

e1 e2

Original

Configuration Deformed

Configuration n(1)

n(2) I+w

n(2)

n(1)

Decomposition of infinitesimal



motion

i ij ij

j

u w

x

  

(6)

Left and Right stretch tensors, rotation tensor

  F R U

  F V R

(1) (1) (2) (2) (3) (3)

1 2 3

  

     

U u u u u u u

(1) (1) (2) (2) (3) (3)

1 2 3

  

     

V v v v v v v

U,V symmetric, so

i

principal stretches

e3

e1 e2

Original Configuration

Deformed Configuration u(1)

u(2) v(2)

v(1)

U R

u(2)

u(1)

u(2)

u(1) u(3)

u(1)

1 1

1

u(2)

u(3)

Review

Left and Right Cauchy-Green Tensors

2

2 T

T

 

  C F F U B F F V

6

(7)

Review

Generalized strain measures

3 ( ) ( )

i=1

3 ( ) ( )

i=1

Lagrangian Nominal strain: ( 1)

Lagrangian Logarithmic strain: log( )

i i

i

i i

i

u u

u u

3 ( ) ( )

i=1

3 ( ) ( )

i=1

Eulerian Nominal strain: ( 1)

Eulerian Logarithmic strain: log( )

i i

i

i i

i

v v

v v

* 1 1 * 1 1 1

( ) or ( )

2 2

T Eijij Fki Fkj

    

E I F F

Eulerian strain

(8)

8

x

  X , t x  

X

Lagrangian description: Eulerian description

 

X,t Grad

  

X,t

F  

 

X,t .dM dM . F

 

X,t

F

dM00 t

 

X,t det

F

 

X,t

J

 

0

J X ,t d d

     

X,t F X,t .F X,t

Ct

 

divV x,t d d

 

x,t dans t

V

 

x,t .dM

V grad M

d  

 

x,t

gradV gradV

d  t

2 1

0

t

Rate of deformation:

 

   

X,t

t t , t , X x

V

 

 

VJJ1

div

 

V F.F1

grad

(9)

dA

dP

0

lim

dA

d

dA

P

t

dV

dP

0

lim

dV

d

dV

P

b

t

R

t

e3 e2

e1

n T(n)

T(-n)

( ) -n

0

( ) lim

dA

d

dA

P n

T n

dA

dP

Review: Kinetics

e3

e1 e2

Original Configuration

Deformed Configuration

S

R R0

S0 b

t

Surface traction

Body Force

Internal Traction

( )

A V

dA

dV

P T n b e2

S

R R0

S0

b

t

n

V T(n)

Resultant force on a volume

(10)

Restrictions on internal traction vector

e1

e3 e2

T(n) n

T(-e1) -e1

dA1

dA(n)

dA1 dA(n)

Review: Kinetics

n -n

T(n)

T(-n)

(  ) ( ) T n T n

Newton II

( )   or ( ) T

i

n

j

ji

T n n σ n

Newton II&III

Cauchy Stress Tensor

e1 e3

e2

11

12

13

21

22

23

31

32

33

10

(11)

Other Stress Measures

ij ij

JJ

 

τ σ

e3

e1 e2

Original Configuration

Deformed Configuration

S

R R0

S0 b

i t

ij ij

j

F u

x

  

F I u

det( )

JF

Kirchhoff

Nominal/ 1

st

Piola-Kirchhoff

Material/2

nd

Piola-Kirchhoff

1 1

ij ik kj

J

S

JF

  

S F

σ

1 T 1 1

ij ik kl jl

J JFF

 

Σ F

σ

F

( ) 0

0 i ij

dPjndA n S

e3

e1 e2

Original Configuration

Deformed Configuration

t

dA0

dA n n0

x

u(x)

dP(n) dP0(n)

(12)

Review: Thermodynamics

e3

e1 e2

Original Configuration

Deformed Configuration

S

R R0

S0 b

t

Specific Internal Energy

Specific Helmholtz free energy     s Temperature 

Heat flux vector q External heat flux q

First Law of Thermodynamics d ( )

KE Q W dt    

ij ij i const i

D q q

t y

x

Second Law of Thermodynamics dSdt ddt 0 Specific entropy s

( / )

i 0

i

s q q

t y

 

 

1 0

ij ij i

i

D q s

y t t

12

(13)

Constitutive Laws

General Assumptions:

1. Local homogeneity of deformation

(a deformation gradient can always be calculated) 2. Principle of local action

(stress at a point depends on deformation in

a vanishingly small material element surrounding the point)

Restrictions on constitutive relations:

1. Material Frame Indifference – stress-strain relations must transform consistently under a change of observer

2. Constitutive law must always satisfy the second law of

thermodynamics for any possible deformation/temperature history.

Equations relating internal force measures to deformation measures are known as Constitutive Relations

e3

e1 e2

Original Configuration

Deformed Configuration

1 0

ij ij i

i

D q s

y t t

  

 

    

        

Références

Documents relatifs

A unifying presentation of micromorphic, strain and stress gradient continuum theories has been proposed reconciling many available and new constitutive frameworks under the umbrella

This antenna is based on the principle of broadband and frequency independent antenna like spiral antenna, which in free space simulation has a reflection coefficient less than

We investigate the effect of preservation period on the dynamic material properties of bovine liver using a viscoelastic model derived from both impact and ramp

Next we incorporate a family of parallel fibres in the model and show that the resulting solid can be either reinforced or strongly weakened with respect to surface

If g 1 and g 2 , respec- tively, the radial and circumferential components of the growth process, are equal, then growth is homogeneous and isotropic, and no residual stress

The external sources used here to calculate the mechanobiological stimulus are: (i) the mechanical energy accounting for the mechanical loads sustained by the bone cells and

• In this range of forcing values, the Neo-Hookean model, possibly improved by the Mooney-Rivlin,gives the most stable results between di ff erent cycles and di ff erent ex-

It is here further described, in particular by adding the proof of existence and uniqueness of a solution for the mixed problem (Theorem 3.1), and showing how a Monte Carlo approach