• Aucun résultat trouvé

photoreduction ultrasonic deposited spray by method: Application to HCrO photo-electrochemical Physical and characterizations of ZnO thinfilms Applied Surface Science

N/A
N/A
Protected

Academic year: 2021

Partager "photoreduction ultrasonic deposited spray by method: Application to HCrO photo-electrochemical Physical and characterizations of ZnO thinfilms Applied Surface Science"

Copied!
6
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Applied Surface Science

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Physical and photo-electrochemical characterizations of ZnO thin films deposited by ultrasonic spray method: Application to HCrO 4 photoreduction

N. Zebbar

a

, M. Trari

b,∗

, M. Doulache

b

, A. Boughelout

a

, L. Chabane

a

aDepartmentofMaterials&Compounds,FacultyofPhysics,USTHB,BP32,Algiers16111,Algeria

bLaboratoryofStorageandValorizationofRenewableEnergies,FacultyofChemistry,USTHB,BP32,Algiers16111,Algeria

a r t i c l e i n f o

Articlehistory:

Received25June2013

Receivedinrevisedform5December2013 Accepted10December2013

Available online 18 December 2013

Keywords:

ZnOthinfilm Ultrasonicspray Photo-electrochemical Chromate

Sunlight

a b s t r a c t

ZnOthinfilms,preparedbyultrasonicsprayontoglasssubstrate,crystallizeinthewurtzitestructure.

TheXRDpatternshowspreferentialorientationalongthe[002]direction.Thefilmsdepositedat350C consistof60nmcrystalliteswithanaveragethicknessof∼150nmandSEMimagesshowroughsur- faceareas.Thegapincreaseswithincreasingthetemperatureofthesubstrateandavalueof3.25eVis obtainedforfilmsdepositedat350C.ZnOisnominallynon-stochiometricandexhibitsn-typeconduc- tionbecauseofthenativedefectssuchasoxygenvacancies(VO)and/orinterstitialzincatom(Zni)which actasdonorshallows.Theconductivityisthermallyactivatedandobeystoanexponentialtypelawwith activationenergyof57meVandanelectronmobilityof7cm2V1s1.Thecapacitance-voltage(C2V) measurementinacidelectrolyte(pH∼3)showsalinearbehaviorwithapositiveslope,characteristicof n-typeconduction.Aflatbandpotentialof−0.70VSCEandadonorsdensityof5.30×1016cm3aredeter- mined.TheNyquistplotexhibitstwosemicirclesattributedtoacapacitivebehaviorwithalowdensity ofsurfacestateswithinthegapregion.Thecentreislocalizedbelowtherealaxiswithadepletionangle of16ascribedtoaconstantphaseelement(CPE)duetotheroughnessofthefilm.Theenergyband diagramassessesthepotentialityofZnOfilmsforthephoto-electrochemicalconversion.Asapplication, 94%ofchromate(3.8×10−4M)isreducedafter6hundersunlight(AM1)withaquantumyieldof0.06%

andtheoxidationfollowsafirstorderkinetic.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Metalswhenexposedtooxygenatmosphereatmoderatetem- peraturesformthinfilmsuptosomehundredsofnminthickness.

Theinitialstepofoxygenchemisorptionoccursinstantaneously withadsorptionenergyclosetotheheatofformationoftheoxide.

ZnOemerged asapromising windowmaterialduetoitstrans- parencyoverthevisiblespectrum.Itcrystallizesinthewurtzite structure withabandgap(Eg)exceeding3eV[1].It is actively investigated owingtoitstechnological applicationssuchasUV lightemittingdiodes[2],solardevices[3,4],andphotocatalysis[5].

However,oneofthemajorproblemsinelaboratingthinfilmsis thenonreproducibilityoftheoutputparameters.ZnOfilmshave beengrownbydifferenttechniqueslikechemicalvapordeposition

Correspondingauthorat:FacultyofChemistry,TheoreticalandPhysicalChem- istry,BEZEl,AliaBP32,Algiers,Algeria.Tel.:+21321247955;

fax:+21321248008.

E-mailaddress:solarchemistry@gmail.com(M.Trari).

[6],pulsedlaserdeposition[7],sol–gel[8],magnetronsputtering [9],spraypyrolysis[10,11],andultrasonicspray[12,13].Thelast methodis lowcost andpermitsthefilmstobedeposited with variousgeometriesonanysizeandshapeofsubstrate.However, comparedtotheenormousstudy,relativelylittleworkwasdone onthephoto-electrochemical(PEC)characterizationofthinfilms.

Withtheaimofpreparinginexpensivedevicesforthesolarenergy conversion,thepresentworkisdevotedtoZnOthinfilmsgrown byultrasonicspray.Thehomogeneityandstoichiometryaredif- ficulttoachieve and this turns toadvantagesince it offersthe opportunitytocharacterizetheoxidephotoelectrochemically.The electrochemicalimpedancespectroscopy(EIS)isalsostudied.

Ontheotherhand,thesolarenergymeetsagrowingdemand andthephotocatalysisisactivelydeployedtomanagetheenvi- ronmentalprotection[14].Theecologicalaspectthatwedevelop istheremovalofheavymetals,recognizedasaworldwidepol- lution problem[15].HexavalentstateCr(VI)ishighly toxicand asapplication, wedemonstratethefeasibilityof ZnOthin films forthechromatereductionundersolarirradiationtolessharm- ful forms. The potential sources of chromium include tannery, 0169-4332/$seefrontmatter© 2013 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.apsusc.2013.12.059

(2)

dyesbatteriesandsteelalloyswhoseeffluentsaredischargedin theaquaticmediumwithnorestrictioncausinganenvironmental damage.

2. Experimental

Thesemiconductormustadhereonthesubstrateandtheultra- sonicsprayisaneconomictechniquewithhighgrowthrateand goodareauniformity.ZnOfilmsaredepositedunderatmospheric conditionsandthesprayedsolutionispreparedbydissolving0.1M ofZn(CH3CO2H)2,H2Oinmethanol.Theglasssubstratesaretreated bythestandardcleaningprocedure[16].Thesolutionissprayedfor 5minatthesubstratetemperature(Ts)range(300–400C).Thefor- mationofthephaseisconfirmedbyX-raydiffractionusingBrukers D8AdvancediffractometerwithCuK˛radiation(=1.5403 ˚A)over the2range(25–75C).Themorphologyofthefilmsisanalyzed byscanningelectronmicroscopy(SEM,InstrumentJSM-6360).The FTIRspectrumisplottedwithaThermo-Nicolet,Nexusspectrom- eterwitharesolution of4cm−1.Theopticaltransmittancedata arerecordedwithadoublebeamspectrophotometer(3101PCShi- madzu)whichgoesfrom200to800nm.Theabsorptioncoefficient (˛)iswavelengthdependent:˛=(1/d)log(1/T)whereTisthetrans- mittanceanddthefilmthickness.Thegapenergy(Eg)iscalculated fromtheTaucrelation:(˛h)2=C(h−Eg)whereCisaconstantand (h)thephotonenergy.

Electricalcontactonthefilmismadebyvacuumevaporationof Alascoplanarcontactofknownsize;theohmicityofthecontact ischeckedbythecurrent–voltageplot.Thecurrent-temperature measurementsareperformedovertherange(30–120C).Theelec- triccurrentthroughthefilmismeasuredundervacuumwitha Keithley617picoammeter bothinthedarkandunderUV light (100mWcm−2).Thetemperaturedependenceoftheconductivity isderivedfromthecurrent-temperaturemeasurementtakinginto accountthegeometricalsizeofthecontactandthefilmthickness.

The electrochemical characterization is done in a one com- partmentcell.TheauxiliaryelectrodeisalargeareaPtelectrode (Tacussel,1cm2)andthepotentials aregivenwithrespecttoa saturatedcalomelelectrode(SCE).Thesolutioninthereference electrodeis changedwhennecessarytopreventcontamination.

Theintensity-potentialJ(E)curvesareplottedwithaPGZ301poten- tiostat(Radiometeranalytical)inKOHsolution(102M,pH∼12) atascanningrateof10mVs−1.Thefilmsareimmersedovernight inthesolutionpriorthemeasurement.TheMott–Schottkycharac- teristicsarerecordedatafrequencyof1kHz.Theelectrochemical impedancespectroscopy(EIS)iscarriedoutusingsmallamplitude wavesignals.Aresponseanalyzergenerates10mVperturbingsig- nalsoverthefrequencyrange(1mHz–100kHz)andsubjectsthe filmtovariouspotentials.

Thephotocatalytic tests aredone underdirect sunlight; the fluxintensitymeasuredwithdigitalfluxmeter,fluctuatesbetween 105and 93mWcm−2 overtheday.Foreach experiment,20mL ofsolution(HCrO4,10mgL−1)areused.Thechromateanalysis isperformedwithaUV–visspectrophotometerShimadzu1800 (max=348nm)using1cmquartzcell.Thekineticofthechromate reductionisperformedunderartificiallightusingUVlamp(Osram Hg100,0.6-1A);thealiquotsareperiodicallyremovedforthetitra- tion.Thesolutionsarefreshlypreparedfromanalyticalsubstances intwicedistilledwater(∼1Mcm).

3. Resultsanddiscussion

Forphotovoltaicdevices andPECcells, itwouldbeadvanta- geousforeconomicreasonstousethinfilmswithpolycrystalline naturewhere thetransportpropertiesbehaverather differently fromthebulkmaterial.Tohaveinsightsaboutthemorphology,

Fig.1. SEMimageofthefilmdepositedat400C.

wehavereportedinFig.1theSEMimageofthefilmdepositedat 350Cwhichshowsaroughandratherporoussurfaceandadheres tightlyonthesubstrate.ThepurityischeckedbyXRD;ZnOhas onestablephase andcrystallizesinthewurtzitestructure with spacegroup(P63mc).Thepatterns(Fig.2)clearlyshowthediffrac- tionpeaksofthehexagonalphasewithapreferentialorientation alongc-axis.Moreover,oneobservesanarrowingofthepeakswith increasingthetemperatureTSandthereforethefilmbecomeswell crystallized.ThelatticeconstantsatTS=350C:a=0.32288nm,and c=0.51635nm(c/a=1.599)areinagreementwiththeJCPDSCard N36–1451.Inthehcpwurtzite,eachionistetrahedrallycoordi- natedbyoppositeions;thestructureisunderstoodintermofions sizesofinvolvedionswithsmallradiiratio(Zn2+/O2=0.41)and intermediatecovalency,duetothemoderatedifferenceofelectro negativities.Thecrystallitesizeisdeterminedfromthefullwidthat halfmaximum(=0.94/ˇcos),ˇ(radian)beingthebroadeningof theintensepeak(002).Asexpected,thecrystallitesizeincreases from39nm(TS=300C)to66nm(TS=400C),withanimprove- mentofthecrystallinity.Fig.3showstheFTIRspectraofthefilm depositedontosilicon.Thepeakat411cm1 correspondstothe stretchingvibrationofZn Obond,assigned totetrahedralZn2+

environment[16,17].Theadditionalpeaksareattributedtothesil- iconsupport.Thefilmsdepositedintherange(300–400C)exhibit ahightransparency(∼85%)overthevisiblerange.InFig.4,we havereportedthevariationoftheabsorptioncoefficient(˛)versus thephotonenergy(h)thecoefficient˛iswavelengthdependent andaverages104cm1at400nm,suchhighvalueinspayedfilms

(002) (103)

Intensity [a.u ]

400°C

350°C

(102) (112)

(110)

(101)

(100)

300°C

20 30 40 50 60 70 80 90

2θ [degrees]

Fig.2.XDRpatternsofZnOelaboratedbyultrasonicspayatdifferenttemperatures.

(3)

1200 1100 1000 900 800 700 600 500 400 ZnO ZnO

Absorbance [a.u]

Wavenumber [cm-1] deposited at 400°C at 350°C at 300°C

Fig.3. FTIRspectraofZnOfilmdepositedat300–400C.

3.10 3.15 3.20 3.25 3.30 3.35

104

105 deposited at 400°C at 350°C at 300°C

hν [eV]

α [cm-1 ]

Fig.4.Theabsorptioncoefficient(˛)asafunctiontheenergyphotonofthefilms depositedatdifferenttemperatures.

isduetothefactthattheincidentlightisscatteredinalldirec- tions,thusthepathtraveledbyincidentlightisextendedleading toahighrugositybecauseoftheroughsurfaceofthefilm.This lightscatteringinalargeangleisinterestingforthesolarenergy conversionsinceitoffersalargeactivesurfaceareawheremore photonscontributetothephotoactivity.Theopticalgapincreases onlyslightlyfrom3.25to3.28eV(Fig.5)whenthesubstratetem- perature increasesfrom300 to400C becauseofthe bandtail energy(Urbachtail),duetotheimprovedfilmcrystallinity.The smallchangeofthegapresultsfromtwocompetingmechanisms:

awideningduetotheBurstein–Mosseffect,enhancedwhenthe freeelectronconcentrationincreases,andanarrowingattributed toelectron-electronandelectron-ionscattering.

2.6 2.8 3.0 3.2 3.4

0.0 5.0x109 1.0x1010 1.5x1010 2.0x1010

(αhν)2 [eV2 .cm-2 ]

hν [eV] 300°C 350°C 400°C

Fig. 5.The direct optical transitions of ZnO films deposited at different temperatures.

2.6 2.8 3.0

10-3 107

Light

Dark Ea=0.057 eV

Conductivity[Ω cm]-1

1000/T [K-1]

Fig.6. Theplotsoflogconductivityvs.1000/Tinthedarkandunderillumination ZnOfilmdepositedat350C.

Thesimultaneousoccurrenceofopticaltransparencyinthevis- ibleregionandelectronicconductivityrequirethegenerationof electronsdegeneracy.Theoxygendeficiencyextendsthespectral photoresponsetowardlongerwavelengthsandproducesexcess chargecarrierswhichshouldyieldn-typeconductivity(seephoto- electrochemistrybelow).So,thequestionthatcanbesettledisthe following:istheconductivity()increasesbydeviationfromthe stochiometry.Toanswerthisquestion,wehaveplottedthetem- peraturedependenceof(Fig.6):

=oexp

−Ea

kT

(1) Whereoisthepre-exponentialterm;theroomtemperature conductivity300Kis0.066(cm)−1.Thethermaldependence(T) followsanexponentiallaw,indicatingnondegeneratesemicon- ducting behavior withan activationenergy(Ea)of 57meV.The conductiontakesplacebetweenmixedzincvalencesintetrahedra sharingcommoncorners.Thedonorshallowsarepartiallyionized atroomtemperature,givingrisetoasmallpolaronhopping,based onelectron-latticeinteraction.Thefreeelectronsmainlyarisefrom theoxygenionization:

Oo↔ 0.5O2+Vo••+2e (2)

andareassociatedtotheformationofvacanciesandzincinter- sticesZni,thespeciesarewrittenaccordingtotheKroger–Vink notation.Thelocalizedenergylevelsleadtoweakelectronmobility (e):

=(qNDe) (3) Themobility,definedasthemeandriftvelocityinanelectric fieldofunitforce,isquotedas7cm2V−1s−1.Itisgovernedbythe scatteringmechanism,duetotheobstructionofO2ionstothe hopping process.Under illumination,theconductivityincreases byfourordersofmagnitudewhiletheactivationenergyremains nearlyunchangedandthisindicatesaconstantmobility.

ZnO is applied in the environmental protection [18] and the chemical stability is a crucial requirement for long term applications.ZnO isstable over afair pHrange (2–12)but dis- solves in strong alkaline and acid solutions. The dark current (jd∼25␮Acm−2) in the J(E) characteristic (Fig. 7) plotted in acidicmedium(pH∼3)isconsistentwithagoodelectrochemical stabilitywherethesumofH2andO2over-voltagesaverages1.2V.

Thepeakat−0.65VisduetoZn2+reductionandisclosetothe standardpotentialofZn2+/Zncouple[19].Thisrequiresthatthe freepotentialmustbelesscathodicthan−0.65V,otherwiseZnO corrodeselectrochemicallyinsolution.Thecurrentshootsupdras- ticallybelow−1Vandisaccompaniedbyhydrogenevolution.The positionofthebandsiscrucialinphotocatalysis.Whendrawing

(4)

Fig.7.TheJ(E)characteristicofZnOinacidicsolution(H2SO4pH3).Thearrow indicatesthezoomofreductionzone.

thecapacitanceC−2 versustheappliedpotential,thelinearpart obeystotheMott–Schottkyrelation:

C2=

2

eεεoND

VV

fb−kT e

(4) Thesymbolshavetheirusualmeanings.Theplotislinearaslong asthespacechargeregioniselectrons-depleted.Theextrapolated plot(Fig.8)convergestotheflatbandpotentialVfb(−0.70V)while theelectrondensity(ND=5.30×1016cm3)isdeterminedfromthe slope.Thepositiveslopeprovidesunambiguousevidenceofn-type behaviorwhichtakesitsoriginfromoxygenoffstochiometry.The potentialVfboutlinestheenergeticpositionoftheconductionband (ZnO-CB)withrespecttovacuumFig.9:

ECB=4.75+eVfb+Ea (5) TheECB value(−0.76V/3.99eV)indicatesthattheconduction bandislargelyderivedfromZn2+:4sorbitalwithasmalladmix- tureofoxygencharacterwhilethevalenceband(2.49V/7.24eV) consists mainly of O2: 2p orbital and the light absorption is attributedtothechargetransferO2−:2p→Zn2+:4s.ZnOisapplied fortheenvironmentalprotectionandthechromatereductionis useda reactiontest.Itiswellestablishednowthatchromateis highlytoxicandcomesfromvariousindustriesliketanneryand batteries.So, its eliminationis of great interestand thephoto- catalysisundersolarinsulation(AM1)issuitableforitsreduction tolessharmful oxidation states.The combinationof thephysi- calandphoto-electrochemicalcharacterizationspermitstodraw theenergy banddiagramof thejunctionZnO/HCrO4 solution.

ThepotentialVfbisnegativeenoughtogiverisetoalargeband bendingattheinterfacefortheseparationof(e/h+/pairs.Asappli- cation,ZnOissuccessfullyusedforthereductionHCrO4intoCr3+.

-0.8 -0.4 0.0 0.4

0 75 150 225

Vfb= -0.70 V C-2 1012 [ F-2 cm4 ]

Potential [V]

Fig.8. TheMott–SchottkycharacteristicofZnOelaboratedat350Cinacidicsolu- tion(H2SO4,pH3).

e-

h+

H2O O2

HCrO4-

Cr3+

H2O H2

Eg= 3.25 eV hν

e-

-4.74 V

h+

Vacuum

~ -1 V

Potential (VSCE) 2.44 V CB

VB

-0.75 V

~ 0 V ~ 1.5 V

n-ZnO Solution

Fig.9. TheenergydiagramofthejunctionZnO/HCrO4solutionatpH2.5.

ThespecieHCrO4 predominatesatlow pHs becauseofit acid- ityconstantpKa (Cr2O42−+H2O→HCrO4+OH,pKa=1.6)[19].

The potential of the couple HCrO4/Cr3+ is found to be 0.56V undertheoperatingconditions whiletheopencircuitpotential (OCP=−0.125V)islesscathodicthanthepotentialVfb(−0.70V), andthisafurtheradvantagesincethechromatereductiondoesnot requireanexternalbias.Inaddition,thepotentialofphotoelec- tronsinZnO-CBismorenegativethantheHCrO4/Cr3+leveland shouldreducespontaneouslyHCrO4intoCr3+.ZnO-CBvarieswith pH(−0.06VpH1)butlessthanthecoupleHCrO4/Cr3+(−0.14V pH1).So, we have exploitedthis property tohave an optimal bandbendingatpH∼3wherethechargecarriersareseparatedby theelectricalfielddevelopedatthejunctionZnO/HCrO4solution.

BecauseofthewidegapofZnO,theholesarescavengedbywater resultinginprolongedlifetimeofcarriers.Indeed,thepotentialof O2/H2OcoupleliesbelowZnO-VBandthereactionsoccurringat theinterfacearethefollowing:

ZnO+h→h+VB+eCB (6)

HCrO4+7H3O++3e→Cr3++11H2O (7)

H2O+2h+→ 0.5O2+2H+ (8)

Thesurfaceadsorptionhasadirecteffectonthephotoactivity viatheincreasingnumberofphotocatalyticsites.Theattachmentof chromateonthecatalystpowdermakeseasiertheelectrontransfer.

ThesurfaceofZnOispositivelychargedforpH<pHzpc,andnega- tivelychargedforpH>6.3,pHpzzpisthepointofzerozetapotential

0 0 6 0

0 4 0.0

0.1 0.2 0.3

absorbance [a.u]

λ [nm]

initial solution

8 h illumination (pH=2.5) 8 h illumination (pH=7)

Fig.10.UV–VisiblespectraofchromatesolutionsatpH2.5and7overillumination time.

(5)

Fig.11.(a)TheNyquistplotofZnO-HCrO4solutionpH3.(b)ThecorrespondingBodrepresentation.

(=7.74)1.Fig.10givestheUV–VisiblespectraatpH∼3and7of chromatesolutionsafter4hillumination.Thedecayofabsorbance (max=350nm)isduetoHCrO4lightinducedreductionsinceno changeinabsorbancehasbeenobservedinthedarkorinabsenceof ZnO.Thereductionrateaverages94%atpH∼3againstonly28%in neutralsolution(pH∼7).AtransferofthreeelectronsperHCrO4

moleculeisrequired(reaction7)andthequantumyield( )isgiven by:

=3

numberofHCrO4convertedmol s1 photonsflux s1

(8)

Avalueof0.06%isobtainedundertheworkingconditions;the lowquantumyieldisduetothesmallpartofUVradiationinthe sunspectrumabsorbedbyZnO(<380nm).Theregressionofthe photoactivityevidencedbythebendingoverthecurveisdueto thesaturationof photocatalyticsitesbythehydroxideCr(OH)3, suchhypothesisiscorroboratedbytheabsenceofCr3+peakinthe spectrum,duetotheadsorptionofCr(OH)3becauseofthelowsolu- bilityproduct(Ks=5.4×1031).Thehalflife(t1/2),thetimeneeded toreducehalfofHCrO4presentinitially,isfoundtobeconcen- trationdependent,indicatingafirstorderkinetic.Indeed,wehave foundalinearrelationbetween(lnCt)andirradiationtime.

EIS isperturbation techniqueof thedynamic ofthe electro- chemicalprocesswherethebulk,grainboundariesanddiffusion contributionsare quantifiedbytheresponsesof ACsignalsub- jectedtovariablefrequencies.Theplotofimaginaryimpedance versustherealimpedance(Fig.11)showstwodepressedsemicir- cles,thefirstonewitharesistance(R2=1.89kcm2)isassigned tothechargetransferinconformitywiththemoderateconduc- tivity.Thesecondsemicircle(R3=7.12kcm2)isattributedtothe grainboundaries.Theslightoffsetneartheorigin(R1=0.4kcm2) isduetotheionicelectrolytebecauseofthehighmobilityofpro- ton(350−1cm2mol−1).Thesemicirclesarecenteredbelowthe abscissa axis due to a constant phase element (CPE). CPErep- resents thedeviationfrom anideal capacitorand is definedas ZCPE=[C(jω)n]−1whereωistheangularfrequencyandnthehomo- geneityfactor(−1≤n≤1).CPEtakesitsoriginfromtheroughness of theelectrode aswellas defectstates withinthe gapregion.

Thefactorn(=0.82)isreadilyobtainedfromtherelation{=/2 (1−n)}.Let’srecallthatnvalueclosetounityindicatesacapacitive behavior. The absence of straight line at low frequencies indi- catesthatthechromatereductionisunderkineticcontrolandthe

1Thepointofzerocharge(pzc)isobtainedfromtheequilibriumofZnOpowder suspensionindistilledwater.

electrontransferattheinterfaceistherate-limitingstep.Themin- imumangularfrequency(ωmin=2␲fmin)isusedtodeterminethe lifetimeofelectrons(23ms=ωmin1).Theexperimentaldataare fittedbytheZviewsoftwarefortheequivalentelectricalcircuit (Fig.11a,Inset).FutureinvestigationsfocusonthegrowthofZnO filmsontosiliconsinglecrystalanditsapplicationfortheenviron- mentalprotection.Theworkispresentlyunderwayandtheresults willbereportedsubsequently.

4. Conclusion

ZnOthinfilmsaredepositedonglasssubstratesbyultrasonic spray. The technique is low cost technique and both the size and the stoichiometryof thefilms areaffected by thethermal treatment.TheXRDanalysisrevealsthehexagonalwurtzitestruc- turewithpreferential orientationalongthecaxis.ZnO exhibits ahightransparencyoverthevisibleregionanddisplaysasemi- conductingbehavior,dominatedbythermallyactivatedhopping ofsmallpolarons.Anexcellentrectificationisobservedinacidic mediumandZnObehavesaschemicaldiode.Theoffstochiometry isconfirmedbythecapacitancemeasurements.Thephysicaland photo-electrochemicalcharacterizationspermittobuildtheenergy diagramwhichpredictsthechromatereductionintotrivalentstate underUVlight.95%ofCr(VI)arereducedafter6hofexpositionto solarillumination.Theoxidationfollowsafirstorderkinetic.The impedancedataindicatenondiffusioncontrolledprocess.

Acknowledgments

The authors would like to thank Dr M. Khitous for the spectrophotometricmeasurements.Theworkwasfinanciallysup- portedbyboththedepartmentsofPhysicsandChemistry(Algiers).

References

[1]U.Özgür,Y.I.Alivov,C.Liu,A.Teke,M.A.Reshchikov,S.Do˘gan,V.Avrutin,S.J.

Cho,H.Morkoc¸,AcomprehensivereviewofZnOmaterialsanddevices,J.Appl.

Phys.98(2005)041301–041404.

[2]Z.P.Wei,Y.M.Lu,D.Z.Shen,Z.Z.Zhang,B.Yao,B.H.Li,J.Y.Zhang,D.X.Zhao,X.W.

Fan,Z.K.Tang,Roomtemperaturep-nZnOblue-violetlight-emittingdiodes, Appl.Phys.Lett.90(2007)042113–042116.

[3]H.Zhu,J.Hüpkes,E.Bunte,S.M.Huang,StudyofZnO:Alfilmsforsiliconthin filmsolarcells,Appl.Surf.Sci.261(2012)268–275.

[4]J.H.Morgan,D.E.Brodie,Thepreparationandsomepropertiesoftransparent conductingZnOforuseinsolar-cells,Can.J.Phys.60(10)(1982)1387–1390.

[5]H.Lahmar,M.Kebir,N.Nasrallah,M.Trari,PhotocatalyticreductionofCr(VI)on thenewhetero-systemCuCr2O4/ZnO,J.Mol.Catal.A:Chem.353–354(2012) 74–79.

(6)

[6]M.D. Barankin, E. Gonzalez II, A.M.Ladwig, R.F. Hicks, Plasma-enhanced chemicalvapordepositionofzincoxideatatmosphericpressureandlowtem- perature,Sol.EnergyMater.Sol.Cells91(2007)924–930.

[7]Y.Y.Villanueva,Da-RenLiu,PeiTzuCheng,Pulsedlaserdepositionofzincoxide, ThinSolidFilms501(2006)366–369.

[8]M.M. Ba-Abbad, A.A.H. Kadhum, M. Abu Bakar, M.S. Takriff, S.

Kamaruzzaman, Visible light photocatalytic activity of Fe3+-doped ZnO nanoparticle prepared via sol–gel technique, Chemosphere 91 (2013) 1604–1611.

[9]A.Moustaghfir,E.Tomesella,A.Rivaton,B.Mailhot,M.Jacquet,J.L.Gardette, J.Cellier,Sputteredzincoxidecoatings:structuralstudyandapplicationto thephotoprotectionofthepolycarbonate,Surf.Coat.Technol.180–181(2004) 642–6450.

[10]S.A.Studenikin,N.Golego,M.Cocivera,Fabricationofgreenandorangepho- toluminescentundopedZnOfilmsusingspraypyrolysis,J.Appl.Phys.4(1998) 2287.

[11]J.Aronovich,A.Ortiz,R.H.Bube,OpticalandelectricalpropertiesofZnOfilms preparedbyspraypyrolysisforsolarcellapplications,J.Vac.Sci.Technol.16 (1979)994–1004.

[12]Y.Lee,H.Kim,Y.Roh,Jpn,depositionofZnOthinfilmsbytheultrasonicspray pyrolysistechnique,J.Appl.Phys.40(2001)2423–2428.

[13]H.Kim,Y. Lee,Y.Roh, J.Jung,M.Lee,H.Kwon,Ultrasonics symposium proceedings,IEEE1(1998)323–326.

[14]W.Ketir,G.Rekhila,M.Trari,A.Amrane,Preparation,characterizationand applicationofCuCrO2/ZnOphotocatalystsforthereductionofCr(VI),J.Environ.

Sci.24(12)(2012)2173–2179.

[15]B.Bellal,B.Hadjarab,A.Bouguelia,M.Trari,Visiblelightphotocatalyticreduc- tionofwaterusingSrSnO3sensitizedbyCuFeO2,Theor.Exp.Chem.45(2009) 172–179.

[16]N.Zebbar,M.S.Aida,A.E.K.Hafdallah,O.Daranfad,H.Lekiket,M.Kechouane, PropertiesofZnOthinfilmsgrownonSisubstratesbyultrasonicsprayand ZnO/Siheterojunctions,MSF609(2009)133–137.

[17]E.M.Bachari,S.BenAmor,G.Baud,M.Jacquet,Photoprotectivezincoxide coatingsonpolyethyleneterephthalatefilms,Mater.Sci.Eng.B79(16)(2001) 165–174.

[18]V.Preethi,S.Kanmani,Photocatalytichydrogenproduction,Mater.Sci.Semi- conduct.16(3)(2013)561–575.

[19]R.DavidLide(Ed.),HandbookofChemistryandPhysics,90thed.,2009–2010.

Références

Documents relatifs

Polycrystalline zinc oxide (ZnO) thin films have been deposited at 450˚C onto glass and silicon substrates by pulsed laser deposition technique (PLD).. The effects of glass

Optical Absorbance of CuO Thin Films Deposed at Different volumes (S 1 or S 2 ) at T=500°C In order to appreciate the gap energy of CuO thin films, first, the experimental data

The X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-vis spectrophotometry were used to determinate the structural, morphological and optical properties

In this work, a copper oxide thin films were deposed by a simple and inexpensive technique (spray pyrolysis) on ordinary glass substrates at a fixed temperature T=500°C. and

Abstract : The aim of our work presented in this paper is the development and characterization of zinc oxide thin film (ZnO), using spray pyrolysis process (simple and cheap

The measurement of the thickness (h) by the method of the interference fringes, [11] and from the Figure.1 transmittance curve, we derive the physical constants

The aim of our work is the development and characterization of nickel oxide thin films deposited by the technique of spray pyrolysis on glass substrates.. This

In the present work, we studied the growth of ZnO thin films on glass substrate by Sol-gel method using zinc acetate dehydrate precursor and undergo optical