• Aucun résultat trouvé

A SIMPLE MODEL OF A GLASS AT LOW TEMPERATURES

N/A
N/A
Protected

Academic year: 2021

Partager "A SIMPLE MODEL OF A GLASS AT LOW TEMPERATURES"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00217913

https://hal.archives-ouvertes.fr/jpa-00217913

Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A SIMPLE MODEL OF A GLASS AT LOW TEMPERATURES

N. Rivier

To cite this version:

N. Rivier. A SIMPLE MODEL OF A GLASS AT LOW TEMPERATURES. Journal de Physique

Colloques, 1978, 39 (C6), pp.C6-984-C6-985. �10.1051/jphyscol:19786436�. �jpa-00217913�

(2)

JOURNAL DE PHYSIQUE

Colloque C6, supplément au n° 8, Tome. 39, août 1978, page C6-984

A SIMPLE MODEL OF A GLASS AT LOW TEMPERATURES

N. Rivier,

Blaokett Laboratory, Physios Department, Imperial College, London SW 7. England.

Résumé.- La mécanique statistique des systèmes désordonnés bloqués peut être construite selon la formulation subjective de Jaynes. On peut exprimer le champ moyen dû aux degrés de liberté bloqués comme une marche aléatoire. Cela donne une énergie à plusieurs vallées dans un espace de configu- ration à une dimension de telle sorte que la distance dans cet espace entre différents états métas- tables (vallées) et l'entropie de point zéro peuvent être évaluées simplement.

Abstract.- The statistical mechanics of quenched disordered systems can be constructed in a logical fashion using Jaynes' subjective formulation. We obtain the mean field due to the quenched degrees of freedom as a random walk. This yields a multivalleys energy on a configuration space reduced to a one-dimensional axis, so that the distance in configuration space between various metastable states (the valleys) and the zero point entropy can be simply evaluated.

A glass can be described as a system in which several degrees of freedom have been quenched at random below some freezing temperature T . These de- grees of freedom are fixed a priori according to a given probability distribution, and are not in ther- mal equilibrium. Nevertheless, a statistical mecha- nics can be constructed /l/ following the subjecti- ve method of Jaynes, based solely on our knowledge of the system.

In a rubber, the quenched degrees of freedom correspond to the topology of its constituting po- lymer chains, i.e. to their cross-linkage 111. The cross links are fixed in number and position, even if the rubber is subsequently stretched or heated, and the rubber remains a solid with a finite shear modulus. In a spin glass, the random position of the magnetic impurities is given a priori. A sub- sequent application of a magnetic field does not al- ter this constraint and the response - magnetic sus- ceptibility - of the system remains well below that of a magnetic liquid. In this case, the freezing temperature is apparently well defined and the sus- ceptibility has a sharp cusp below T .

Quenching implies a ground state for the sys- tem which has a random structure - a random walk in the simplest case of a spin glass in the local random mean field approximation. Several authors 131 have suggested for the potential energy of a glass a random function with many valleys in confi- guration space. Despite its successes (the tunne- ling modes as elementary excitations), this picture cannot provide - in the absence of a microscopic model, however simplified - a scale for the confi-

guration space and thus the distance between valleys the metastability of the various possible glass states and the zero point entropy. Our aim is to produce a simple model which yields a multi-valleys potential for which a distance appears in a direct fashion.

The system is described by the hamiltonian H (h,S), where the degrees of freedom are divided in two classes, the dynamical variables {S}, free to reach thermal equilibrium, and the random variables {h}which are quenched in the glass state. We have in mind as an example a spin glass in the. mean field approximation for which S is given spin and h the random, local mean field due to the others. The thermodynamic state of the system is determined by an occupation frequency ir*(h,S) which is obtained by maximizing the entropy subject to constraints cor- responding to our knowledge of the system, its ave- rage energy and, in the glass, the normalized pro- bability distribution of the quenched parameters P(h). For an annealed system (liquid), it is given by

wA(h,S) = exp[-eH(h,S)] Ifdh fdS exp[-BH(h,S}] (1) (6 = 1/kT, dS = T rg. . . ) , and for a quenched sys- tem (glass) by III

TT (h,S) = P(h)T7(h|s) = P(h)expG-eH(h,S)J//dS exp

L-6H(h,si] (2) ir(h|s) is the occupation frequency of S at given h.

Eq. (2) is almost obvious : quenched systems must indeed be characterized by a structure of condi- tional probability I hi.

The system is annealed above T and quenched

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19786436

(3)

below. A t To, t h e r e f o r e , nA=rrQ, and one o b t a i n s a r e l a t i o n between h a m i l t o n i a n H o r ( f r e e ) energy

*

Fo(h) = -kTolnZo(h) and p r o b a b i l i t y d i s t r i b u t i o n P(h),

Fo(h) = -kTolnP(h)

-

lnZo (3)

Here, Zo(h) = I d s exp E : ' B ~ H ( ~ , s ) ] and Zo = dh Zo(h).

Suppose t h a t P(h) i s a g a u s s i a n d i s t r i b u t i o n . Then, Fo(h) = c h 2 , which i s indeed t h e s e l f - e n e r g y of t h e mean magnetic f i e l d . But t h e randomness of t h e quenched v a r i a b l e ( s ) h a s been p r o j e c t e d o u t : and must be recovered by r e t u r n i n g t o t h e random p r o c e s s a t t h e o r i g i n of P ( h ) . The s p i n g l a s s o f f e r s a p a r t i c u l a r l y ' s i m p l e example : t h e l o c a l magnetic f i e l d h i s a s u p e r p o s i t i o n of a l a r g e number of s t a t i s t i c a l l y independant c o n t r i b u t i o n s . It i s the-- r e f o r e t h e r e s u l t of a random walk 151, each s t e p being t h e c o n t r i b u t i o n of every s p i n c o n s t i t u t i n g t h e system. The random p r o c e s s h ( t )

-

t h e d i s c r e t e v a r i a b l e t l a b e l l i n g t h e s t e p s i n t h e walk, t h a t i s t h e i m p u r i t i e s of t h e system

-

i s s t a t i o n a r y and F ( h ) , p r o p o r t i o n a l t o h 2 , i s a random f u n c t i o n of one v a r i a b l e t w i t h many v a l l e y s . The v a l l e y s a r e

-

t h e z e r o s e t of t h e random walk, which has, i f h i s a s c a l a r f i e l d ( I s i n g s p i n g l a s s ) , f r a c t i o n a l dimen- s i o n

$

161. The z e r o p o i n t entropy i s

s

= - I d h P ( h ) l n P ( h ) % : l n N (4) where N i s t h e number of i m p u r i t i e s .

The f r e e energy of t h e system i s r e a d i l y ob- t a i n e d from e q . ( 2 ) ,

F = kT Idh P ( h ) l n P(h) + Idn P(h)F(h) = Fdis + F1 The f i r s t term, due t o t h e d i s o r d e r f r o z e n upon quenching, i s p u r e l y e n t r o p i c . The second term can be r e w r i t t e n 1 2 1 a s FI=

-

kT(a/an)lnZ(n) u s i n g t h e r e p l i c a method (In2 = (a/an)Zn )

,

where

0 $0

z(,) =

Idhids

(0'

.

,

.

("&-60H e-

P( . .

. e -BE(") = ZoZn~.dh P (h) ( h ) I n

(5 The b a r i n d i c a t e s t h e a c t u a l experimental c o n d i t i o n s i t s absence t h e c o n d i t i o n s upon f r e e z i n g . !Chis d i f - f e r e n c e a p a r t , t h e n + l r e l i c a s i n (5) a r e i d e n t i c a l : t h e y a r e d e s c r i b e d by t h e same h & i l t o n i a n , o r , using ( 3 ) , by s i m i l a r random p r o c e s s e s . Thus, F = kTfdhP(h)lnP(h)

-

kTfdh ~ ( h ) l n i ; ( h )

-

k ~ l n z ( 6 ) and can be d e s c r i b e d e n t i r e l y i n terms of t h e ran-

dom p r o c e s s h ( t ) .

I f t h e system has been quenched i n t h e pre-

*

A f r e e energy f o r t h e dynamical v a r i a b l e s S, an energy f o r t h e random v a r i a b l e s h.

sence of a magnetic f i e l d , t h e random walk h a s a f i - n i t e propagating component. It i s no longer s t a t i o - nary. Accordingly, F (h) f l u c t u a t e s about a parabo- l a i n s t e a d of t h e a b s c i s s a a x i s . The z e r o s e t i s d r a s t i c a l l y reduced ( b u t n o t e n t i r e l y i n s p i n g l a s - s e s where t h e a p p l i e d f i e l d i s much s m a l l e r than t h e i n t e r n a l f i e l d , t h e f l u c t u a t i n g component). I f t h e f i e l d i s removed a f t e r quenching, t h e f r o z e n s t a t e i s m e t a s t a b l e and t h e g l a s s decays i n t o one of t h e v a l l e y s belonging t o t h e z e r o s e t .

The o p p o s i t e experiment i n which an e x t e r n a l f i e l d i s a p p l i e d on a system quenched i n z e r o f i e l d can be d e s c r i b e d i n s i m i l a r terms u s i n g ( 6 ) . The assymetry between t h e s i n g l e quenched r e p l i c a and t h e n thermodynamic r e p l i c a s m a n i f e s t s i t s e l f by a d i f f e r e n t r a t e of decay. Furthermore, t h e system decays h e r e from a s t a t e of h i g h d e g e n e r a c y , i n t o a s t a t e of low degeneracy, whereas

the

Converse was t h e c a s e of t h e f i r s t experiment. D e t a i l e d c a l c u l a - t i o n s remain t o b e done and w i l l b e r e p o r t e d e l s e - where.1 am g r a t e f u l t o D r . M. Warner f o r s t i m u l a t i n g

l e c t u r e s and d i s c u s s i o n s , p a r t i c u l a r l y on r e f e r e n c e 121.

References

111

R i v i e r , N., Physica 86-88B (1977) 856.

/2/ Deam and Edwards, S.F., P h i l o s . Trans.

280

(1976) 317.

131 Anderson, P.W., H a l p e r i n , B. and Varma, C.M., P h i l . Mag,

2

(1972) 1 .

/4/ Brout, R., Phys. Rev.

106

(1957) 620

151 See f o r example R i v i e r , N. and Adkins, K . J . , i n Amorphous Magnetism, Hooper and de Graaf, e d s . , Plenum 1973.

161 Mandelbrodt, B. F r a c t a l s , Freeman 1977.

Références

Documents relatifs

Our paper focuses on the almost sure asymp- totic behaviours of a recurrent random walk (X n ) in random environment on a regular tree, which is closely related to Mandelbrot

The one-dimensional recurrent random walk on random environment (thereafter abbreviated RWRE) we treat here, also called Sinai’s walk, has the property to be localized at an instant

One way to construct a RWRE is to start with a reversible markov chain, in our case it will be a reversible nearest neighborhood random walk.. Now if this potential also

We show that the – suitably centered – empirical distributions of the RWRE converge weakly to a certain limit law which describes the stationary distribution of a random walk in

Castell, Quenched large deviations for diffusions in a random Gaussian shear flow drift, Stochastic Process. Castell, Large deviations for Brownian motion in a random

In the vertically flat case, this is simple random walk on Z , but for the general model it can be an arbitrary nearest-neighbour random walk on Z.. In dimension ≥ 4 (d ≥ 3), the

This equation enables us to calculate the limiting free energy of the Sherrington-Kirkpatrick spin glass model at this particular value of low temperature without making use of

Asymptotic normality and efficiency of the maximum likelihood estimator for the parameter of a ballistic random walk in a random environment. Random difference equations and