• Aucun résultat trouvé

Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase

N/A
N/A
Protected

Academic year: 2022

Partager "Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase"

Copied!
9
0
0

Texte intégral

(1)

Article

Reference

Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase

PODOLEC, Roman, ULM, Roman

Abstract

Plants have evolved specific photoreceptors that capture informational cues from sunlight.

The phytochrome, cryptochrome, and UVR8 photoreceptors perceive red/far-red, blue/UV-A, and UV-B light, respectively, and control overlapping photomorphogenic responses important for plant growth and development. A major repressor of such photomorphogenic responses is the E3 ubiquitin ligase formed by CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSOR OF PHYA-105 (SPA) proteins, which acts by regulating the stability of photomorphogenesis-promoting transcription factors. The direct interaction of light-activated photoreceptors with the COP1/SPA complex represses its activity via nuclear exclusion of COP1, disruption of the COP1-SPA interaction, and/or SPA protein degradation. This process enables plants to integrate different light signals at the level of the COP1/SPA complex to enact appropriate photomorphogenic responses according to the light environment.

PODOLEC, Roman, ULM, Roman. Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase. Current Opinion in Plant Biology , 2018, vol. 45, p. 18-25

DOI : 10.1016/j.pbi.2018.04.018 PMID : 29775763

Available at:

http://archive-ouverte.unige.ch/unige:104620

Disclaimer: layout of this document may differ from the published version.

(2)

Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase

Roman Podolec

1,2

and Roman Ulm

1,2

Plantshaveevolvedspecificphotoreceptorsthatcapture informationalcuesfromsunlight.Thephytochrome,

cryptochrome,andUVR8photoreceptorsperceivered/far-red, blue/UV-A,andUV-Blight,respectively,andcontrol

overlappingphotomorphogenicresponsesimportantforplant growthanddevelopment.Amajorrepressorofsuch

photomorphogenicresponsesistheE3ubiquitinligaseformed byCONSTITUTIVELYPHOTOMORPHOGENIC1(COP1)and SUPPRESSOROFPHYA-105(SPA)proteins,whichactsby regulatingthestabilityofphotomorphogenesis-promoting transcriptionfactors.Thedirectinteractionoflight-activated photoreceptorswiththeCOP1/SPAcomplexrepressesits activityvianuclearexclusionofCOP1,disruptionoftheCOP1- SPAinteraction,and/orSPAproteindegradation.Thisprocess enablesplantstointegratedifferentlightsignalsatthelevelof theCOP1/SPAcomplextoenactappropriate

photomorphogenicresponsesaccordingtothelight environment.

Addresses

1DepartmentofBotanyandPlantBiology,SectionofBiology,Facultyof Sciences,UniversityofGeneva,CH-1211Geneva4,Switzerland

2InstituteofGeneticsandGenomicsofGeneva(iGE3),Universityof Geneva,Geneva,Switzerland

Correspondingauthor:

CurrentOpinioninPlantBiology2018,45:18–25

ThisreviewcomesfromathemedissueonCellsignalingandgene regulation

EditedbyJorgeCasalandJavierPalatnik

https://doi.org/10.1016/j.pbi.2018.04.018

1369-5266/ã2018TheAuthors.PublishedbyElsevierLtd.Thisisan openaccessarticleundertheCCBY-NC-NDlicense(http://creative- commons.org/licenses/by-nc-nd/4.0/).

Introduction

Assessile organisms, plants adapttheir development to the prevailing growth conditions. Sunlight is not only crucialastheultimatesourceofenergyfuelingphotosyn- thesisbutitalsoprovidesimportantinformationaboutthe environment,influencingplantgrowthanddevelopment throughout the life cycle [1]. For example, during de- etiolation,plantsswitchfromskotomorphogenesis(growth in darkness) to photomorphogenesis (growth in light).

Thistransitionisindependentoftheprocessofphotosyn- thesis. Photomorphogenesis at the seedling stage is

characterized by both changes in seedling morphology (incl.ashort hypocotyland opengreen cotyledons) and avastreprogramming of gene expression that allowthe planttoaccommodatetoaphotosyntheticlifestyle.Other photomorphogenic responses include germination, pho- totropism,shadeavoidance,leafandrosettemorphogene- sis,chloroplastmovement,andfloweringtransition[1].

Photomorphogenic responses are initiated by several classesofphotoreceptors,namelyphytochromes(absorb- ing red/far-red; phyA to phyE in Arabidopsis), crypto- chromes(blue/UV-A;cry1andcry2),phototropins(blue/

UV-A;phot1andphot2),Zeitlupefamilymembers(blue/

UV-A;ztl,fkf1, andlkp2),andtheUV-Bphotoreceptor UVRESISTANCELOCUS8(UVR8)[2].Severalpho- toreceptormechanismsofactionhavebeendescribed[3–

7].ForphototropinsandZeitlupefamilymembers,light perceptionbythephotoreceptorchromophoreleadstoa changein intrinsic serine/threoninekinase andE3 ubi- quitin ligase activity, respectively [5,6]. However, for phytochromes,cryptochromes,and UVR8,lightpercep- tionprimarilyresultsinprotein-proteininteractionswith keytargets[3,4,7].Thesekeyinteractionpartnersinclude a number of transcription factors [8–12] as well as the COP1/SPAE3ubiquitinligase[13–18].Inthisreview,we willdescribetheCOP1/SPAcomplexand itsactivityin darkness, then present the latest findings on how the phytochrome,cryptochrome, and UVR8 photoreceptors interactwithandregulate theCOP1/SPAcomplex.

TheCOP1/SPA E3ubiquitinligase is a key repressoroflight responses

TheCOP1/SPAE3ubiquitinligaseisacrucialrepressor ofphotomorphogenesis[19,20](Figure1).InArabidopsis, COP1andSPA1–SPA4 encodeWD40 repeat-containing proteins [21]. COP1 consists of an N-terminal Really Interesting New Gene (RING) domain, a central coiled-coil(CC)domain,andaC-terminalWD40repeat domain,whereasSPAfamilyproteinsarecomposedofa kinase-like domain, a CC domain, and aWD40 repeat domain [22,23]. Although COP1 shows E3 ubiquitin ligaseactivityinvitro[24,25],itsinvivoactivitydepends onSPA accessoryproteins[26,27].

cop1 null mutants are seedling lethal, but weak cop1 allelesexistthatareassociatedwithstrongphotomorpho- genesis even in complete darkness[28]. The four SPA proteins show somefunctional redundancy, thus a con- stitutive photomorphogenic phenotype is particularly evident in higher order mutants, such as the spa1234

(3)

quadruplemutant[26](Figure1a).However,incontrast to cop1nullmutants, thespa1234nullmutantis viable, althoughwithanextreme dwarfphenotype[27].

COP1 and SPAproteinsdirectly interactandform tetra- meric complexes composed of two COP1 and two SPA proteins,withthepotentialofallcombinationsofthefour SPAproteins[29–31].TheCOP1/SPAcomplexisthought to act as asubstrate adaptor for CULLIN4-DAMAGED DNA BINDINGPROTEIN1(CUL4-DDB1)-basedE3 ubiquitin ligasecomplexes[32]. Indeed,both COP1 and SPAproteinscontainaWDxRmotifassociatedwithDDB1 bindingintheirWD40repeats[32].COP1homodimeriza- tionandCOP1interactionwithSPAproteinsarerequired fornuclearE3ubiquitinligaseactivityinvivo[26,31,33].

AlthoughitisclearthattheSPAproteinsarerequiredfor

COP1activityinvivo,thefunctionofSPAproteinsinthe COP1/SPA complex in darkness remainsunknown [19].

Notwithstanding this, the COP1/SPA complex targets a broad range of photomorphogenesis-promoting transcrip- tionfactorsforubiquitinationanddegradationthroughthe 26Sproteasomepathway[34–43](Figure1b).Interestingly, several targets contain a conserved valine-proline (VP) containingdomain that mediatesdirect bindingwiththe COP1 WD40 domain [34,35,44,45,46]. By targeting a widerangeofphotomorphogenesis-promotingtranscription factors, the COP1/SPA complex broadly regulates light- dependent developmentalresponses,including de-etiola- tionandphotoperiodicflowering[19,20,47].

Itisof interest tonotethat COP1 isconservedbetween plantsandanimals,whereasSPAproteinsarespecifictothe

RegulationofCOP1bylightPodolecandUlm 19

Figure1

(b)

COP1 SPA

COP1 SPA

Photomorphogenesis Flowering

Modulation of shade response HY5 LAF1

HFR1 Photoreceptor

CO

LIGHT

COP1 SPACOP1

SPA Photoreceptor

DARK Photoreceptor

mutants

DARK

cop1 and spa1234 mutants (a)

Wild type LIGHT

PHOTOMORPHOGENESIS SKOTOMORPHOGENESIS

DARK LIGHT

Current Opinion in Plant Biology

RegulationofphotomorphogenesisbyphotoreceptorsandtheCOP1/SPAcomplex.(a)Light-grownwild-typeseedlingsundergo

photomorphogenesis(opengreencotyledons,shorthypocotyl)asopposedtodark-grownseedlingsthatundergoskotomorphogenesis(closed cotyledons,apicalhook,elongatedhypocotyl).Photoreceptormutantsgrowninlightresembledark-grownwild-typeseedlings,whereasdark- growncop1andspa1234mutantsexhibitconstitutivephotomorphogenesis.(b)Generalmodel:Light-activatedphotoreceptorsinactivatethe COP1/SPAcomplexthroughvariousmechanisms,leadingtorepressionofitsE3ubiquitinligaseactivityandstabilizationofphotomorphogenesis- promotingfactors.Indarkness,photoreceptorsareinactiveandphotomorphogenesis-promotingfactorsareubiquitinatedbytheCOP1/SPA complexanddegradedbythe26Sproteasome.

(4)

greenlineage[48].Asthenon-plantCOP1orthologsarenot regulatedbylight[49],ithasbeenhypothesizedthatthe evolution of SPA proteins was crucial for photoreceptor- mediatedlightcontrolofCOP1/SPAcomplexactivity(see below)[48,50].However,itremainsunknownhowthein vivoE3ligaseactivityofplantCOP1evolvedtorequirethe presence of SPA proteins. For a more comprehensive descriptionofthevariousrolesoftheCOP1/SPAcomplex and its regulation in darkness, we refer the reader to excellentrecentreviews[19,20,47,51].

Severalphotoreceptorsregulateactivityofthe COP1/SPAcomplex viadifferent mechanisms ActivityoftheCOP1/SPAcomplexisrequiredforseed- lingetiolationindarkness,whichissubsequentlyinhib- ited by action of the phytochrome, cryptochrome, and

UVR8 photoreceptors in light [4,19] (Figure 1b). This inhibition leadsto areleaseof the COP1/SPAcomplex repressiveactivityandthusactivatesphotomorphogenic responses. Although the different photoreceptors simi- larlyregulate activityof theCOP1/SPAcomplex, there arecleardistinct mechanisms.Theseregulatorymecha- nismsinclude nucleo-cytosolic partitioning,degradation oftheaccessorySPAproteins,andphysicalseparationof COP1fromSPA proteinsor of theCOP1/SPAcomplex fromCUL4-DDB1(Figure2).

Light-regulatednuclearexclusionofCOP1

TheregulationofCOP1sub-cellularlocalizationwasthe firstproposed mechanism of light-dependent control of COP1 activity [52] (Figure 2a). In the dark, COP1 is predominantly present in the nucleus, where nuclear

Figure2

Nuclear exclusion SPA degradation

Inhibition of COP1 dimerization COP1-SPA dissociation

(a) (b) (c)

(d) (e) (f)

Nucleus Cytosol

HY5 COP1

SPACOP1 phyA-, phyB-, cry1- SPA

dependent

SPA- dependent COP1

COP1

HY5

HY5

phyA-dependent COP1-dependent COP1

SPA2COP1 SPA2

COP1COP1

Photomorphogenesis HY5

HY5 HY5

Sequestering into inactive complexes

COP1 SPACOP1

SPA

Photomorphogenesis HY5 CUL4

DDB1

UVR8

COP1 SPACOP1

SPA CUL4

DDB1 UVR8UVR8

HY5 HY5 HY5

C C C C COP111

C COP111 D

D DDB11

U U U U UVR888 U U UV 8R888

COP1 SPACOP1

SPA

Flowering COP1

SPA

COP1 SPA fkf1 fkf1 fkf1

CO

CO CO CO cry2-dependent inhibition of COP1/SPA activity

COP1 SPA

COP1 SPA

Flowering SPA COP1

SPA COP1

cry2 cry2

cry2 cry2

CO

CO CO CO

C C C COP111

C COP11

COP1 SPACOP1

SPA

Photomorphogenesis COP1

SPA cry1

COP1 SPA phyA/B cry1

phyA/B

HY5 HY5 HY5 HY5

COP1 SPA cry1

Current Opinion in Plant Biology

MechanismsofphotoreceptorcontroloverCOP1/SPAE3ligaseactivity.(a)PhytochromesandcryptochromespromoterelocationofCOP1tothe cytosol,separatingitfromitsnuclearsubstrates.WhetherSPAproteinsarealsorelocatedtothecytosolinresponsetolightremainsunknown.(b) LightinducesthephyA-dependentandCOP1-dependentdegradationofSPA2,leadingtoadecreaseinCOP1E3ligaseactivity.(c)cry1and phyA/Binteractlight-specificallywithSPAproteins.ThisinteractionleadstophysicalseparationofCOP1andSPAproteins,leadingtoadecrease inCOP1/SPAE3ligaseactivity.CryptochromesandphytochromesalsodirectlyinteractwithCOP1.NotethatitisnotknownwhethertheCOP1- SPAdissociationalsodisruptstheCOP1-COP1andSPA-SPAinteractions.(d)cry2interactsbluelight-dependentlywithCOP1andSPAproteins, leadingtoanincreaseinCOP1-SPAaffinitybutadecreaseinE3ligaseactivity,promotingfloweringunderlongdays.(e)UV-B-dependent interactionofUVR8withCOP1inducesachangeincomplexorganizationfromaCUL4-DDB1-COP1/SPAcomplexthatubiquinatestarget substratestoasubstrate-stabilizingUVR8-COP1/SPAcomplex.(f)fkf1interactswithCOP1underbluelightandinhibitsCOP1homodimerization, whereasCOP1-SPAheterodimerizationisunaffected.ThisinactivatestheCOP1/SPAcomplexandpromotesflowering.(a)–(f)HY5andCO exemplifyCOP1/SPAsubstratespromotingseedlingphotomorphogenesisandflowering,respectively.

(5)

transcriptionfactorsaretargetedforubiquitination.Light inducesCOP1relocationtothecytosol,separatingitfrom itsnuclearsubstrates[20,52].ItwasproposedthatCOP1 relocationwasrelativelyslow(12–24h)basedonstudies with GUS-COP1 fusions [52]. However, this view was recentlychallengedbytheobservationthataYFP-COP1 fusion was ableto relocatemuchfaster (2.5h half-life), suggesting this mechanism couldpossibly contributeto theratherrapidstabilizationofCOP1targetsunderlight [53,54].Conversely,shadepromotesthere-accumulation ofCOP1inthenucleustoexertitsphotomorphogenesis- repressingactivity[55].

COP1 nuclear localization is dependent on a bipartite nuclear localization signal in the regionbetween theCC and WD40 domains [56,57], and SPA proteins are not required for nuclear localization of COP1 in darkness [50].CytosoliclocalizationofCOP1inresponsetolight involves acytosolic localization signal in the CC domain [56,57]. Phytochrome and cryptochrome photoreceptors mediate COP1 nuclear exclusion [58,59]; however, how exactlyphotoreceptorsignalingregulatesCOP1sub-cellu- lar localizationremainsunknown.Interestingly,theinter- play between different photoreceptors is complex, as is evident whenCOP1 nuclearexclusion isanalyzedunder monochromatic conditions. For example, whereas phyA- mediatednuclearexclusionofCOP1underfar-redlightis dependentonSPAproteins,thisresponseisSPAindepen- dentunderbluelightdownstreamofcry1[50].Moreover, phyBandredlightwerefoundtobelesspotentininducing COP1nuclearexclusion[50].Notwithstandingtheexact contributionofindividualphotoreceptors,SPAproteinsare necessary for COP1 nucleo-cytosolic partitioning in response to white light [50]. However, it is clear that nuclear COP1isinactiveintheabsenceof SPAproteins, both in light as well as in darkness [26,27]. Thus, SPA proteinsplayadualroleinthattheyarerequiredforCOP1 functionandalsoenableCOP1light-responsiveness.How- ever,itispresentlynotknownwhetherSPAproteinsshow light-dependent nucleo-cytosolic partitioning themselves, orwhetheronlyCOP1 isaffected.

Interestingly,supplementalUV-Bcounteractsthenuclear exclusionofCOP1inwhitelightandcausesnuclearCOP1 accumulation[60],althoughitisnotknownwhetherUV-B affectsCOP1nuclear-cytosolicshuttlingperse.Thefind- ingthatnuclearCOP1accumulationunderUV-Bisasso- ciated with elevated COP1 levels [60,61] suggests that UVR8maynotaffectCOP1sub-cellularlocalizationbut maycauseinhibitionofCOP1autoubiquitinationandthus affect nuclearaccumulationindirectly.

Photoreceptor-mediatedregulationofCOP1andSPA proteinlevels

Given that SPA proteins are required for COP1/SPA complexactivity,targeteddestabilizationofSPAproteins is also a mechanism to control activity of the complex.

Indeed, SPA2, and to alesser extent SPA1, show light- induced, phyA-dependent, and proteasome-mediated degradation[62,63](Figure2b).The N-terminalkinase- like domain of SPA2 confers instability to the protein underlight[64].Interestingly,thephotoreceptor-induced degradationofSPA2seemsdependentonCOP1activity, suggestingcross-regulationofstabilityamongCOP1/SPA complexcomponents[29].Incontrast,theCOP1proteinis stabilized and accumulates in the nucleus after UV-B exposureinaUVR8-dependentmanner,andthisisaccom- panied by increased transcription of COP1 under UV-B [60,61,65]. However, increased nuclear accumulation of COP1 under UV-B is accompanied by increased rather than decreasedELONGATED HYPOCOTYL5 (HY5) stability, emphasizing that the COP1/SPA complex is efficientlyinactivatedbyUV-B-activatedUVR8[13,60].

Photoreceptor-mediatedregulationoftheCOP1-SPA interaction

Alongside the physical separation of COP1 from sub- strates,photoreceptor-mediateddisruptionofthecrucial COP1-SPA interaction inactivates COP1/SPA ubiquitin ligase activity and results in stabilization of photomor- phogenesis-promoting transcription factors (Figure 2c).

This mechanism contributes to bothcryptochrome and phytochromesignaling.

Indeed,bluelight-dependentinteractionofcry1andcry2 withSPAproteinsregulatestheactivityoftheCOP1/SPA complex [16–18,66].The cry1C-terminal CCTdomain interacts with the SPA1 C-terminal region specifically underbluelight[16,17].Mechanistically,thebluelight- dependent cry1-SPA1 interaction leads to a reduced SPA1 binding to COP1, thereby inactivating the COP1/SPAubiquitinligaseandstabilizing,forexample, the HY5 transcription factor to promote photomorpho- genesis[16,17].Forthebluelight-dependentinteraction betweencry2andSPA1,itistheN-terminalPHRdomain ofcry2thatinteractswiththeN-terminaldomainofSPA1 [18,67],which converselycausestheCOP1-SPA1 inter- actiontobestrengthenedratherthandissociated.Never- theless, cry2 interaction with the COP1/SPA complex increases thestabilityof theCOP1/SPAcomplextarget CONSTANS(CO) thatis involvedin theregulationof photoperiodicfloweringunderlongdays[18](Figure2d).

Next to theeffect of light-dependent interactionswith SPA proteins, cry1 and cry2 C-terminal domains also interact directly with COP1 [68,69]. Whereasthecry1–

COP1interactionisdependentonSPAproteins,thecry2- COP1interactionisnot,andbothappeartobeblue-light dependent [70]. The direct interaction of the crypto- chromeswithCOP1mayindeedfurthercontributetothe light-mediatedeffectontheCOP1–SPAinteractionand therebyCOP1/SPAcomplexactivity.

Similar to cryptochromes, the light-activated phyto- chromes phyA and phyB interact with SPA proteins

RegulationofCOP1bylightPodolecandUlm 21

(6)

[14,15]. The phytochromesinhibit COP1/SPA complex activitybydisruptingtheinteractionbetweenCOP1and SPAproteins,therebyreorganizingtheCOP1/SPAcom- plex[14,15],analogousto thecry1mechanismof action [16,17,66]. Moreover, direct interaction of the phyto- chromes with COP1 may contribute to the regulation ofCOP1/SPAcomplexactivity[15,71,72].

UVR8-mediatedinhibitionofCOP1,independentofSPA proteins

TheUVR8photoreceptorwasshowntodirectlyinteract with the WD40 repeat domain of COP1 in a UV-B- dependentmanner[13,65,73–75,76].Incontrasttophy- tochromes and cryptochromes, UVR8 does not interact with SPA proteins and UVR8 early signaling is not impairedinspa1234quadruplemutants[60,65].Indeed, although UV-B-activated UVR8 interacts directly with COP1,itisonlyassociatedwithSPA1indirectlythrough COP1 [65]. Moreover, the COP1–SPA interaction remainsintactuponinteractionwithUVR8[65,73].

Two separate domains of UVR8 are involved in the interaction with COP1, namely a domain of maximum 27amino acids(C27)in the UVR8C-terminus andthe UVR8b-propeller core[77,78].The twoCOP1 interac- tion surfaces are not accessible in the inactive UVR8 homodimer but are exposed in monomeric, active UVR8that formsupon UV-Bperception [75,77]. Inter- action of COP1 with the b-propeller domain of UVR8 allows UV-B-dependent UVR8-COP1 interaction, whereastheC-terminalUVR8domainisthoughttoaffect COP1 activity [77]. Interestingly, the C27 domain of UVR8comprisesafunctionalandconservedVP-contain- ingmotif[77]thatmimicstheCOP1-interactiondomains of several COP1 substrate proteins [34,35,44,45,46].

Thus, competition between the UVR8 VP interaction motifandthatofCOP1targetsmaypreventubiquitina- tionanddegradationofthelatterthroughthe26Sprotea- some pathway and underlie how UVR8 inactivates the COP1/SPA complex [4,13,77]. It is of note that UVR8 stability is not affected by its interaction with COP1 [13,79]. UVR8 binding to COP1 also induces physical and functional dissociation of the COP1/SPA complex corefromthe HY5-degradingCUL4-DDB1-COP1/SPA E3ligase complex,thusinactivating theCOP1/SPAE3 ligase and creating aUVR8-COP1/SPA complex which may actively promote HY5 stabilization through an unknownmechanism [51,73](Figure 2e).

Otherlight-mediated changesin COP1/SPA complexactivity

Recently, several post-translational mechanisms have been reported that regulate activity of the COP1/SPA complex. COP1/SPA complex activity is enhanced by COP1 sumoylation in darkness. Light is proposed to negatively regulate COP1 sumoylation; however, this responseisyet to be linkedto aspecific photoreceptor

[80].Moreover, COP1isregulatedvia phosphorylation by thePINOID kinase; however, the mechanistic link betweenphotoreceptorsignalingandCOP1 phosphory- lation remains to be identified [81]. Alongside post- translational modifications, COP1 activity is also regu- lated by interaction with PHYTOCHROME INTER- ACTINGFACTOR1(PIF1),whichenhancesactivityof theCOP1/SPAcomplexindarkness[82].PIF1isdesta- bilizedinlightinaphytochrome-dependentprocessand COP1/SPA complex-dependent process, which poten- tiallycontributes toinactivationof theCOP1/SPAcom- plex in light [83]. Degradation of the PIF1 co-factor is reminiscent of the previously discussed COP1-depen- dentdegradationof SPA2.

Averyrecentstudyhasimpliedthatfkf1photoreceptor- dependentcontroloffloweringtimeinvolvesinactivation oftheCOP1/SPAcomplex[33].fkf1interactswiththe RING domain of COP1, and this interaction inhibits COP1 dimerization,whereas COP1-SPA1 heterodimer- ization remains unaffected [33] (Figure 2f). Whether thisinhibitionofCOP1dimerizationfollowingfkf1inter- actionisuniqueorrepresentsamoregeneralmechanism ofCOP1regulationremainsto bedetermined.

Feedbackregulationofphotoreceptorsbythe COP1/SPAcomplex

The COP1/SPA complex may also provide feedback regulation of photoreceptor activities, and indeed has been implicatedin theregulation of cryptochrome and phytochromelevels[71,84,85].Ontheotherhand,UVR8 directly interacts with COP1 but there is no indication thatthis interactionleads to UVR8destabilization[13].

Interestingly,however,COP1isrequiredfor theUV-B- induced nuclear accumulation of UVR8, providing an additionalmechanismforCOP1photoreceptorsignaling feedbackregulation[86,87].

Conclusionsand futuredirections

Severalmechanisms havebeen proposedtocollectively explain the light-dependent, photoreceptor-mediated regulation of COP1/SPA E3 ligase activity. Firstly, nuclear exclusion of COP1 under light was identified.

However,itremainsunclearhowthedifferentphotore- ceptors are mechanistically involved, and whether this process is fast enough to account for thelight-induced stabilizationof COP1 substratesresulting in earlygene expressionchanges.Secondly,light-inducedseparationof COP1fromitscrucialaccessorySPAproteinsseemstobe a common mechanism for phytochrome and crypto- chrome signaling [14,15,66]. However, the role that SPAproteinsplayandhowphotoreceptor-mediatedsep- arationimpairstheoverallCOP1/SPA complexremains unclear.Thirdly,asforUVR8,ithasbeensuggestedthat dissociationoftheCUL4-DDB1scaffoldfromtheCOP1/

SPA complex prevents ubiquitination of and therefore stabilizes HY5 [13,65,73]. How the UVR8-COP1/SPA

(7)

interaction results in theproposed functional switchof COP1 from repressor to promoter of HY5 stability remains to be investigated. SPA proteins do not seem toplayadecisiveroleinthisprocess[65,73].Lastly,light- induced destabilization of accessory proteins, such as SPA2 or PIF1, can account for a decrease in COP1/

SPAcomplexactivity[62,63,82].Itispresentlyunknown if and how the mechanisms of COP1/SPA regulation through photoreceptors interact, and what the relative contributionsofthesemechanismsareinthestabilization of differentCOP1/SPAsubstrates.

The COP1/SPA complex haslikely arisen early in the evolutionofthegreenlineageasapointofconvergence throughwhichphotoreceptorscancontrolphotomorpho- genesis in line withthesurrounding light environment.

Futureresearch shouldfocusonunderstandingthepre- cise composition, localization, stability, and E3 ligase activity of the COP1/SPA complex in the presence of different photoreceptors and different light qualities.

This should further reveal the common and specific mechanisms through which photoreceptors control COP1/SPAcomplex activityandtherebyphotomorpho- genic development.

Acknowledgements

WethankSongChenforhelpfulcommentsonthemanuscript.We apologizetocolleagueswhoseworkcouldnotbediscussedduetospace restrictions.OurresearchissupportedbytheUniversityofGenevaandthe SwissNationalScienceFoundation(grantnumbers31003A_153475, CRSII3_154438andIZSAZ3_173361).RomanPodolecissupportedbyan iGE3PhDSalaryAward.

References and recommendedreading

Papersofparticularinterest,publishedwithintheperiodofreview, havebeenhighlightedas:

ofspecialinterest ofoutstandinginterest

1. KamiC,LorrainS,HornitschekP,FankhauserC:Light- regulatedplantgrowthanddevelopment.CurrTopDevBiol 2010,91:29-66.

2. GalvaoVC,FankhauserC:Sensingthelightenvironmentin plants:photoreceptorsandearlysignalingsteps.CurrOpin Neurobiol2015,34:46-53.

3. LiuH,LiuB,ZhaoC,PepperM,LinC:Theactionmechanismsof plantcryptochromes.TrendsPlantSci2011,16:684-691.

4. YinR,UlmR:HowplantscopewithUV-B:fromperceptionto response.CurrOpinPlantBiol2017,37:42-48.

5. FankhauserC,ChristieJM:Plantphototropicgrowth.CurrBiol 2015,25:R384-R389.

6. ItoS,SongYH,ImaizumiT:LOVdomain-containingF-box proteins:light-dependentproteindegradationmodulesin Arabidopsis.MolPlant2012,5:573-582.

7. PhamVN,KatharePK,HuqE:Phytochromesandphytochrome interactingfactors.PlantPhysiol2018,176:1025-1038.

8. LiuH,YuX,LiK,KlejnotJ,YangH,LisieroD,LinC:Photoexcited CRY2interactswithCIB1toregulatetranscriptionandfloral initiationinArabidopsis.Science2008,322:1535-1539.

9. PedmaleUllasV,HuangS-shanC,ZanderM,ColeBenjaminJ, HetzelJ,LjungK,ReisPedroAB,SrideviP,NitoK,NeryJosephR

etal.:CryptochromesinteractdirectlywithPIFstocontrol plantgrowthinlimitingbluelight.Cell2016,164:233-245.

10. YangY,LiangT,ZhangL,ShaoK,GuX,ShangR,ShiN,LiX, ZhangP,LiuH:UVR8interactswithWRKY36toregulateHY5 transcriptionandhypocotylelongationinArabidopsis.Nat Plants2018,4:98-107.

11. MaD,LiX,GuoY,ChuJ,FangS,YanC,NoelJP,LiuH:

Cryptochrome1interactswithPIF4toregulatehigh temperature-mediatedhypocotylelongationinresponseto bluelight.ProcNatlAcadSciUSA2016,113:224-229.

12. LiangT,MeiS,ShiC,YangY,PengY,MaL,WangF,LiX,HuangX, YinYetal.:UVR8interactswithBES1andBIM1toregulate transcriptionandphotomorphogenesisinArabidopsis.Dev Cell2018,44:512-523.

13. FavoryJJ,StecA,GruberH,RizziniL,OraveczA,FunkM,AlbertA, CloixC,JenkinsGI,OakeleyEJetal.:InteractionofCOP1and UVR8regulatesUV-B-inducedphotomorphogenesisand stressacclimationinArabidopsis.EMBOJ2009,28:591-601.

14. LuXD,ZhouCM,XuPB,LuoQ,LianHL,YangHQ:Red-light- dependentinteractionofphyBwithSPA1promotesCOP1- SPA1dissociationandphotomorphogenicdevelopmentin Arabidopsis.MolPlant2015,8:467-478.

15. SheerinDJ,MenonC,zurOven-KrockhausS,EnderleB,ZhuL, JohnenP,SchleifenbaumF,StierhofYD,HuqE,HiltbrunnerA:

Light-activatedphytochromeAandBinteractwithmembers oftheSPAfamilytopromotephotomorphogenesisin ArabidopsisbyreorganizingtheCOP1/SPAcomplex.PlantCell 2015,27:189-201.

16. LiuB,ZuoZ,LiuH,LiuX,LinC:Arabidopsiscryptochrome 1interactswithSPA1tosuppressCOP1activityinresponseto bluelight.GenesDev2011,25:1029-1034.

17. LianHL,HeSB,ZhangYC,ZhuDM,ZhangJY,JiaKP,SunSX, LiL,YangHQ:Blue-light-dependentinteractionof

cryptochrome1withSPA1definesadynamicsignaling mechanism.GenesDev2011,25:1023-1028.

18. ZuoZ,LiuH,LiuB,LiuX,LinC:Bluelight-dependentinteraction ofCRY2withSPA1regulatesCOP1activityandfloralinitiation inArabidopsis.CurrBiol2011,21:841-847.

19. HoeckerU:TheactivitiesoftheE3ubiquitinligaseCOP1/SPA, akeyrepressorinlightsignaling.CurrOpinPlantBiol2017, 37:63-69.

20. LauOS,DengXW:ThephotomorphogenicrepressorsCOP1 andDET1:20yearslater.TrendsPlantSci2012,17:584-593.

21. LeeJH,TerzaghiW,GusmaroliG,CharronJB,YoonHJ,ChenH, HeYJ,XiongY,DengXW:CharacterizationofArabidopsisand riceDWDproteinsandtheirrolesassubstratereceptorsfor CUL4-RINGE3ubiquitinligases.PlantCell2008,20:152-167.

22. HoeckerU,TeppermanJM,QuailPH:SPA1,aWD-repeat proteinspecifictophytochromeAsignaltransduction.

Science1999,284:496-499.

23. DengXW,MatsuiM,WeiN,WagnerD,ChuAM,FeldmannKA, QuailPH:COP1,anArabidopsisregulatorygene,encodesa proteinwithbothazinc-bindingmotifandaGbeta homologousdomain.Cell1992,71:791-801.

24. SaijoY,SullivanJA,WangH,YangJ,ShenY,RubioV,MaL, HoeckerU,DengXW:TheCOP1–SPA1interactiondefinesa criticalstepinphytochromeA-mediatedregulationofHY5 activity.GenesDev2003,17:2642-2647.

25. SeoHS,YangJY,IshikawaM,BolleC,BallesterosML,ChuaNH:

LAF1ubiquitinationbyCOP1controlsphotomorphogenesis andisstimulatedbySPA1.Nature2003,423:995-999.

26. LaubingerS,FittinghoffK,HoeckerU:TheSPAquartet:afamily ofWD-repeatproteinswithacentralroleinsuppression ofphotomorphogenesisinArabidopsis.PlantCell2004, 16:2293-2306.

27. Ordonez-HerreraN,FackendahlP,YuX,SchaeferS,KonczC, HoeckerU:Acop1spamutantdeficientinCOP1andSPA proteinsrevealspartialco-actionofCOP1andSPAduring

RegulationofCOP1bylightPodolecandUlm 23

Références

Documents relatifs

The first session of the Conference of the Parties to the WHO Framework Convention on Tobacco Control decided (decision FCTC/COP1(15)) to set up a working group 1 to

55. Con arreglo al artículo 21 del Convenio Marco de la OMS, cada Parte presentará a la Conferencia de las Partes, por conducto de la Secretaría, informes periódicos sobre

Keywords: apical radial glia, cortical development, neuronal migration, scaffold, cell-cell interaction, cell signaling, extracellular matrix.. Frontiers in Cell and

(A and B) COP1 protein accumulation in WT and det1-1 Arabidopsis seedlings treated with bortezomib (Bor) for 6 or 24 hours, under continuous light (A) or continuous dark conditions

Conversely, we show that the depletion of COP1 or DET1 by small interference RNA (siRNA) in U2OS cells stabilizes endogenous ERM whereas only COP1 knockdown enhances expression

By using exome and capillary sequencing, we here identify biallelic UBE3B mutations in four patients from three unrelated fami- lies presenting an

Methods This was a single-centre cohort study at Geneva University Hospitals from 2000 to 2012 investigating the remission rates of orthopaedic implant infections after fracture

Dans le cadre du master consécutif (MBA) en ingénierie des services, un module de design de services est enseigné. Là, la méthodologie a été expérimentée et enseignée durant