• Aucun résultat trouvé

On the effect of random Snapshot timing jitter on the covariance Matrix for JADE estimation

N/A
N/A
Protected

Academic year: 2022

Partager "On the effect of random Snapshot timing jitter on the covariance Matrix for JADE estimation"

Copied!
53
0
0

Texte intégral

(1)

On the Effect of Random Snapshot Timing Jitter on the Covariance Matrix for JADE Estimation

A. BAZZI1,2 D.T.M. SLOCK1 L. MEILHAC2

1EURECOM-Mobile Communications Department

2CEVA-RivieraWaves

EUSIPCO, 2015

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 1 / 37

(2)

Outline

1 Introduction

2 The System Model Snapshot

Analytical Formulation Assumptions

Problem Statement

3 Jitter Effect

Jitter Effect on Covariance Matrix

Consequence on Estimating number of Multipath Components

4 Estimation/Compensation of Jitter LS approach

Negative Eigenvalues approach

5 JADE (2D-MUSIC) No Jitter

Presence of Jitter Compensating for Jitter

6 Conclusion

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 2 / 37

(3)

Intro

Indoor Localisation:

1 Radio-Based: Online estimation of AoA (Angle of Arrival) and/or ToA (Time of Arrival) , etc.

2 Fingerprinting: Offline training for Online use.

We focus on Radio-Based, and in particularJADE. Linear Model: x(l) =Aγ(l)+n(l).

AoA andToAinformation found inA.

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 3 / 37

(4)

Intro

Indoor Localisation:

1 Radio-Based: Online estimation of AoA (Angle of Arrival) and/or ToA (Time of Arrival) , etc.

2 Fingerprinting: Offline training for Online use.

We focus on Radio-Based, and in particularJADE. Linear Model: x(l) =Aγ(l)+n(l).

AoA andToAinformation found inA.

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 3 / 37

(5)

Intro

Indoor Localisation:

1 Radio-Based: Online estimation of AoA (Angle of Arrival) and/or ToA (Time of Arrival) , etc.

2 Fingerprinting: Offline training for Online use.

We focus on Radio-Based, and in particular JADE.

Linear Model: x(l) =Aγ(l)+n(l). AoA andToAinformation found inA.

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 3 / 37

(6)

Intro

Indoor Localisation:

1 Radio-Based: Online estimation of AoA (Angle of Arrival) and/or ToA (Time of Arrival) , etc.

2 Fingerprinting: Offline training for Online use.

We focus on Radio-Based, and in particular JADE.

Linear Model: x(l)=Aγ(l)+n(l).

AoA andToAinformation found inA.

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 3 / 37

(7)

Intro

Indoor Localisation:

1 Radio-Based: Online estimation of AoA (Angle of Arrival) and/or ToA (Time of Arrival) , etc.

2 Fingerprinting: Offline training for Online use.

We focus on Radio-Based, and in particular JADE.

Linear Model: x(l)=Aγ(l)+n(l). AoA andToAinformation found inA.

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 3 / 37

(8)

Intro

Various algorithms to estimate parameters inA:

1 Maximum Likelihood methods.

2 Subspace methods (2D-MUSIC/2D-ESPRIT/etc.)

It turns out that all existing algorithms are Model-Sensitive. In other words, such algorithms fail when model is

x(l)=C(l)(l)+n(l) with unknownC(l).

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 4 / 37

(9)

Intro

Various algorithms to estimate parameters inA:

1 Maximum Likelihood methods.

2 Subspace methods (2D-MUSIC/2D-ESPRIT/etc.)

It turns out that all existing algorithms are Model-Sensitive. In other words, such algorithms fail when model is

x(l)=C(l)(l)+n(l) with unknownC(l).

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 4 / 37

(10)

Intro

Various algorithms to estimate parameters inA:

1 Maximum Likelihood methods.

2 Subspace methods (2D-MUSIC/2D-ESPRIT/etc.)

It turns out that all existing algorithms are Model-Sensitive. In other words, such algorithms fail when model is

x(l)=C(l)(l)+n(l) with unknownC(l).

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 4 / 37

(11)

Intro

Various algorithms to estimate parameters inA:

1 Maximum Likelihood methods.

2 Subspace methods (2D-MUSIC/2D-ESPRIT/etc.)

It turns out that all existing algorithms are Model-Sensitive.

In other words, such algorithms fail when model is x(l)=C(l)(l)+n(l) with unknownC(l).

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 4 / 37

(12)

Intro

Various algorithms to estimate parameters inA:

1 Maximum Likelihood methods.

2 Subspace methods (2D-MUSIC/2D-ESPRIT/etc.)

It turns out that all existing algorithms are Model-Sensitive.

In other words, such algorithms fail when model is x(l)=C(l)(l)+n(l) with unknownC(l).

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 4 / 37

(13)

Outline

1 Introduction

2 The System Model Snapshot

Analytical Formulation Assumptions

Problem Statement

3 Jitter Effect

Jitter Effect on Covariance Matrix

Consequence on Estimating number of Multipath Components

4 Estimation/Compensation of Jitter LS approach

Negative Eigenvalues approach

5 JADE (2D-MUSIC) No Jitter

Presence of Jitter Compensating for Jitter

6 Conclusion

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 5 / 37

(14)

Snapshot Illustration

OFDM  Symbol  

Transmi2er  (TX)   Mul;path  Channel   Receiver  (RX)  

.   .   .   .   .  .   .     Antenna  1  

Antenna  N  

s(t)= bm m=0 M−1

ej2πmΔft

Channel'composed'of'q'paths.'' The'ith'path'is'characterized'by:'

Complex'amplitude'!!(!)'

Time'of'Arrival'(ToA)'!!'

Angle'of'Arrival'(AoA)'!!' '

!

!(!)!is!the!transmit!OFDM!symbol!

composed!of!!!subcarriers.!

!

(γ1 (l),τ1,θ1)

(γq (l),τq,θq)

.   .  .   .   .    

r1(l)(t)

rN(l)(t) The$nth$antenna$receives$a$sum$$

of$the$q#paths,$!!!(!).$

s(t)

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 6 / 37

(15)

Snapshot Illustration (cont’d)

rN(l)(t)  Collect    

         M    

samples   FFT  

Sampler  

 .   .  .   .   δ(l)

! xMN−(M−1)(l)

! xMN(l)

r1(l)(t)  Collect    

         M    

samples   FFT  

Sampler  

 .   .  .   .   δ(l)

! x1(l)

! xM(l)

.   .   .   .   .   .    

.   .   .   .   .   .     .  

.   .   .   .   .    

.   .   .   .   .   .     .  

.   .   .   .   .    

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 7 / 37

(16)

Outline

1 Introduction

2 The System Model Snapshot

Analytical Formulation Assumptions

Problem Statement

3 Jitter Effect

Jitter Effect on Covariance Matrix

Consequence on Estimating number of Multipath Components

4 Estimation/Compensation of Jitter LS approach

Negative Eigenvalues approach

5 JADE (2D-MUSIC) No Jitter

Presence of Jitter Compensating for Jitter

6 Conclusion

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 8 / 37

(17)

Analytical Formulation

System Model

˜

x(l)=C(l)(l)+n(l), l= 1. . . L

where

A= [a(θ1)⊗c(τ1), . . . ,a(θq)⊗c(τq)]

a(θ) = [a1(θ), . . . ,aN(θ)]T depends on array geometry (ex: ULA). c(τ) = [1, e−j2πτMf, . . . , e−j2πτ(M−1)Mf]T

C(l)=IN ⊗diag{c(δ(l))} γ(l)= [γ1(l). . . γq(l)]T

n(l) is anM N×1background noise vector.

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 9 / 37

(18)

Analytical Formulation

System Model

˜

x(l)=C(l)(l)+n(l), l= 1. . . L

where

A= [a(θ1)⊗c(τ1), . . . ,a(θq)⊗c(τq)]

a(θ) = [a1(θ), . . . ,aN(θ)]T depends on array geometry (ex: ULA).

c(τ) = [1, e−j2πτMf, . . . , e−j2πτ(M−1)Mf]T C(l)=IN ⊗diag{c(δ(l))}

γ(l)= [γ1(l). . . γq(l)]T

n(l) is anM N×1background noise vector.

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 9 / 37

(19)

Analytical Formulation

System Model

˜

x(l)=C(l)(l)+n(l), l= 1. . . L

where

A= [a(θ1)⊗c(τ1), . . . ,a(θq)⊗c(τq)]

a(θ) = [a1(θ), . . . ,aN(θ)]T depends on array geometry (ex: ULA).

c(τ) = [1, e−j2πτMf, . . . , e−j2πτ(M−1)Mf]T

C(l)=IN ⊗diag{c(δ(l))} γ(l)= [γ1(l). . . γq(l)]T

n(l) is anM N×1background noise vector.

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 9 / 37

(20)

Analytical Formulation

System Model

˜

x(l)=C(l)(l)+n(l), l= 1. . . L

where

A= [a(θ1)⊗c(τ1), . . . ,a(θq)⊗c(τq)]

a(θ) = [a1(θ), . . . ,aN(θ)]T depends on array geometry (ex: ULA).

c(τ) = [1, e−j2πτMf, . . . , e−j2πτ(M−1)Mf]T C(l)=IN ⊗diag{c(δ(l))}

γ(l)= [γ1(l). . . γq(l)]T

n(l) is anM N×1background noise vector.

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 9 / 37

(21)

Analytical Formulation

System Model

˜

x(l)=C(l)(l)+n(l), l= 1. . . L

where

A= [a(θ1)⊗c(τ1), . . . ,a(θq)⊗c(τq)]

a(θ) = [a1(θ), . . . ,aN(θ)]T depends on array geometry (ex: ULA).

c(τ) = [1, e−j2πτMf, . . . , e−j2πτ(M−1)Mf]T C(l)=IN ⊗diag{c(δ(l))}

γ(l)= [γ1(l). . . γq(l)]T

n(l) is anM N×1background noise vector.

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 9 / 37

(22)

Analytical Formulation

System Model

˜

x(l)=C(l)(l)+n(l), l= 1. . . L

where

A= [a(θ1)⊗c(τ1), . . . ,a(θq)⊗c(τq)]

a(θ) = [a1(θ), . . . ,aN(θ)]T depends on array geometry (ex: ULA).

c(τ) = [1, e−j2πτMf, . . . , e−j2πτ(M−1)Mf]T C(l)=IN ⊗diag{c(δ(l))}

γ(l)= [γ1(l). . . γq(l)]T

n(l) is anM N×1background noise vector.

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 9 / 37

(23)

Outline

1 Introduction

2 The System Model Snapshot

Analytical Formulation Assumptions

Problem Statement

3 Jitter Effect

Jitter Effect on Covariance Matrix

Consequence on Estimating number of Multipath Components

4 Estimation/Compensation of Jitter LS approach

Negative Eigenvalues approach

5 JADE (2D-MUSIC) No Jitter

Presence of Jitter Compensating for Jitter

6 Conclusion

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 10 / 37

(24)

Assumptions

1 q < M N

2 The matrix Ahas full column rank.

3 The entries of the multipath vectorγ(l) are not fully correlated, i.e.

Rγγ is full rank.

4 n(l) ∼ N(0, σn2IM N) indep from signal partC(l)(l)

5 δ(l)∼ N(0, σδ2) indep fromγ(l) andn(l).

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 11 / 37

(25)

Outline

1 Introduction

2 The System Model Snapshot

Analytical Formulation Assumptions

Problem Statement

3 Jitter Effect

Jitter Effect on Covariance Matrix

Consequence on Estimating number of Multipath Components

4 Estimation/Compensation of Jitter LS approach

Negative Eigenvalues approach

5 JADE (2D-MUSIC) No Jitter

Presence of Jitter Compensating for Jitter

6 Conclusion

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 12 / 37

(26)

Problem Statement

Given the data n x(l)oL

l=1, estimate:

the jitter varianceσ2δ.

the number of multipath components q. the times and angles of arrival

θi, τi qi=1.

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 13 / 37

(27)

Problem Statement

Given the data n x(l)oL

l=1, estimate:

the jitter varianceσ2δ.

the number of multipath components q.

the times and angles of arrival

θi, τi qi=1.

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 13 / 37

(28)

Problem Statement

Given the data n x(l)oL

l=1, estimate:

the jitter varianceσ2δ.

the number of multipath components q.

the times and angles of arrival

θi, τi qi=1.

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 13 / 37

(29)

Outline

1 Introduction

2 The System Model Snapshot

Analytical Formulation Assumptions

Problem Statement

3 Jitter Effect

Jitter Effect on Covariance Matrix

Consequence on Estimating number of Multipath Components

4 Estimation/Compensation of Jitter LS approach

Negative Eigenvalues approach

5 JADE (2D-MUSIC) No Jitter

Presence of Jitter Compensating for Jitter

6 Conclusion

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 14 / 37

(30)

Jitter Effect on Covariance Matrix

R˜x,El{˜x(l)˜x(l)H}=ΥRxx

where

Rxx is the covariance matrix of datawithout jitter, i.e.

x(l)=Aγ(l)+n(l)

Υ=JN ⊗T with

JN is the all-ones square matrix of sizeN. Thm,ni=e

2πMf(m−n)σδ2

2

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 15 / 37

(31)

Jitter Effect on Covariance Matrix

R˜x,El{˜x(l)˜x(l)H}=ΥRxx

where

Rxx is the covariance matrix of datawithout jitter, i.e.

x(l)=Aγ(l)+n(l)

Υ=JN ⊗T with

JN is the all-ones square matrix of sizeN. Thm,ni=e

2πMf(m−n)σδ2

2

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 15 / 37

(32)

Outline

1 Introduction

2 The System Model Snapshot

Analytical Formulation Assumptions

Problem Statement

3 Jitter Effect

Jitter Effect on Covariance Matrix

Consequence on Estimating number of Multipath Components

4 Estimation/Compensation of Jitter LS approach

Negative Eigenvalues approach

5 JADE (2D-MUSIC) No Jitter

Presence of Jitter Compensating for Jitter

6 Conclusion

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 16 / 37

(33)

Consequence on Estimating q

No Jitter

Assume no jitter, i.e. the model is:

x(l)=Aγ(l)+n(l) ⇒Rxx=ARγγAHn2IM N (Using Assumption 4).

Eigenvalues of Rxx

1 The matrix ARγγAH is of rank q (Under Assumptions 1-3).

2 Sorting the non-zero eigenvalues ofARγγAH in decreasing order (λ1 ≥. . .≥λq), the q large eigenvalues ofRxx are {λi2n}qi=1 and its complementaryM N −q eigenvalues are equal to σn2.

Conclusion

This means that, under high SNR, one could estimate the number of sources using the q largest eigenvalues of Rxx.

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 17 / 37

(34)

Consequence on Estimating q (cont’d)

Theorem (C. S. Ballantine1)

Let E andFbem×nmatrices. If Ais positive definite and Bis positive semi-definite with r positive diagonal elements, then rank(AB) =r.

1

1C. S. Ballantine;On the Hadamard product;Mathematische Zeitschrift 105;

1968;365-366.

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 18 / 37

(35)

Consequence on Estimating q (cont’d)

Presence of Jitter

˜

x(l)=C(l)(l)+n(l)

⇒R˜x=ΥRxx

⇒R˜x=ΥARγγAHn2IM N

Conclusion

Assuming one antenna (N = 1) and using the previous theorem, the rank of ΥARγγAH is M for anyq.

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 19 / 37

(36)

Outline

1 Introduction

2 The System Model Snapshot

Analytical Formulation Assumptions

Problem Statement

3 Jitter Effect

Jitter Effect on Covariance Matrix

Consequence on Estimating number of Multipath Components

4 Estimation/Compensation of Jitter LS approach

Negative Eigenvalues approach

5 JADE (2D-MUSIC) No Jitter

Presence of Jitter Compensating for Jitter

6 Conclusion

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 20 / 37

(37)

LS approach

Definition

Let B be anM N×M N matrix, i.e. B=

B1,1 · · · B1,N ... . .. ... BN,1 · · · BN,N

, where Bi,j is the(i, j)th block matrix of sizeM ×M.

We define the following function:

FB(k) = 2(M−k)N1 2

P

|m−n|=k i=1...N j=1...N

|Bhm,nii,j |, k= 1. . . M−1

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 21 / 37

(38)

LS approach (cont’d)

Recall that

R˜x=ΥRxx = (JN ⊗T)Rxx

where

JN is the all-ones square matrix of size N

Thm,ni=e

2πMf(m−n)σδ

2 2

It is easy to verify that FR˜x(k) =FRxx(k).e

(2πMf kσδ)2

2 , k= 1. . . M −1

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 22 / 37

(39)

LS approach (cont’d)

LS Estimate

For large M, we can say that FRxx(k) is almost invariant compared to e

(2πMf kσδ)2

2 , i.e. FRxx(k) =FRxx. We have:

f =Pg where:

f =

log FR˜x(1)

· · ·log FR˜x(M−1)T

P=

(2πM2f)2 1 ... ...

(2π(M−1)M2 f)2 1

g=

σ2δ log FRxx

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 23 / 37

(40)

LS approach (cont’d)

LS Estimate

The LS estimate is obtained by solving:

ˆ

gLS = arg min

g

kf−Pgk22 = (PHP)−1PHf =

σˆδ2 log FˆRxx

Compensate

1 Form the matrixΥˆ = (JN⊗T), whereˆ

hm,ni=e

2πMf(m−n)ˆσδ

2 2

2 Compensate by:

xx =ΥˆHR˜x

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 24 / 37

(41)

LS approach (cont’d)

k

0 10 20 30 40 50 60

FR(k) in (dB)

2 4 6 8 10 12 14 16 18 20 22

FRxx(k) FR~x~x(k) FR^xx(k) H(,k)

Simulation parameters q = 15paths.

M = 52subcarriers and N = 3 antennas.

SNR = 20 dB andL= 100Snapshots.

Mf= 0.3125MHz

σδ = 25nsec, we getσˆδ=27.2 nsec

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 25 / 37

(42)

LS approach (cont’d)

EigenValue Index

0 20 40 60 80 100 120 140 160

Magnitude

-1000 0 1000 2000 3000 4000 5000 6000

6Rxx 6R~x~x

6R^

xx

The Over-Compensated Case σδ = 25nsec<σˆδ =27.2 nsec.

The ”over-compensated” covariance matrix Rˆxx admits negative eigenvalues.

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 26 / 37

(43)

Outline

1 Introduction

2 The System Model Snapshot

Analytical Formulation Assumptions

Problem Statement

3 Jitter Effect

Jitter Effect on Covariance Matrix

Consequence on Estimating number of Multipath Components

4 Estimation/Compensation of Jitter LS approach

Negative Eigenvalues approach

5 JADE (2D-MUSIC) No Jitter

Presence of Jitter Compensating for Jitter

6 Conclusion

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 27 / 37

(44)

Negative Eigenvalues approach

Idea

Search for the smallest value of σ˘δ∈[0, S]that yields

λ˘minminxx

<0

where

xx =Υ˘H R˜x

Υ˘ =JN⊗T,˘ T˘hm,ni =e

2πMf(m−n)˘σδ

2 2

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 28 / 37

(45)

Negative Eigenvalues approach (cont’d)

6</in nsec

0 20 40 60 80 100 120

66min

-400 -350 -300 -250 -200 -150 -100 -50 0

7

</= 20nsec 7

</= 40nsec 7

</= 60nsec 7

</= 80nsec

Simulation Parameters

Same as before, but differentσδ for each curve.

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 29 / 37

(46)

Outline

1 Introduction

2 The System Model Snapshot

Analytical Formulation Assumptions

Problem Statement

3 Jitter Effect

Jitter Effect on Covariance Matrix

Consequence on Estimating number of Multipath Components

4 Estimation/Compensation of Jitter LS approach

Negative Eigenvalues approach

5 JADE (2D-MUSIC) No Jitter

Presence of Jitter Compensating for Jitter

6 Conclusion

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 30 / 37

(47)

JADE with No Jitter

Simulation Parameters

M = 52,N = 3, SNR= 20dB, L= 100 q = 3paths:

1 1, τ1) = (−40,0nsec)

2 2, τ2) = (0,30nsec)

3 3, τ3) = (70,95nsec)

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 31 / 37

(48)

Outline

1 Introduction

2 The System Model Snapshot

Analytical Formulation Assumptions

Problem Statement

3 Jitter Effect

Jitter Effect on Covariance Matrix

Consequence on Estimating number of Multipath Components

4 Estimation/Compensation of Jitter LS approach

Negative Eigenvalues approach

5 JADE (2D-MUSIC) No Jitter

Presence of Jitter Compensating for Jitter

6 Conclusion

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 32 / 37

(49)

JADE in the Presence of Jitter

Same parameters as previous slide but σδ= 95nsec

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 33 / 37

(50)

Outline

1 Introduction

2 The System Model Snapshot

Analytical Formulation Assumptions

Problem Statement

3 Jitter Effect

Jitter Effect on Covariance Matrix

Consequence on Estimating number of Multipath Components

4 Estimation/Compensation of Jitter LS approach

Negative Eigenvalues approach

5 JADE (2D-MUSIC) No Jitter

Presence of Jitter Compensating for Jitter

6 Conclusion

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 34 / 37

(51)

JADE after Compensating for Jitter

Compensate then JADE

True jitter variance: σδ= 95nsec Estimated jitter variance: σˆδ= 99nsec

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 35 / 37

(52)

1 Introduction

2 The System Model Snapshot

Analytical Formulation Assumptions

Problem Statement

3 Jitter Effect

Jitter Effect on Covariance Matrix

Consequence on Estimating number of Multipath Components

4 Estimation/Compensation of Jitter LS approach

Negative Eigenvalues approach

5 JADE (2D-MUSIC) No Jitter

Presence of Jitter Compensating for Jitter

6 Conclusion

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 36 / 37

(53)

QUESTIONS ?

A. BAZZI, D.T.M. SLOCK, L. MEILHAC EUSIPCO, 2015 37 / 37

Références

Documents relatifs

Plusieurs caractéristiques physio-pathologiques participent à ce « remodelage vasculaire pulmonaire » (Figure 3: Anomalies dans la circulation pulmonaire au cours de

Le stress psychologique, l’angoisse et l’inquiétude massivement éprouvés dans les régions durablement affectées par la catastrophe, à tel point qu’il s’agit pour

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at Une qualité de l’air acceptable dans les immeubles de bureaux, c’est

By separating the log entries and commit metadata writes with a disk flush barrier, FSCQ ensures that no matter where the log update procedure may crash, if the recovery procedure

For the three models that we fitted, the correlation between the variance–covariance matrix of estimated contemporary group fixed effects and the prediction error

Pang, “A comparative analysis of covariance matrix estimation in anomaly detection,” in IEEE Workshop on Hyperspectral Image and Signal Processing, 2014..

Hence, when the presynaptic spike train is progressively switched from regular to very irregular spike trains, two main changes occur: (i) the three plasticity forms

Index Terms—Adaptive signal processing, covariance matrix estima- tion, robust estimation, Majorization-Minimization, Kronecker product, low rank..