• Aucun résultat trouvé

en fr

N/A
N/A
Protected

Academic year: 2022

Partager "en fr "

Copied!
21
0
0

Texte intégral

(1)

HAL Id: hal-02595851

https://hal.inrae.fr/hal-02595851

Submitted on 26 May 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Wastewater Treatment Technologies: Applicability and limitations in LCA for constructed wetlands systems:

using vertical reed bed filters

Eva Risch, Catherine Boutin, P. Roux, S. Gillot, A. Heduit

To cite this version:

Eva Risch, Catherine Boutin, P. Roux, S. Gillot, A. Heduit. Wastewater Treatment Technologies:

Applicability and limitations in LCA for constructed wetlands systems: using vertical reed bed filters.

Life Cycle Management Conference, Aug 2011, Berlin, Germany. pp.20. �hal-02595851�

(2)

Wastewater treatment technologies Applicability & Limitations in LCA for constructed wetland systems: Using vertical reed bed filters

Eva Risch, Catherine Boutin, Philippe Roux, Sylvie Gillot, and Alain Héduit

(3)

Pôle de recherche en analyses de cycles de vie et durabilitédes systèmes

ELSA research group

Regional platform

Area of Montpellier, France

5 French research institutes and universities

26 members (professors & associate researchers, PhD students).

Fields of competence

Environmental & Social LCA Industrial Ecology

Agro-bioprocesses : bioenergy, solid & liquid waste treatment, crop

http://www.elsa-lca.org

(4)

Pôle de recherche en analyses de cycles de vie et durabilitédes systèmes

Challenges of LCA for WWTPs

Calculate the systems’ environmental impacts

LCI of all air, water & soil emissions

Balance inputs and outputs of treatment plants

Which system has the ‘lowest’ impacts?

Applying a comparative LCA

Introduction

Constructed Wetlands

(vRBF)

Activated Sludge

WWTP

VS

(5)

Pôle de recherche en analyses de cycles de vie et durabilitédes systèmes

Goal & scope

Sewer

WWTP (*)

Solid wastes

Water

discharges Sludge Others

(biomass)

Agricultural spreading, incineration or

landfilling

Composting or on-site burning

System boundary

Materials inputs

• land use,

• flocculants, coagulants,

• Plant infrastructure (metals, concrete, etc.)

• agricultural machinery,

• waste handling infrastructure

Energy inputs

• electricity

• solar radiation

(for constructed wetlands)

• fossil fuels

Air emissions Soil emissions Water emissions

Emissions to environment during system operation:

Domestic use of water

Functional Unit

Treatment of

« a kilogram of daily organic load (kgBOD5) of domestic origin »

(*) wastewater treatment plant

(6)

Pôle de recherche en analyses de cycles de vie et durabilitédes systèmes

System 1. Constructed Wetland

Raw sewage

Liquid

sewage Vertical ReedBed Solids

Filters

Stabilized sludge

Treated Effluent Screening

To MSW treatment

To receiving water

VRBF Process boundaries

Biomass

Onsite Composting Incineration

20%

80%

Agricultural spreading

Landfilling Incineration

70%

20%

10%

First stage (3 filters)

Second stage (2 filters)

Sludge end-of-life options

(7)

Pôle de recherche en analyses de cycles de vie et durabilitédes systèmes

System 2. Activated Sludge

Raw sewage

Liquid

sewage Solids

Activated Sludge Aeration Enhanced P-removal

Clarification

Sludge Treated

Effluent

Return sludge100%

Sludge conditioning

Screening

To MSW treatment

To receiving water

Stabilized sludge

Agricultural spreading Landfilling

Incineration

70%

20%

10%

Aeration tank

Clarifier

Sludge end-of-life options

(8)

Pôle de recherche en analyses de cycles de vie et durabilitédes systèmes

LCI. Elemental mass balance for a CW system (vRBF)

Obtained by difference with total P balance

GOOD, measured OK, estimated POOR, deducted Data availability

2,00 0,01

0,05 0,44

1,50 -

- Total P, 2,00

in

0,01

<<

0,44 0

0

P-P2O5

0

<<

0 1,50

1,60

P-PO4

<<

0,05 0

0 0,40

P-org

P

Filter matrix Reeds

Sludge Water

Soil Air

g.d-1.hab-1 Substances

Total output By-products

Emissions and direct discharges

vRBF outputs (g.d-1.hab-1) - discharges and other outputs (<< stands for negligible quantities)

Input

wastewater content

IN P U T

Complete P mineralization

Sludge phosphorus

levels, as phosphates

Estimation of plant uptake for P

(9)

Pôle de recherche en analyses de cycles de vie et durabilitédes systèmes

0 10 20 30 40 50 60 70 80 90 100

CC HT POF F-Eu M-Eu TET FET MET ALO ULO

Method: ReCiPe Midpoint (H) V1.04

% Constructed Wetland

10 20 30 40 50 60 70 80 90

100% Activated Sludge

LCIA. Contribution Analysis

WWTP Life Cycle stages

WWTP discharge Gazeous emissions

O&M Emissions Infrastructure Dismantling Constructed

Wetland

Activated

Sludge

(10)

Pôle de recherche en analyses de cycles de vie et durabilitédes systèmes

0 10 20 30 40 50 60 70 80 90 100

CC HT POF F-Eu M-Eu TET FET MET ALO ULO

Method: ReCiPe Midpoint (H) V1.04.

Constructed Wetland Activated Sludge

%

LCIA. Systems Comparison

Functional Unit : 1 kg BOD

5

/day

Resources Lime, FeCl3,

Electricity

Phosphorus (particulate) Suspended solids in AS

discharges Phosphates

P-limited inland waters

Nitrates, Organic Nitrogen N-limited marine waters

Air emissions CO2, CH4, N2O

Land use vRBF: Extensive system

(11)

Pôle de recherche en analyses de cycles de vie et durabilitédes systèmes

Conclusions

LCIA results

Constructed wetlands technology outperforms Activated Sludge on global impacts

Design optimization options for CW

• Phosphates precipitation

• Increased denitrification

Trade-offs between process performance and

operation in environmental costs

(12)

Pôle de recherche en analyses de cycles de vie et durabilitédes systèmes

Perspectives

Applicability challenges

Data availability for inventory of air emissions

• Uncertainty, process variability, few monitored processes

Hydraulic flows per capita

• Huge variability across regions

• Scaling of WWTP infrastructure

Limitations

Normalization not consistent for ‘end-of-pipe’ processes

Need to track emerging pollutants & pathogens (micropollutant level)

Answers brought by LCA in wastewater treatment:

Ecodesign / Process design optimization : Midpoint approach

Wastewater technology options : Endpoint approach

(13)

Thanks for your attention

www.elsa-lca.org

Think globally (Life Cycle) … Act locally !

(14)

Extra’s

(15)

Pôle de recherche en analyses de cycles de vie et durabilitédes systèmes

LCIA method: ReCiPe Midpoint (H), v.1.04

Fossil depletion FD

Metal depletion MD

Water depletion WD

Natural land transformation NLT

Urban land occupation ULO

Agricultural land occupation ALO

Marine ecotoxicity MET

Freshwater ecotoxicity FET

Terrestrial ecotoxicity TET

Marine eutrophication M-Eu

Freshwater eutrophication F-Eu

Terrestrial acidification TA

Ionising radiation IR

Particulate matter formation PMF

Photochemical oxidant formation POF

Human toxicity HT

Ozone depletion OZ

Climate change CC

Impact category Abbr.

(16)

Pôle de recherche en analyses de cycles de vie et durabilitédes systèmes

0 10 20 30 40 50 60 70 80 90 100

CC OZ HT POF PMF IR TA F-Eu M-Eu TET FET MET ALO ULO NLT WD MD FD Method: ReCiPe Midpoint (H) V1.04

% Constructed Wetland

10 20 30 40 50 60 70 80 90

100% Activated Sludge

LCIA. Full Contribution Analysis

WWTP Life Cycle stages

O&M Emissions Infrastructure Dismantling

(17)

Pôle de recherche en analyses de cycles de vie et durabilitédes systèmes

LCIA. Full Comparative Analysis

0 10 20 30 40 50 60 70 80 90 100

CC OZ HT POF PMF IR TA F-Eu M-Eu TET FET MET ALO ULO NLT WD MD FD

Method: ReCiPe Midpoint (H) V1.04. For x-axis legend see Tab.4 Constructed Wetland Activated Sludge

%

(18)

Pôle de recherche en analyses de cycles de vie et durabilitédes systèmes

Endpoint approach

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

Human Health Ecosystems Resources

Method: ReCiPe Endpoint (H) V1.05 / World ReCiPe H/H / Damage assessment

%

VFCW AS

(19)

Pôle de recherche en analyses de cycles de vie et durabilitédes systèmes

Vertical Flow Constructed Wetland

Process design

Schematic view

Cross section of a VFCW

(20)

Pôle de recherche en analyses de cycles de vie et durabilitédes systèmes

System input ecoinvent Class

5 AS (CH) vRBF (FR) AS (FR) Nominal Organic load

(kgBOD

5

.d

-1

) 48,36 312

Nominal hydraulic load

(m

3

.day

-1

) 446 145 936

Treatment capacity 806 PE 967 Hab. 6240 Hab.

BOD

5

Concentration (mg.L

-1

)

COD

103.6 155.4

333 800 Flows (g.day

-1

) per P.E.

(a)

per Hab.

(b)

BOD

5

60,0 50,0

COD 90,0 120,0

N-NH

4

N-org

(c)

8,27 6,46

7,5 2,5 N-NO

2

N-NO

3

0,22 0,58

0,0 0,0

Total N 15,53 10,0

P-Part 0,34 0,4

P-PO

4

1,36 1,6

Total P 1,70 2,0

(a)

P.E.: Person-Equivalent – One person-equivalent has a daily

Input sewage composition

(21)

Pôle de recherche en analyses de cycles de vie et durabilitédes systèmes

20

Mass balance on C, N, P

vRBF outputs (g.d

-1

.hab

-1

) - effluents and other outputs (<< stands for negligible quantities) Input

wastewater content Emissions and

direct discharges By-products Substances g.d

-1.

hab

-1

Air Soil Water Sludge Reeds Filter

matrix

Total output

N-NH4 7,50 0,25 << 0,10

N-org 2,50 1,80 0,75 0,76

N-NO2+3 0 6,23 <<

N-NH3 <<

N-NO <<

N-N

2

O 0,11

N-N

2

<<

N

Total N, in 10,0 0,11 - 8,28 0,75 0,76 0,10 10,0

P-org 0,40 0 0 0,05 <<

P-PO4 1,60 1,50 0 << 0

P-P2O5 0 0 0,44 << 0,01

P

Total P, in 2,00 - - 1,50 0,44 0,05 0,01 2,00

C

org

45,0 1,87 13,1 << <<

C-CO2 29,8

C-CH4 0,16

C

mineral

5,00 2,00 3,00

C

Total C, in 50,0 30,0 - 3,87 16,1 - - 50,0

Références

Documents relatifs

It is noteworthy that conventional primary and secondary unit processes at municipal wastewater treatment plants (WWTPs) are not fully adequate for efficient

A process combining septic tank and reed bed filters can be a technical solution for washing parlour effluents if, close to the farm, a surface of 2 to 3 m² per milk

A typical R B F plant designed for the treatment of raw domestic sewage (which has been demonstrated to be feasible without clogging problems and which induces only the handüng

Physical-chemical characterization of sludge and granular materials from a vertical flow constructed wetland for municipal wastewater treatment.. Einstein, F-69621 Villeurbanne cedex,

comparison of selected fractionation techniques.. Effect of effluent recirculation in vertical flow constructed wetland on treatment efficiency of livestock wastewater.

inverse methods for estimating soil hydraulic properties from field data as an 757. alternative to

hamburgers les films policiers c’est très bien je n’ai pas. d’opinion ce n’est pas juste c’est un

However, their corresponding XANES spectra at Fe K- edge evidenced distinct features (Figure 4-a black and gray bold lines, respectively), with an additional peak at 7137.6 eV for