• Aucun résultat trouvé

PalI domain protiens of Saccharomyces cerevisiae and Candida albicans

N/A
N/A
Protected

Academic year: 2021

Partager "PalI domain protiens of Saccharomyces cerevisiae and Candida albicans"

Copied!
12
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Microbiological Research, 167, 7, pp. 422-432, 2012-02-02

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.1016/j.micres.2011.12.005

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

PalI domain protiens of Saccharomyces cerevisiae and Candida

albicans

Yan, Lan; Côte, Pierre; Li, Xing-Xing; Jiang, Yuan-Ying; Whiteway, Malcolm

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=fe6bbc1a-70e1-4125-b79b-d5fe8bb771a0

https://publications-cnrc.canada.ca/fra/voir/objet/?id=fe6bbc1a-70e1-4125-b79b-d5fe8bb771a0

(2)

ContentslistsavailableatSciVerseScienceDirect

Microbiological

Research

j o ur na l ho m e p a g e :w w w . e l s e v i e r . d e / m i c r e s

PalI

domain

proteins

of

Saccharomyces

cerevisiae

and

Candida

albicans

Lan

Yan

a,1

, Pierre

Côte

b,c,1

, Xing-Xing

Li

a

,

Yuan-Ying

Jiang

a,∗

,

Malcolm

Whiteway

b,c,∗∗

aCenterforNewDrugResearch,DepartmentofPharmacology,SchoolofPharmacy,SecondMilitaryMedicalUniversity,325GuoheRoad,Shanghai200433,PRChina bBiotechnologyResearchInstitute,NationalResearchCouncilofCanada,6100RoyalmountAve.,Montreal,Quebec,CanadaH4P2R2

cDepartmentofBiology,McGillUniversity,Montreal,Quebec,CanadaH3A1B1

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received2December2011 Receivedinrevisedform 19December2011 Accepted30December2011 Keywords: PalIdomain Candidaalbicans Saccharomycescerevisiae Environmentalstressresponse

a

b

s

t

r

a

c

t

TheRim9/PalIgroupsofproteinsaremembersoftheSur7family,allofwhichcontainasignalsequence andablockofthreepotentialtrans-membranehelices.Multi-proteinsequencecomparisonsamongfungi suggestthattherearetwoclassesofRim9/PalIproteins;longerproteinslikePalIthatcontainaSur7 domainandaC-terminalextension,andshorterproteinslikeRim9thatcontainessentiallyonlythe Sur7domain.Wehaveexaminedpossiblerolesofthelonger,PalI-likeproteinsofbothSaccharomyces cerevisiae(Yol019w)andCandidaalbicans(Orf19.1510/Srd1),twospeciesthatalsocontainshortRim9 proteinsrequiredforalkaline-associatedstressresponses.Deletionsofthelongformgenesdidnotcreate anysignificantstressresponsephenotypeineitherS.cerevisiaeorC.albicans,nordidthedeletionsenhance anyoftherim9deletioneffectswhencombinedinadoublemutant.Furthermore,challengesinC.albicans showRIM9butnotSRD1isimportantforproperresponseandhyphalformation.Itappearsthatinfungal speciessuchasAspergillusnidulanscontainingonlyalong-formPalI-likeprotein,thiselementfunctions intheprocessofstressresponse,whileinfungiwithbothversionstheresponsetostressfunctionis limitedtotheshort-formprotein.

© 2012 Published by Elsevier GmbH.

Introduction

The multiple genome sequences available for thefungi can

permithigh-resolutionbioinformaticalanalysesofprotein

fami-lies,andthiscanbehelpfulincharacterizingproteinswithasyet

poorlyunderstoodfunctions.TheSur7domainfamilyconsistsof

anintriguinggroupofproteinsthatallcontainasignalsequence

and atriple trans-membranedomain(3TMD).Inthe yeast

Sac-charomycescerevisiaethisfamilycontains9members;sixshorter

proteinsthatconsistoflittlemorethanthesignalsequenceandthe

potentialtrans-membranehelices,andthreelongerproteins,one

withaCterminalextensionandtwowithN-terminalextensions

relativetothe3TMDregion.Manyoftheseproteinshavepoorly

definedmolecularroles.Althoughtheirrolesintheformationof

suchstructuresareunclear,thegroup-definingproteinSur7along

withtwootherfamilymembersYnl194cpandYdl222cp(Fmp45p)

haverecentlybeencharacterizedaselementsoftheMCC

(Mem-braneCompartmentofCan1),whichisalateralmembranedomain

∗ Correspondingauthor.Tel.:+8602181871357;fax:+8602165490641. ∗∗ Correspondingauthorat:BiotechnologyResearchInstitute,NationalResearch CouncilofCanada,6100RoyalmountAve.,Montreal,Quebec,CanadaH4P2R2. Tel.:+15144966146;fax:+15144966213.

E-mailaddresses:jiangyysmmu@sina.com(Y.-Y.Jiang),

malcolm.whiteway@cnrc-nrc.gc.ca(M.Whiteway).

1 Theseauthorscontributedequallytothework.

associated with furrow-like invaginations in the yeast plasma

membrane(Stradalovaetal.2009;Malinskyetal.2010).These3

proteinshavearelativelycloseevolutionaryrelationship.Ydl222cp

andYnl194cparelikelyparalogsarisingthroughthewholegenome

duplicationasthereisonlyoneequivalentprotein(Orf19.6489p)

inthepre-duplicationC.albicans;thecloselyrelatedbutdistinct

Sur7phasa singleequivalentacrosstheascomycetes, including

Orf19.3414p in C. albicans.Ylr414cp/Pun1p hasbeen identified

as a plasma membrane protein localizingto an ergosterol-rich

membranecompartmentrequiredforcellwallintegrity(Hosiner

etal.2011).However,thetwo paralogswithN-terminal

exten-sions,Ylr413wpandYkl187cp,havenotbeencharacterized,andthe

molecularfunctionofYfr012wp/Dcv1phasnotyetbeendefined.

Structurally, Pun1p is most similar to the Ylr413wp/Ykl187cp

pair, but while homologs of Pun1p are found throughout the

ascomycetes, includingOrf19.6741 inC.albicans,theduplicated

genesYLR413and YKL187appear uniquetoS.cerevisiaeandits

closerelatives,andthustheyappeartohavearisenandundergone

aduplicationeventaftertheWGD.Thefinalshort-formprotein

Rim9ispartoftheRim101signalingpathwayinvolvedin

sporula-tion,temperatureresponse,andinvasivegrowthinyeast(Suand

Mitchell1993;LiandMitchell1997);theotherfamilymember,

Yol019wp,isstructurallysimilartoRim9pbutcontainsaCterminal

extension,andhasnodefinedcellularfunction.

Rim9phasorthologsinotherspecies.ThereisaclearRim9

pro-teininthefungalpathogenCandidaalbicans,whilethePalIprotein

0944-5013/$–seefrontmatter © 2012 Published by Elsevier GmbH. doi:10.1016/j.micres.2011.12.005

(3)

ofAspergillusnidulanshasstructuralsimilaritytoRim9pandisa

componentofthePalCpathway,theequivalentpathwaytothe

Rim101pathway ofyeast.Whenmultiplefungal sequencesare

compareditisapparentthatthisRim9groupofproteinsfallsinto

twoclasses,theshort(225–399aminoacids)Rim9-likeproteins,

andthelonger(476–756aminoacids)PalI-likeproteins.In

gen-eral,specieswiththeshortversionproteinalsohavethelonger

versionprotein,butsomespecies,likeA.nidulans,onlyhavethe

longerprotein.

Rim9andPalIproteinsplayapparentlyanalogous,butnotfully

understood,rolesintheRim101andPalCpathwaysrespectively.

Thesepathwaysareinvolvedinavarietyoffunctions,including

responsetoaselectionofstresses.Fungihaveadaptedtoadiversity

ofnichesincludingthecolonizationofanimalsandplants,andover

millionsyearsofevolutiontheyhavedevelopedwaystosurviveand

proliferateinthesecontinuouslychanging,andoftenhostile,

envi-ronments.Mostcommonenvironmentalstresses originatefrom

nutrientlimitation,temperature,osmolarity,pHandexposureto

toxins(Gasch2007).Inaddition,pathogenicspeciesmustconfront

hostdefensemechanisms,inparticularthereactiveoxygenand

nitrogenspeciesgeneratedbytheimmunesystem(Baeuerleetal.

1996;Diez-OrejasandFernandez-Arenas2008).

ExtracellularpHrepresentsanimportantfactorinfluencingcell

physiologyandgrowth.AtthewrongpH,proteinsareoftenpoorly

functionalorevennon-functional;chargedmoleculescanbecome

inappropriatelycharged,whichcandestabilizetheirstructureand

function,andnutrientuptakecanbecomprised.Forexample,the

changeiniron ionsfromtheirinsolubleferricformFe3+tothe

solubleferrousformFe2+ispH-dependent,andthuslowpH

con-tributestomaintainingthebioavailabilityofthisessentialmetal

(Bensenetal.2004).Whileacidicenvironmentsarerelativelywell

toleratedbyfungi,theabilitytoproliferateinanalkalinepH

envi-ronmentisacharacteristicsharedbymany,ifnotall,pathogens

(Davis2003).

Theabilityoffungitosenseandrespondtoalkaline

environ-mentsiscontrolledinalargepartbytheRim101/PalCpathway

(Tilburnetal.1995;Davis2003;Penalvaetal.2008).High

ambi-entpHis apparentlysensedbytheplasmamembrane complex

composedofRim9p/Rim21p(inyeast)orPalI/PalH(inA.nidulans)

which,ifinthepresenceofalkalineenvironment,willbe

endocy-tosedtogetherwithphosphorylatedandubiquitylatedRim8p/PalF.

Onceinternalized,theseproteinsaretransmittedtoan

endoso-malmembranecomplexcontainingrespectivelyRim20p/Rim13p

orPalA/PalB. Then,Rim13p(PalB)activatesthezincfinger

tran-scriptionfactor Rim101p(PacC) to stimulate the expression of

alkaline-dependentgeneswhile repressing those that are

acid-dependent(Davis2003;Penalvaetal.2008).Thishasaprofound

effecton gene expression; DNA microarrays analysis identified

morethan500genesmodulatedwhenC.albicanscellswere

trans-ferredfromanacidic(pH4)toanalkaline(pH8)medium(Bensen

etal.2004).

Because of the structural and functional relationship of

Rim9p/PalI,sequencesimilaritytoRim9phasbeenusedto

iden-tifyproteinspotentiallyimplicatedinpHresponseinotherspecies

(Denisonetal.1998;Cornetetal.2009).However,whilelossof

Rim9pinC.albicanshassignificanteffectsonthecellularresponse

toalkalistress(Denisonetal.1998;Cornetetal.2009),andlossof

PalIcompromisesgrowthinhighpHinA.nidulans(Denisonetal.

1998),thedeletionoftheRim9-likeproteininYarrowialipolytica

causeslesssignificanteffects(Gonzalez-Lopezetal.2006).Asyet

therelationshipofalkalistresssensitivityandS.cerevisiaeRim9p

hasnotbeenreported.

WhileA.nidulanscontainsonlythelongPalImemberofthe

fam-ily,bothC.albicansandS.cerevisiaecontain,inadditiontotheRim9

orthologs,uncharacterizedgenesencodinglonger,PalI-likefamily

members.HerewereportthephenotypicalcharacterizationinC.

albicansandS.cerevisiaestrainsdeletedforonlyPalI-likeproteins

(Orf19.1510and Yol019wrespectively), andfor both Rim9 and

thePalI-likeproteins.WefindthatbothYol019wandOrf19.1510,

whichwehavedesignatedSRD1forSimilartoRim9pDomain,are

notimplicatedinstressresponsiveness.

Materialsandmethods

Mediaandgrowthconditions

YeaststrainsweremaintainedinYPDmedium(1%yeastextract,

2%peptone,and2%dextrose)orYPDagar(2%).Unlessindicated

otherwise, all strainsweregrown routinely in YPDmedium at

30◦C withshaking overnight, dilutedto anOD600=0.1–0.2the

nextmorning,growntologarithmicphaseandusedforthe

exper-iment. Whereindicated, synthetic complete medium (SC; 6.7g

yeastnitrogenbaseand2%dextrose)wassupplementedwith

his-tidine(20␮g/ml), leucine (60␮g/ml), or arginine (40␮g/ml)as

appropriate.To inducehyphalgrowth,overnightgrownC.

albi-canscellsweresubculturedat37◦CineitherYPDsupplemented

with10%heat-inactivatedfetalbovineserum(FBS;Sigma),inLee’s

medium(Lee etal.1975), inspidermedium(Liuetal.1994)or

inM199medium(Invitrogen)bufferedwith50mMglycine–NaOH

atpH9.2.ToassesssensitivitiesintheC.albicansandS.cerevisiae

mutants,differentstressesweremonitoredbyspotassays.Mid-log

phasecellswereadjustedto107cells/ml,5-foldseriallydiluted,

andspottedontoplates,whichweresupplementedvariouslywith

4␮g/mlfluconazole,1␮g/mlketoconazole,1␮g/ml miconazole,

4␮g/mlamphotericinB, 15␮g/mlbrefeldinA,500␮g/mlcongo

red,500␮g/ml calcofluorwhite,1.5MLiCl, 1.5MNaCl,250mM

CaCl2,2.5mMglycerol,3mMsorbitol,4mMH2O2,0.02%methyl

methanesulfonate(MMS), or 30mM hydroxyurea (HU),

respec-tively.TheeffectofpHwastestedwithYPDmediumadjustedto

acidicoralkalineconditionswith150mMHEPESbufferor50mM

glycine–NaOH.

Bioinformaticalanalyses

Multi-proteinsequencealignmentswereperformedusingthe

MAFFT web application (default settings; Katoh et al. 2005)

and visualizedusing Jalview (version 2.4.0b2, default settings;

Waterhouse et al. 2009). Protein homologs were retrieved by

either BLASTP or TBLASTN from the Fungal Genome Search

(www.yeastgenome.org). Identity percentages were quantified

throughGeneDoc(version2.6.002;Nicholasetal.1997).

Candi-dategenesinbothS.cerevisiaeandC.albicanswerescreenedbythe

proteinstructurepredictionprogramInterproscan(Zdobnovand

Apweiler2001).

Strainconstructions

C.albicansandS.cerevisiaestrainsusedinthisstudyarelisted

inTable1;primersusedinstrainconstructionarelistedinTable2.

Theentirecodingsequenceoftargetgenesweredeletedfrom

wild-typestrainSN152bytwo-stephomologousrecombinationusinga

fusion-PCR-basedstrategy(NobleandJohnson2005).Briefly,the

auxotrophic markers Candida dubliniensis HIS1or Candida

mal-tosaLEU2 wereobtainedfrom plasmids pSN52and pSN40and

usedtogeneratetheknockoutPCRcassettessrd1::C.d.HIS1and

srd1::C.m.LEU2.Thesrd1nullmutantwasgenerated by

trans-formingSN152withsrd1::C.d.HIS1(creatingCaLY86),followedby

srd1::C.m.LEU2(creatingCaLY202)(Fig.1AandB).Toconstruct

theSRD1reconstitutedstrain(CaLY351),a2611bpBsiWI-BamHI

fragmentcontaining theentireSRD1 coding sequence wasfirst

clonedinto theplasmidpFA-ARG4(Schaubetal. 2006)to

(4)

Table1

Strainsusedinthisstudy.

Strain Relevantgenotype Reference

Candidaalbicans

SN152 arg4/arg4leu2/leu2his1/his1URA3/ura3::imm434IRO1/iro1::imm434 NobleandJohnson(2005)

CaLY335 (Wildtype)

arg4::ARG4/arg4leu2::LEU2/leu2his1::HIS1/his1URA3/ura3::imm434IRO1/iro1::imm434 Thisstudy

CaLY86 (SRD1/srd1)

srd1::C.d.HIS1/SRD1arg4/arg4leu2/leu2his1/his1URA3/ura3::imm434

IRO1/iro1::imm434

Thisstudy CaLY202

(srd1/srd1)

srd1::C.d.HIS1/srd1::C.m.LEU2arg4/arg4leu2/leu2his1/his1URA3/ura3::imm434

IRO1/iro1::imm434

Thisstudy CaLY351

(srd1/srd1SRD1)

srd1::SRD1::C.d.ARG4/srd1::C.mLEU2arg4/arg4leu2/leu2his1/his1 URA3/ura3::imm434IRO1/iro1::imm434

Thisstudy CaLY60

(SRD1-GFP)

SRD1::GFP::C.m.ARG4/srd1::C.d.HIS1arg4/arg4leu2/leu2his1/his1 Thisstudy CaLY204

(RIM9/rim9)

rim9::C.m.LEU2/RIM9arg4/arg4leu2/leu2his1/his1URA3/ura3::imm434

IRO1/iro1::imm434

Thisstudy CaLY207

(rim9/rim9)

rim9::C.m.LEU2/rim9::C.d.ARG4arg4/arg4leu2/leu2his1/his1URA3/ura3::imm434

IRO1/iro1::imm434

Thisstudy CaLY359

(rim9/rim9RIM9)

rim9::RIM9::SAT1-FLIP/rim9::C.d.ARG4arg4/arg4leu2/leu2::LEU2his1/his1 URA3/ura3::imm434IRO1/iro1::imm434

Thisstudy CaLY217

(srd1/srd1rim9/rim9)

srd1::C.d.HIS1/srd1::C.m.LEU2rim9::C.d.ARG4/rim9::SAT1-FLIParg4/arg4leu2/leu2 his1/his1URA3/ura3::imm434IRO1/iro1::imm434

Thisstudy CaLY247

(srd1/srd1rim9/rim9)

srd1::C.d.HIS1/srd1::C.m.LEU2rim9::C.d.ARG4/rim9::FRTarg4/arg4leu2/leu2 his1/his1URA3/ura3::imm434IRO1/iro1::imm434

Thisstudy Saccharomycescerevisiae

ScLY4 MAT␣his31leu20lys20ura30 Thisstudy

ScLY6 MAT␣ his31leu20met150ura30yol019w Thisstudy

ScLY7 MATahis31leu20ura30rim9 Thisstudy

ScLY8 MAT␣his31leu20lys20met150ura30rim9yol019w Thisstudy

ScLY5 MAT␣YOL019W::GFP::ARG4 Huhetal.(2003)

fragmentwasthenclonedintothepLY09.Theresultingplasmid

pLY15waslinearizedbydigestionwithSacIIandintegratedinto

at theSRD1 promoter of thesrd1 null mutant (Fig.1C and D).

TheC.albicansstrain CaLY60(SRD1-GFP) wascreatedby

trans-formingCaLY86withaPCRcassettegeneratedfromtheplasmid

pFA-GFP-ARG4(Schaubetal.2006)and using100bphomology

forgenomicrecombination(Golaetal.2003)(Fig.1EandF).

Aux-otrophic makers C. dubliniensis ARG4 or C. maltosa LEU2 were

obtainedfromplasmidspSN69andpSN40andusedtogenerate

theknockoutPCRcassettesrim9::C.d.ARG4andrim9::C.m.LEU2.

Therim9nullmutantwasgeneratedbytransformingSN152with

rim9::C.m.LEU2(creatingCaLY204),followedbyrim9::C.d.ARG4

(creatingCaLY207)(Fig.2AandB).ToconstructtheRIM9

reconsti-tutedstrain(CaLY359),a1581bpKpnI-XhoIfragmentcontaining

theentireRIM9codingsequencewasfirstclonedintotheplasmid

pSFS2A(Reussetal.2004)toproducetheplasmidpLY16.3′

flank-ingsequenceof394bpSacII-SacIfragmentwasthenclonedinto

thepLY16.TheresultingplasmidpLY21waslinearizedby

diges-tionwithKpnIandintegratedintoattheRIM9promoteroftherim9

nullmutant(Fig.2CandD).TheC.albicansSAT1-flippercassettewas

obtainedfromplasmidspSFS2Aandusedtogeneratetheknockout

PCRcassettesrim9::C.a.SAT1-FLIP.Thesrd1rim9doublemutant

wasgenerated bytransformingthesrd1null mutant (CaLY202)

withrim9::C.d.ARG4,followedbyrim9::C.a.SAT1-FLIP(creating

CaLY217).TheSATmarkerwassubsequentlyloopedoutofthefinal

double mutant strain(CaLY247)as described previously (Reuss

et al.2004).Proper integrationofall thetarget constructswas

confirmedbygenomicPCR(Fig.3AandB).

InS.cerevisiae,theparentalstrainBY4742,theyol019wmutant

andtherim9mutantwereobtainedfromtheS.cerevisiaeKnock-Out

collection(Winzeleretal.1999).Tocreatethedoublemutant,the

MATarim9deletedstrainwascrossedtotheMAT␣yol019wdeleted

strain, and diploids selected by micromanipulation of zygotes.

Thesediploidsweresporulatedandascidissectedby

micromanip-ulation;tetra-typetetradswereidentifiedascontainingasingle

G418sensitivesporecolony,andthegenotypeofthesporeswas

identified by PCR analysisof the rim9 and yol019w loci. The 4

colonies fromone tetratype tetradwere analyzed toprovide a

matchedsetofWT,singlemutantanddoublemutantstrains.AGFP

fusedYol019wpwasobtainedfromGFP-collectioninS.cerevisiae

(Huhetal.2003).

Stainingprocedures

Vacuolemorphologyinyeastcellswerevisualizedusingthe

flu-orescentdyeFM4-64(MolecularProbes)asreportedbeforewith

minormodifications(VidaandEmr1995).ForGFPfluorescence,

cellsinmid-logphasegrowninYPDmediumwerewashedtwicein

phosphate-bufferedsaline(PBS)andvisualizedinSCmedium.Cells

wereexaminedwitha63×oilimmersionlensunderaTCSSP5

con-focallaser-scanningmicroscope(LeicaMicrosystemsTradingLtd.,

Shanghai,China)andmicrographpictureswereacquiredusingLAS

AFLiteprogram(Version2.1.1build4443,LeicaMicrosystems).

Results

StructuralconservationofPalIproteinsinfungi

SRD1andYOL019Wareessentiallyuncharacterized,cellcycle

regulated genes predicted to code for structurally related 626

and551aminoacidlongproteinsinC.albicansandS.cerevisiae

respectively(CandidaCellCycledatabase,C3db;Coteetal.2009).

We performed a comprehensive survey of SRD1/YOL019W-like

proteins, and foundthatthis proteinfamily couldbeidentified

throughoutthefungi(Fig.4A).Overall,theevolutionary

conserva-tionofthisproteinfamilyisrelativelylowbetweenrepresentative

species,withanaverageof 30%sequencesimilarity amongkey

representativespecies suchasS.cerevisiae,C.albicans,Y.

lipoly-tica, A. nidulans,S.pombe and U. maydis. However,when these

proteinswereanalyzedinmulti-proteinalignments,weobserved

conservedproteindomainsandmotifspresentthroughout(Fig.4B).

Secondarystructureanddomainanalysisidentifiedthepresence

attheN-terminusofbothasignalpeptideandapotential3TMD,

locatedbetweenaminoacidpositions95and175.Thestructural

organizationofthe3TMDregionstronglyresemblesaPalIdomain

(5)

Fig.1.Strainconstruction.Fordetailedexplanationsofthetechniques,pleaseseematerialsandmethodssection.Smallarrowsrepresentorientationandapproximate positionofoligonucleotides(Table2)usedforfusionPCRandconfirmationofthedisruption.(A)Fusion-PCR-basedcassettemethodfordisruptionofSRD1intwosteps. (B)PCRconfirmationofthedisruptionofSRD1bygenomicDNA.Thesrd1mutant(srd1/)andthewildSN152wereanalyzedbygenomicDNAamplifiedwiththe oligonucleotidesindicatedatthebottomofthefigure.(C)ConstructionoftheSRD1reintegrantstrain.(D)There-introductionofSRD1wasverifiedbygenomicDNAand amplifiedwiththeoligonucleotidesindicatedinthebottom.(E)PCR-basedcassettemethodforconstructionoftheSRD1-GFPfusionstrains.(F)Properintegrationofthe constructattheSRD1locusinthestrainCaLY60(SRD1-GFP)wasverifiedbygenomicDNAamplifiedwiththeoligonucleotidesindicatedatthebottomofthefigure.

C-terminus,weidentifiedthepresenceoftwoextensiveconserved

regionswhoseconsensussequencedidnotmatchanycurrently

knownmotifsorfoldingdomains(Fig.4B,reddashedboxes).2As

the“RIM9 ortholog”designationfor otherspecies wasbasedon

thepresence of thePalI-domain,interpretations about

species-specificpHsensingpathwaysassociatedwithRim9/PalIdeletionin

2 Forinterpretationofthereferencestocolorinthistext,thereaderisreferredto

thewebversionofthisarticle.

fungi(Blanchin-Rolandetal.2008)havenottakenintoaccountthe

presenceofdistinctclasseswithintheproteinfamily.Thepresent

identificationoftwo distinctPalI-containingproteinclasses,the

Rim9pgroupandtheC-terminalextendedPalIgroup,suggestthat

Y.lipolyticaandseveralpezizomycotinaspecies(Fig.4A,bluegroup)

includingA.nidulansandA.fumigatus,possessasingle

representa-tivebelongingtothePalIproteinclassandthereforelackatrue

Rim9portholog.Intriguingly,thispatternisessentiallyconserved

betweenthepre-andpost-wholegenomeduplicationspecies,with

(6)

Fig.2. Strainconstruction.Fordetailedexplanationsofthetechniques,pleaseseematerialsandmethodssection.Smallarrowsrepresentorientationandapproximateposition ofoligonucleotides(Table2)usedforfusionPCRandconfirmationofthedisruptions.(A)Fusion-PCR-basedcassettemethodfordisruptionofRIM9involvedtwosteps.(B)PCR confirmationofdisruptionofRIM9.Therim9mutant(rim9/)andthewildtypeSN152wereanalyzedthroughgenomicDNAamplifiedwiththeoligonucleotidesindicated atthebottomofthefigure.(C)ConstructionoftheRIM9reintegrantstrain.(D)There-introductionofRIM9wasverifiedbygenomicDNAamplifiedwiththeoligonucleotides indicatedatthebottomofthefigure.

Fig.3. Strainconstruction.Fordetailedexplanationsofthetechnique,pleaseseematerialsandmethodssection.Smallarrowsrepresentorientationandapproximateposition ofoligonucleotides(Table2)usedforfusionPCRandconfirmationofthedisruption.(A)Fusion-PCR-basedcassettemethodfordisruptionofSRD1andRIM9infoursteps.(B) PCRconfirmationofdisruptionofSRD1andRIM9bygenomicDNA.Thesrd1rim9mutantswithorwithouttheSATmarker(srd1/rim9/)wereanalyzedbygenomic DNAamplifiedwiththeoligonucleotidesindicatedatthebottomofthefigure.

(7)

Fig.4.EvolutionaryconservationofPalIcodinggenesinyeasts.(A)HomologousPalI-containingproteinsinfungiaredisplayedaccordingtothephylogenictreerepresentation. :Indicatesmissingcandidatehomologousgene.*:ProteinsequencesoriginatingfrommultipleDNAsequencedfragmentsthatweremanuallyalignedandfusedtocreate thefull-lengthprotein.(B)Multi-proteinsequencealignmenthighlightingtheoverallproteinconservationandproteinsecondarystructure.Aschematicrepresentationof bothC.albicansSrd1andRim9proteins(attheirapproximatelength)isdisplayedaboveeachofthetwoproteinfamilies.Theapparentdiscrepancybetweentheschematic representationresultsfromthepresenceofgapsthathavetobeincludedinthemulti-proteinsequencealignmentdisplay.

inthecaseofS.cerevisiaeitispossiblethatYFR012Wrepresentsa

secondRim9-likeprotein.

OnlyRim9proteinsarerequiredforpHresponse

Rim9/PalI-likeproteinsinfungihavetypicallybeenfoundtobe

apartofapHsignaltransductioncascade(PenalvaandArst2002;

Penalvaetal.2008).Therefore,wetestedwhetherthedeletionof

theirrespectiveproteinswouldinfluencethepHresponseineither

C.albicansorS.cerevisiae.AsshowninFig.5,theC.albicanssrd1

mutant,rim9mutant,andthedoublemutantstrainsofC.albicans

grewwellinacidicmedium(pH4.9),similartothewildtype.In

con-trast,therim9mutantwassensitivetopH8.8andshowedmarked

growthreductionathigherpH(pH9.7and10.0).Complementation

oftherim9mutantrestoredsensitivitytowild-typelevel.

How-ever,thesrd1mutantwasasresistantaswildtypeuptopH10.0.

Thesrd1rim9doublemutantshowedthesamegrowthdefectto

alkalinepHastherim9mutant.Similarly,inS.cerevisiae,therim9

mutanthadagrowthdefectatpHabove7.8,whilenodifferences

wereobservedbetweenwild-typeandtheyol019wnullstrains;

thedoublemutantwasassensitivetoalkalinepHastherim9

sin-gleknockoutstrain.Together,thesefindingsestablishthatRim9

proteinsbutnotSrd1p/Yol019wpareimportantforhighalkaline

pHtoleranceinbothC.albicansandS.cerevisiae.

OnlyRim9proteinsarerequiredfortheadaptationtootherstress

responses

To investigate whether the PalI homologs in the

Rim9p-containing species are involved in other stress responses, we

subjectedtheC.albicansandS.cerevisiaemutantstrainstoa

vari-etyof challenges. Growthof thesrd1 mutant wasnot severely

affectedinresponsetoallthetestedstressesincludingionstress

(8)

Fig.5.DeletionofRIM9compromisesbothC.albicansandS.cerevisiaetoalkalinepH.C.albicans(uppanel)andS.cerevisiae(downpanel)cellswereallgrowntomid-log phaseandthenspottedin5-folddilutionsontoYPDplateswithdifferentpHasindicated.Growthdifferencesweredetectedaftera48hincubationperiod.

whiteand congored),antifungalagents (fluconazole,

ketocona-zole,miconazole,amphotericinB,andbrefeldinA),DNAdamaging

agents(MMSandHU),andoxidativestress(H2O2)(Fig.6A).

How-ever,incomparisontothewildtype,theC.albicansrim9mutant

washighlysensitivetoLiCland,toalesserdegree,amphotericin

B.Incontrast,therim9mutantexhibiteddecreasedsensitivityto

fluconazole,ketoconazole,HU,H2O2,calcoflourwhite,andcongo

red.TheRIM9reintegrantcellsrestoredtheabovesensitivityto

thewild-typelevel.Inaddition,noparticulargrowthdeficiency

couldsignificantlydifferentiatetherim9mutantfromtheparental

strainwhenthestrainsweretreatedwithNaCl,CaCl2,miconazole,

brefeldinA,orMMS.Furthermore,thesrd1rim9doublemutanthad

thesamegrowthbehaviorastherim9mutantinresponsetothe

testedstresses(Fig.6A).Intheotherhand,theS.cerevisiaerim9

singlemutant,togetherwiththerim9yol019wdoublemutant,was

highlysensitivetoLiCl,NaCland,toalesserextent,miconazoleand

KClincontrasttotheparentalcontrol(Fig.6B);nodistinguishable

growthdifferencewasobservedinthewildtypewhentreatedupon

fluconazole,ketoconazole,brefeldinA,amphotericinB,H2O2,

glyc-erol,andsorbitol(datanotshown).LossofYOL019Wdidnotaffect

Fig.6. DeletionofRIM9compromisesC.albicansandS.cerevisiaeadaptationtovariousstresses.(A)C.albicanswild-typeSN152,thesrd1mutant(srd1/),SRD1reconstituted strain,therim9mutant(rim9/),RIM9reconstitutedstrain,andthesrd1rim9mutant(srd1/rim9/)wereallgrowntomid-logphaseandthenspottedin5-fold dilutionsontoYPDplateswithorwithoutchemicalagentsasindicated.(B)S.cerevisiaewild-typeBY4742,theyol019wmutant(yol019w),therim9mutant(rim9),andthe yol019wrim9mutant(yol019wrim9)wereallgrowntomid-logphaseandthenspottedin5-folddilutionsontoYPDplateswithorwithoutchemicalagentsasindicated. Growthdifferencesweredetectedaftera48hincubationperiod.

(9)

Table2

Oligosusedinthisstudy.

Oligo Sequence LY11 TCCCAAATCAAGGGCCTGTACCTG LY12 TAATGCCAAGGTAGTATTCATCAC LY105 TCTGATTGGAGGACCAGGTAATAAGAATCAAAATGCTAGTGCTTTAAT GGGAAGAAGAGAAAATACTGGACCTAGAAGTGGTCCTTATGGTATTA CTAGAggtgctggcgcaggtgcttc LY106 TGTGTATATATATTTATGTATATAAAACATAGACGAATTGAAATAAACT AAACTAAAATAAAATAAAATCAAATAATATTATAAACTCTAACAT AAATCAtctgatatcatcgatgaattcgag LY224 TTTCTTCTTCCTCTTTTACTTTTTCC LY230 gtcagcggccgcatccctgcGGGGGAGTACCAATGTTGT LY231 TGATTAGGACGCAAAAATCG LY232 ccgctgctaggcgcgccgtgAGCTCGGATCCACTAGTAACG LY233 gcagggatgcggccgctgacGCCAGTGTGATGGATATCTGC LY238 TTACAAGTATGAAAGGAGGGG LY239 CTTCAACCTTTCAAACGATGC LY240 ACGCTAACTAACAAACTCAGTC LY243 ATCATCTCCCTTCCTCTACAC LY244 TTAGCACCTATTGCCCTTGG LY245 AGCTCCAGCTGCCACTAAAG LY246 CAACGACCACCTAATCCTCAA LY247 TGTTGTTGACCACCACGACT LY330 AATGGATCAGTGGCACCGGTG LY331 GGGCCCATTGGTTAAGTTCATATGC LY341 GCCcgtacgCTGTTTCCCGCGTAACTTC LY342 CGCggatccAGGACGCAAAAATCGAGC LY343 GCGTGTTAgagctcGGTGTAAACCAGTGTGTGATGAA LY344 TCCccgcggCGGTCAATCAGTTCCGTTCT LY364 TCAAGCCCTGTAGCTCCATT LY365 TCCGCTCATTTGATTTCCTC LY366 GCACGCCGTTACAGGAGTTA LY367 GAAGTTGGTGACGCGATTGT LY383 TTGAATATCTTGCAGATACAAACTG LY384 cacggcgcgcctagcagcggCTAATGGATCTGGATTTCATTTAG LY385 gtcagcggccgcatccctgcACAGATCTCCGCCAAATCTGTC LY386 GATGTGTGCCCTTCAGAAACC LY387 CTCTCTGTGGGGCTGACAAT LY388 CACGGAGATATCCCACCATC LY389 TTGCCTTTTGCTTTTCGAGT LY390 CAGCTAAGAAAGCCAACAACG LY391 cacggcgcgcctagcagcggGAATGAATGTATGTATGCGTG LY451 CTGGTGTTGGATCAGGAGGT LY452 TGTTGTTGAGGTGGTTGTGG LY497 ccgctgctaggcgcgccgtgTACCGGGCCCCCCCTCGAGGAA LY498 gcagggatgcggccgctgacAGCTCCACCGCGGTGGCG LY499 CGGggtaccCTCTCTGTGGGGCTGACAAT LY500 CCGctcgagCAGATTTGGCGGAGATCTGT LY501 TCCccgcggACAGATCTCCGCCAAATCTGTC LY502 GCGgagctcGATGTGTGCCCTTCAGAAACC LY503 TTGCCGGTCCTATTTACTCG LY504 GACGCTCAGTGCACACAACT

thegrowthinthesingleorthedoubledeletioncells.Overall,these observationsindicatethatRim9proteins,butnotSrd1p/Yol019wp, contributetoa varietyofstressresistancesin C.albicansandS. cerevisiae.

OnlyRim9proteinscontributetotheyeast-hyphaltransition SeveralstudieshavereportedthatRim101pathwaymembers playanimportantroleinalkalinepH-inducedfilamentation(Davis

2003).Therefore,thehyphalinductionresponsesoftheC.albicans

rim9andsrd1null strainsweretestedonavarietyof

filament-inducingmedia.AsshowninFig.7,thesrd1mutantwasabletoform

hyphaein10%inactivatedFBS,Lee’s,Spider,andM199medium(pH

9.2).Theroughnessofthesrd1coloniesandthehyphaearound

thecolonieswerethesamepatternasthoseofthewildtype.

How-ever,therim9mutantwasunabletoformhyphaeinspider(pH

7.2)or M199medium (pH 9.2);its coloniesappeared flatwith

nohyphaearoundthecolonies,whereasthoseoftheWTcontrol

werehighlyfilamentous.Althoughthecoloniesoftherim9mutant

appearedwrinkledandunevenwhengrownonserumcontaining

solidmedium(pH6.7),theperipheryofthecolonieswereflatter

thanthoseofthewildtypereference.Additionally,rim9mutants

failedtoformfilamentsaroundthecoloniesinLee’smedium(pH

6.7),thoughthesecolonieswerewrinkledandunevenlikethewild

type.Moreover,thedeletionofSRD1didnotaffectthe

morphogen-esischangeoftherim9singleknockoutcells.Thesefindingssuggest

thattherim9mutantwasdefectiveforfilamentationinC.albicans,

independentoftheextracellularpH.

NeithertheRim9northelongPalIproteinsinfluencevacuole

biogenesis

Based on their hypothesized domain structures, Srd1p and

Yol019wpwerepredictedtobemembraneassociated.To

deter-mine the localization of the Srd1-like proteins, we used the

GFP-collectionavailableinS.cerevisiae(Huhetal.2003)and

cre-atedaGFPfusedproteininC.albicans.InC.albicans,theSrd1-GFP

proteinprimarilylocalizedwiththevacuolarmembranestaining

agentFM4-64inboth yeast(Fig.8A, Cand D)andhyphal cells

(Fig.8B).Inparticular, theSrd1-GFP proteinlocalized

predomi-nantlyatnewbudsandhyphaltips,whichwasconsistentwiththe

SRD1transcriptionpeakoccurringattheG1toSphasetransition

ofthecell-cycle(Coteetal.2009).TheS.cerevisiaeYol019wp-GFP

localizedtothevacuoleaswell,mostintensivelyinthenewbud,

whichalsomatchedwithitstranscriptionallyregulatedexpression

duringtheG1/Stransition(Fig.8A).

Asshownabove,bothSrd1p-GFPandYol019wp-GFPlocalize

tovacuolecompartments,soweexaminedwhethertheirremoval

influenced vacuolarstructure. In C. albicansthewildtype, srd1

mutant,rim9mutant,andthedoubledeletionstrains,afteran

ini-tialpulseandchaseof1hFM4-64stainedbetweenonetothree

largering-likesub-compartmentswithclearbordersthatclustered

tooneregionofthecytoplasm(datanotshown).SimilarlyinS.

cerevisiae,wedonotobservesignificantdifferenceinthevacuolar

morphologybetweenthewild-typeBY4742,therim9mutant,the

yol019wmutant,andthedoublemutant(datanotshown).

There-fore,weconcludethatthedeletionofeitherRIM9orSRD1/YOL019W

inbothC.albicansandS.cerevisiaedidnotdetectablychange

vac-uolebiogenesis.

Discussion

Sequence alignmentsshow that thePalI-domain proteinsof

fungifallintotwodistinctclasses.Thelongerproteins,suchasA.

nidulansPalI,C.albicansSrd1p,S.cerevisiaeYol019wpandS.pombe

mac1p,containasignificantlylongC-terminalregioninaddition

tothePalIdomainandthesignalsequence,whilethesmaller

pro-teins,suchasS.pombemug33p,andRim9pofS.cerevisiaeandC.

albicans,consistofshortsequencesfeaturingalmostexclusivelya

PalIdomainandasignalsequence.Fungalcellsappeartohavemade

differentialuseofthesetwoclassesofPalI-domainproteins.InC.

albicans,S.cerevisiae,andpotentiallyS.pombeandUstilagomaydis,

theRim9pfamilymemberaloneiscriticalforpHandotherstress

responses(thisstudy,LiandMitchell 1997;Cornetetal.2009),

whiletheSrd1porthologhasnoapparentroleinanystress

adapta-tion(thisstudy,GrandinandCharbonneau2002;Cervantes-Chavez

etal.2010).Severalspecies,suchasA.nidulansandA.fumigatus,as

wellasY.lipolytica,lackaclearorthologofRim9p,butmakeuse

oftheirSrd1-typefamilyproteininpHstressresponse(Arstetal.

1994;Gonzalez-Lopezetal.2006).A.nidulansPalIandY.

lipolyt-icaRim9p,twoclearmembersoftheSrd1-typefamilyaccording

toourclassification(Fig.1),arefunctionallyimplicatedinthepH

stressresponseoftheirrespectivefungi.Interestingly,thelong

C-terminaltailofRim9pofY.lipolyticahadnoeffectonambientpH

(10)

Fig.7.C.albicansrim9mutantcellsaredefectiveforfilamentousgrowth.C.albicanswild-typeSN152,thesrd1mutant(srd1/),SRD1reconstitutedstrain,therim9mutant (rim9/),RIM9reconstitutedstrain,andthesrd1rim9mutant(srd1/rim9/)weregrownonsolidfilament-inducingmediaat37◦Cfor5days,andthenphotographed.

Fig.8.Srd1p/Yol019wplocalizestothevacuolarcompartment.C.albicanscellsexpressingSrd1p-GFPandS.cerevisiaecellsexpressingYol019wp-GFPwerestainedwith FM4-64tolabelvacuolesandchasedinYPDmediumfor2hat30◦C(A),andinYPDplus10%FBSmediumfor2hat37Ctoinducehyphalmorphogenesis(B).Cellswere

thenobservedbybrightfieldmicroscopyandfluorescencemicroscopywithappropriateexcitationlasersandemissionfiltersforGFPandFM4-64.Dashedrectangleswere presentedatahighermagnificationinCandD.Bar,5␮m.

(11)

Fig.9.C.albicanseffectspHofhyphal-inductionmedia.C.albicanswild-typeSN152 wasgrowninLee’s,spider,andYPDcontaining10%FBSmediaat37◦Cwithshaking.

ThepHofeachculturewasmeasuredattheindicatedtimepoints.

protein(Blanchin-Rolandetal.2008).Itistemptingtoproposean

evolutionarymodelinwhichthepHsensingandstressresponses

functionareprimarilyundertakenbyashort,Rim9-typeprotein

unlessnosuchmemberexists.InthesecasestheuniquePalIdomain

proteinbelongingtotheSrd1-typefamilyisconnectedtothepH

sensingandstressresponsepathway.Itremainsunclearwhatrole

theSrd1-typeproteinsplayincelltypescontainingtheshort-form

proteins,butitisintriguingthatthey,togetherwiththeirS.pombe

homologmac1,haveretainedG1/Scellcycleperiodicity(Coteetal.

2009).Deletionsofthesegenesdonotaffectthegrowthrateofthe

mutantcells,andremovaloftheCterminal452aminoacidsofSRD1

alsodidnotgenerateanydetectablephenotype(datanotshown).

It is apparentthat Rim9pfunction goesbeyond alkalinepH

stressadaptationandLiClhypersensitivityinC.albicans(thisstudy,

Cornetetal.2009).Inageneralsurveyofvarioussourcesof

envi-ronmentalstressinourstudy,therim9mutantwasfoundtobe

resistant tocertain antifungal agents, cell walldisruptors, and

oxidativestress.PreviousworkhassuggestedthattheRim

path-wayisrequiredforalkalinepH-inducedfilamentation(Davis2003,

2009).HereweshowthatRIM9deletionisdefectiveinforming

hyphaenotonlyinalkalinemedia(M199,Lee’s,spider),butalso

inneutral induction medium(YPD containing10% FBS).Recent

workhasrevealedthatnutrient-deprivedCandidacellsareableto

raisetheenvironmentalpHandstimulatemorphogenesis(Vylkova

etal.2011),whichisconfirmedinourstudy.Lee’sandspiderwere

initiallyneutral,buttheirpHvalueswereraisedtoweakalkaline

(spider)orevenhigherthan8(Lee’s)afterthreedaysculturewith

strains(Fig.9).Intheotherhand,CandidacellsraisedthepHof

richYPDmediumplus10%FBSfromacidtoneutral(Fig.9).This

suggeststhattheRim101pathwaymaygoverntheexpressionof

proteinsrequiredforbothalkaline-dependentand-independent

filamentation.

AlthoughtheRim9proteinsofyeastandC.albicansplay

orthol-ogousroles,theknock-outphenotypesin thetwo cellsare not

identical.BothorganismsrequireRim9pforpHresponse,buttheir

degreeofsensitivitytoalkalinepHisdifferent;theC.albicansrim9

mutanthadagrowthdeficiencyata pHabove8.8,whiletheS.

cerevisiaerim9mutantwassensitivetoapHabove7.8.TheC.

albi-cansrim9mutantwassensitivetoamphotericinB,butresistant

tofluconazole,ketoconazole,andH2O2,whiletheS.cerevisiaerim9

mutantshowedwildtyperesponsetothesestresses.Bycontrast,C.

albicansRim9pwasnotneededforresponsetoNaClormiconazole,

whileS.cerevisiaerim9mutantwassensitivetothesecompounds.

Theseobservationssuggestthatthedistinctphysiologiesofthetwo

yeastshaveconnectedthegeneralRim9pfunctiontobothcommon

andcellspecificfunctions.

Overall,thesePalI-domainfungalproteinsrepresentan

inter-estingclassofmolecules.Theyfallintotwo generalgroups,the

shortversions,exemplifiedbyRim9pinS.cerevisiae,andthelong

versions,exemplifiedbyPalIinA.nidulans,whichhavebothbeen

linkedtopHresponse,aidingthefunctionofa7-TMDpHsensor,

andtootherstressresponse.Incellsthatcontainonlyalongform

PalIproteinthiselementfunctionsincontrolofstressresponse;

incellsthatcontainbothversionstheresponsetostressresponse

islimitedtotheshortformprotein.Furtherworkwillbeneeded

tounderstandthecellularroleoftheSrd1-classofproteinsinthe

Rim9-classcontainingcells.

Acknowledgments

Wewould liketothankDr.SuzanneM.Noble(Universityof

California-SanFrancisco)fortheC.albicansSN152,plasmidpSN40

and pSN52. We thank Dr. Jackie Vogel (McGill University) for

theS. cerevisiaeYOL019W-GFP clone. We alsothank Dr. Jürgen

Wendland(CarlsbergLaboratoryinDenmark)forproviding

plas-midpFA-ARG4andpFA-GFP-ARG4andDr.JoachimMorschhauser

(UniversityofWurzburg)forproviding plasmidpSFS2A.Finally,

we thankall membersof theWhiteway lab forhelpful

discus-sions. This is NRC publication number 50696. This work was

supportedby CIHR MOP42516 toMW, China NSFC(30825041,

30630071) toYJ, ChinaNSFC(31000079) toLY,ChinaNational

973Program(2005CB523105)toYJ,ChinaNational863Program

(2008AA02Z187),andShanghai KeyScientificandTechnological

Program(10JC1417500).PCwassupportedbyaCHIRSystems

Biol-ogyScholarship.LYwassupportedbya scholarshipfromChina

ScholarshipCouncilonMOE-NRCResearchandPost-doctoral

Fel-lowshipProgram.

References

ArstJrHN,BignellE,TilburnJ.TwonewgenesinvolvedinsignallingambientpHin Aspergillusnidulans.MolGenGenet1994;245(6):787–90.

BaeuerlePA,RupecRA,PahlHL.Reactiveoxygenintermediatesassecond messen-gersofageneralpathogenresponse.PatholBiol(Paris)1996;44(1):29–35. BensenES,MartinSJ,LiM,BermanJ,DavisDA.TranscriptionalprofilinginCandida

albicansrevealsnewadaptiveresponsestoextracellularpHandfunctionsfor Rim101p.MolMicrobiol2004;54(5):1335–51.

Blanchin-RolandS,DaCostaG,GaillardinC.AmbientpHsignallingintheyeast YarrowialipolyticainvolvesYlRim23p/PalC,whichinteractswithSnf7p/Vps32p, but does not require the long C terminus of YlRim9p/PalI. Microbiology 2008;154(Pt6):1668–76.

Cervantes-Chavez JA, Ortiz-Castellanos L, Tejeda-Sartorius M, Gold S, Ruiz-Herrera J. Functional analysis of the pH responsive pathway Pal/Rim in thephytopathogenic basidiomycete Ustilago maydis.Fungal Genet Biol 2010;47(5):446–57.

CornetM,RichardML,GaillardinC.ThehomologueoftheSaccharomycescerevisiae RIM9geneisrequiredforambientpHsignallinginCandidaalbicans.Res Micro-biol2009;160(3):219–23.

CoteP,HoguesH,WhitewayM.TranscriptionalanalysisoftheCandidaalbicanscell cycle.MolBiolCell2009;20(14):3363–73.

DavisD.AdaptationtoenvironmentalpHinCandidaalbicansanditsrelationto pathogenesis.CurrGenet2003;44(1):1–7.

DavisDA.HowhumanpathogenicfungisenseandadapttopH:thelinktovirulence. CurrOpinMicrobiol2009;12(4):365–70.

DenisonSH,Negrete-UrtasunS,MingotJM,TilburnJ,MayerWA,GoelA,EspesoEA, PenalvaMA,ArstJrHN.Putativemembranecomponentsofsignaltransduction pathwaysforambientpHregulationinAspergillusandmeiosisinsaccharomyces arehomologous.MolMicrobiol1998;30(2):259–64.

Diez-Orejas R, Fernandez-Arenas E.Candida albicans-macrophageinteractions: genomicandproteomicinsights.FutureMicrobiol2008;3(6):661–81. Gasch AP. Comparative genomics of the environmental stress response in

ascomycetefungi.Yeast2007;24(11):961–76.

GolaS,MartinR,WaltherA,DunklerA,WendlandJ.NewmodulesforPCR-basedgene targetinginCandidaalbicans:rapidandefficientgenetargetingusing100bpof flankinghomologyregion.Yeast2003;20(16):1339–47.

Gonzalez-LopezCI,Ortiz-CastellanosL,Ruiz-HerreraJ.TheambientpHresponseRim pathwayinYarrowialipolytica:identificationofYlRIM9andcharacterizationof itsroleindimorphism.CurrMicrobiol2006;53(1):8–12.

GrandinN,CharbonneauM.Mac1,afissionyeasttransmembraneprotein local-izingtothepolesandseptum,isrequiredforcorrectcellseparationathigh temperatures.BiolCell2002;94(3):127–37.

Hosiner D, Sponder G, Graschopf A, Reipert S, Schweyen RJ, Schuller C, AleschkoM.Pun1pisametalion-inducible,calcineurin/Crz1p-regulatedplasma

(12)

membraneprotein required for cellwall integrity.Biochim Biophys Acta 2011;1808(4):1108–19.

Huh WK, Falvo JV, Gerke LC, CarrollAS, Howson RW, Weissman JS,O’Shea EK. Global analysis of protein localization in budding yeast. Nature 2003;425(6959):686–91.

KatohK,KumaK,TohH,MiyataT.MAFFTversion5:improvementinaccuracyof multiplesequencealignment.NucleicAcidsRes2005;33(2):511–8.

LeeKL,BuckleyHR,CampbellCC.Anaminoacidliquidsyntheticmediumforthe developmentofmycelialandyeastformsofCandidaalbicans.Sabouraudia 1975;13(2):148–53.

LiW,MitchellAP.ProteolyticactivationofRim1p,apositiveregulatorofyeast sporulationandinvasivegrowth.Genetics1997;145(1):63–73.

LiuH,KohlerJ,FinkGR.SuppressionofhyphalformationinCandidaalbicansby mutationofaSTE12homolog.Science1994;266(5191):1723–6.

MalinskyJ,OpekarovaM,TannerW.Thelateralcompartmentationoftheyeast plasmamembrane.Yeast2010;27(8):473–8.

NicholasKB,NicholasHBj,DeerfieldDWI.GeneDoc:analysisandvisualizationof geneticvariation.EMBNEWNEWS1997;4:14.

NobleSM,JohnsonAD.Strainsandstrategiesforlarge-scalegenedeletion stud-iesofthediploid human fungalpathogen Candidaalbicans.Eukaryot Cell 2005;4(2):298–309.

PenalvaMA,ArstJrHN.RegulationofgeneexpressionbyambientpHinfilamentous fungiandyeasts.MicrobiolMolBiolRev2002;66(3):426–46,tableofcontents. PenalvaMA,TilburnJ,BignellE,ArstJrHN.AmbientpHgeneregulationinfungi:

makingconnections.TrendsMicrobiol2008;16(6):291–300.

ReussO,VikA,KolterR,MorschhauserJ.TheSAT1flipper,anoptimizedtoolforgene disruptioninCandidaalbicans.Gene2004;341:119–27.

SchaubY,DunklerA,WaltherA,WendlandJ.NewpFA-cassettesforPCR-basedgene manipulationinCandidaalbicans.JBasicMicrobiol2006;46(5):416–29.

StradalovaV,StahlschmidtW,GrossmannG,BlazikovaM,RachelR,TannerW, MalinskyJ.Furrow-likeinvaginationsoftheyeastplasmamembranecorrespond tomembranecompartmentofCan1.JCellSci2009;122(Pt16):2887–94. SuSS,MitchellAP.Identificationoffunctionallyrelatedgenesthatstimulateearly

meioticgeneexpressioninyeast.Genetics1993;133(1):67–77.

TilburnJ,SarkarS,WiddickDA,EspesoEA,OrejasM,MungrooJ,PenalvaMA, ArstJrHN.TheAspergillusPacCzincfingertranscriptionfactormediates reg-ulationofbothacid-andalkaline-expressedgenesbyambientpH.EMBOJ 1995;14(4):779–90.

VidaTA,EmrSD.Anewvitalstainforvisualizingvacuolarmembranedynamicsand endocytosisinyeast.JCellBiol1995;128(5):779–92.

VylkovaS,CarmanAJ,DanhofHA,ColletteJR,ZhouH,LorenzMC.Thefungal pathogenCandidaalbicansautoinduceshyphalmorphogenesisbyraising extra-cellularpH.MBio2011;2(3),e00055–11.

WaterhouseAM,ProcterJB,MartinDM,ClampM,BartonGJ.JalviewVersion2– amultiplesequencealignmenteditorandanalysisworkbench.Bioinformatics 2009;25(9):1189–91.

WinzelerEA,ShoemakerDD,AstromoffA,LiangH,AndersonK,AndreB,Bangham R,BenitoR,BoekeJD,BusseyH,ChuAM,ConnellyC,DavisK,DietrichF,Dow SW,ElBakkouryM,FouryF,FriendSH,GentalenE,GiaeverG,HegemannJH, JonesT,LaubM,LiaoH,LiebundguthN,LockhartDJ,Lucau-DanilaA,Lussier M,M’RabetN,MenardP,MittmannM,PaiC,RebischungC,RevueltaJL,Riles L,RobertsCJ,Ross-MacDonaldP,ScherensB,SnyderM,Sookhai-MahadeoS, StormsRK,VeronneauS,VoetM,VolckaertG,WardTR,WysockiR,YenGS,Yu K,ZimmermannK,PhilippsenP,JohnstonM,DavisRW.Functional characteri-zationoftheS.cerevisiaegenomebygenedeletionandparallelanalysis.Science 1999;285(5429):901–6.

ZdobnovEM,ApweilerR.InterProScan–anintegrationplatformforthe signature-recognitionmethodsinInterPro.Bioinformatics2001;17(9):847–8.

Figure

Fig. 1. Strain construction. For detailed explanations of the techniques, please see materials and methods section
Fig. 2. Strain construction. For detailed explanations of the techniques, please see materials and methods section
Fig. 4. Evolutionary conservation of PalI coding genes in yeasts. (A) Homologous PalI-containing proteins in fungi are displayed according to the phylogenic tree representation.
Fig. 6. Deletion of RIM9 compromises C. albicans and S. cerevisiae adaptation to various stresses
+3

Références

Documents relatifs

The road maps are intended to guide future investment in diabetes research by the European Commis- sion and any other organisation or company interested in this strategic plan..

4. Disponibilité de la version PDA de Micromedex avec prochaine mise à jour 2. Bonne idée d’acheter le bouquin sur JCAHO quand l’édition de 1998 sera renouvelée pour avoir une

Glow discharge spectroscopy for depth profile analysis: from micrometer to sub-nanometer layers.. Published online: 19

In this work, we investigated the usefulness of radiomic features extracted from contrast and non-contrast enhanced CT scans in the development of a prognostic model in OC..

In this work, that was originally motivated by problems involving classical periodic Schrödinger operators, an error estimator for the spectrum of positive self-adjoint operators

Lors de la phase (ii) de la mesure généralisée décrite en III.3.2.a , l’atome est simul- tanément couplé au champ radiofréquence oscillant à 230 MHz et au champ micro-onde

For varied and complex reasons, most of the changes in teacher education underway in Canadian Anglophone universities can be characterised ac- cording to Kerr's definition

Figure 4 shows the depth of runoff originating from the combined total areas of the land management systems (as given in Table 5), with and without the observed soil