• Aucun résultat trouvé

In case with infiltration under the dam, the angle a is given by So that

N/A
N/A
Protected

Academic year: 2022

Partager "In case with infiltration under the dam, the angle a is given by So that"

Copied!
13
0
0

Texte intégral

(1)

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 1

In case there is no infiltration under the dam, the angle α is given by So that

γ b =2 γ e

From where

In case with infiltration under the dam, the angle a is given by So that

From where

A B

y

x α H

Sol O

γ

e

γ

b

The Airy stress function associated with this

loading is :

( , ) sin

A r θ = cPr θ θ

Show that A(r, θ ) is biharmonic.

Determine the components of the stress tensor.

Determine the constant c as a function of angle α . Calculate the stresses when α = π /2.

Tutorial 1 (continued) : Semi infinite plane under point load

(2)

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 3

2 2 2 2

2 2 2 2 2 2

1 1 1 1

( ) A A A

A r r r r θ r r r r θ

 ∂ ∂ ∂  ∂ ∂ ∂ 

∆ ∆ =  + +  + + 

∂ ∂ ∂ ∂ ∂ ∂

  

( , ) sin

A r θ = cPr θ θ

The stress function A(r, θ ) is well biharmonic

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 4

The stresses are defined by the following expressions

( , ) sin

A r θ = cPr θ θ

The balance of forces is written to determine the constant c :

If α=π /2, the constant c is -1/π

and the stress σ r is the given by :

(3)

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 5

Tutorial 1 (continued) : Stress field in a plate loaded in tension and pierced with a tiny hole

σ

σ

x y

r θ

2 2

M

( , ) ln f

2

cos 2

A r br c r d er

θ = + +  + + r  θ

 

The Airy stress function associated with this

loading is :

Show that ( , ) is biharmonic Determine the stress , , ( is the radius of the hole)

r r

A r

a

θ θ

θ

σ σ τ

2 2

( , ) ln f

2

cos 2

A r br c r d er

θ = + +  + + r  θ

  σ

σ

x y

r θ M

infinite plate loaded in tension and pierced by a circular hole of radius a

2 2

2 2 2

1 1

A A A

A r r r r θ

∂ ∂ ∂

∆ = + +

∂ ∂ ∂

3

2 2 2 cos 2

A c f

br er

r r r θ

∂  

= + +  − 

∂  

2

2 2 4

2 2 6 cos 2

A c f

b e

r r r θ

∂  

= − +  + 

∂  

2

2

2

4

2

cos 2

A f

d er

r θ

θ

∂  

= −  + + 

∂  

2

4 4 d cos 2

A b

r θ

∆ = −

3

8 cos 2

A d

r r θ

∂∆ = ∂

2

2 4

24 cos 2

A d

r r θ

∂ ∆ = −

2

2 2

16 cos 2

A d

r θ

∂ ∆ = θ

( A ) 0

∆ ∆ =

( , ) is well bi-harmonic

A r θ

(4)

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 7

, 2 , , ,

,

1 1 1

r r rr r

r

A A A A

r r

θθ θ θ

r

θ

σ σ τ  

= + = = −  

 

2 2

( , ) ln f

2

cos 2

A r br c r d er

θ = + +  + + r  θ

 

σ

σ

x y

r θ M

3

2 2 2 cos 2

A c f

br er

r r r θ

∂  

= + +  − 

∂  

2

2 2 4

2 2 6 cos 2

A c f

b e

r r r θ

∂  

= − +  + 

∂  

2

2

2

4

2

cos 2

A f

d er

r θ

θ

∂  

= −  + + 

∂  

2 2 4

2 2 4 6 cos 2

r

c d f

b e

r r r

σ = + −  + +  θ

 

2 4

2 c 2 6 f cos 2

b e

r r

σ

θ

= − +  +  θ

 

2 4

2 2 6 sin 2

r

d f

e r r

τ

θ

=  − −  θ

 

2

2

2

sin 2

A f

d er

r θ

θ

∂  

− =  + + 

∂  

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 8

Boundary conditions at , ie far from the hole

0 0 0

( , ) 0 0

0 0 0

σ x y σ

 

 

=  

 

 

( , ) r P ( , ) x y

t

P

σ θ = ⋅ σ ⋅ cos sin cos sin 0 0

0 0 1

P

θ θ

θ θ

 

 

= −  

 

 

2

2

sin (1 cos 2 )

2

cos (1 cos 2 )

2

sin cos sin 2 2

r

r θ

θ

σ σ θ σ θ

σ σ θ σ θ

τ σ θ θ σ θ

∞ ∞

∞ ∞

∞ ∞

= = −

= = +

= =

at ∞ r >> a

2 2

2 2

b e

σ σ

 =

  

 =



σ

σ

x y

r θ

M

(5)

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 9

Boundary conditions at r=a

( , ) ( , ) 0

r a a

σ θ τ θ = = ∀ θ

2 4 2 6 4 cos 2

2 2

r

c d f

a a a

σ σ

σ = + − + +  θ

 

2 4

2 6 sin 2

r 2

d f

a a

θ σ

τ = − −  θ

 

2

2 4

2

4

2 4

4 6

2 2

2 et 6 3

2 6

2 2

d f

d a

a a

c a

d f

f a

a a

σ σ

σ

σ σ

∞ ∞

∞ ∞

 + = − = −

 = −   

 + = =



σ

σ

x y

r θ M

2 2 4

2 2 4

2 4

2 4

2 4

2 4

1 1 4 3 cos 2

2 2

1 1 3 cos 2

2 2

1 2 3 sin 2

2

r

r

a a a

r r r

a a

r r

a a

r r

θ

θ

σ σ

σ θ

σ σ

σ θ

τ σ θ

∞ ∞

∞ ∞

   

=  −  −  − + 

   

   

=  +  +  + 

   

 

=  + − 

 

2 2 4

2 2 4 6 cos 2

r

c d f

b e

r r r

σ = + −  + +  θ

 

2 4

2 c 2 6 f cos 2

b e

r r

σ

θθ

= − +  +  θ

 

2 4

2 2 6 sin 2

r

d f

e r r

τ

θ

=  − −  θ

 

2 2

2 2

b e

σ σ

=

=

( , 0) a 3 σ

θ

= σ

3 σ

σ

2

c = − σ 2 a

2

4

2 6 3

2

d a

f a

σ σ

= −

=

(6)

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 11

Airy stress function for few loadings (1)

, , ,

x

A

yy y

A

xx xy

A

xy

σ = σ = σ = −

( , )

2

Beam in traction A x y = ay

( , ) Beam in shear A x y = axy

3

Beam subjected to ( , )

bending moment A x y ay

 

= 

 

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 12

Airy stress function for few loadings (2)

( , )

3

A x y axy bxy

 

= +  

 

2 2 3 2 3 5

( , )

A x y ax bx y cy dx y ey

 

= + + + +  

 

(7)

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 13

Airy stress function for few loadings (3)

Axisymmetric loading 1

, ,

r

A

r

A

rr r

0

r

θ θ

σ = σ = τ =

( , ) ( )

2

A r θ = A r = Cr

( , ) ( ) ln

2

A r θ = A r = a r + cr

2 2

( , ) ( ) ln ln

A r θ = A r = a r + br r + cr

Airy stress function for few loadings (4)

, 2 , , ,

,

1 1 1

r r rr r

r

A A A A

r r

θθ θ θ

r

θ

σ = + σ = τ = −

 

( , ) sin

A r θ = cr θ θ

( , ) sin 2

A r θ = a θ + b θ

( , ) cos

A r θ = cr θ θ

(8)

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 15

Complex formulation of the Airy stress function

- Holomorphic functions (or analytical functions)

z x iy z x iy

= +

RS = −

M(x,y) T

x y

 = +

= −

R S ||

T ||

x z z y z z i 2 2 ( , ) x yPlan  → 

g

g x y ( , ) ( , ) x y  →  ( , ) z z  → 

g

g z z ( , )

( )

( )

, , ,

, , ,

1 The derivation rules are 2

1 2

z x y

z x y

g g ig

g g ig

 = −

 

 = +



g g g

g i g g

x z z

y z z

, , ,

,

(

, ,

)

= +

= −

RS T

P P x y Q Q x y

=

RS =

T ( , ) ( , ) g = + P iQ

is holomorphic if g 0

g ∂ = z

g z g

x i g ' ( ) = ∂ y

∂ = − ∂

∂ E

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 16

* Properties oy analytic functions

g P iQ dg

dz g

x i g

= + = ∂ y

∂ = − ∂ avec

Cauchy conditions

P Q

x y

P Q P Q

i i

P Q

x x y y

y x

∂ ∂

∂ ∂

∂ ∂ ∂ ∂

∂ ∂

∂ ∂ ∂ ∂

∂ ∂

 =

 

+ = − +  

 = −



P = ∆ Q =

E

0

The real or imaginary parts of an analytic function, are harmonic

 ⇐

 

Conversely, if ( , ) and ( , )

is an analytic function verify the Cauchy conditions

P x y Q x y

g P iQ

 = +

- If g is an analytical function, its derivative and its integral are also

(9)

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 17

Examples of analytic functions

e inz , z n and ln z are analytic functions. Their real and imaginary parts that are harmonic, can be determined.

( )

( ) ( )

( ) (cos sin )

The associated harmonic fonctions are cos and sin

inz in x iy ny

inz in x iy in x iy

ny ny

f z e e e nx i nx

df f df f df

ine ine ne i

dz x dz y dz

e nx e nx

+ −

+ +

− −

= = = +

∂ ∂

= = = = − =

∂ ∂

i

Exchanging n by –n, it is seen that e ny cosnx and e ny sinnx are also harmonics. It follows that sinhny sinnx, coshny sinnx, sinhny cosnx and coshny cosnx, obtained by linear combination of the preceding harmonic functions, are also harmonic.

The hyperbolic sine and hyperbolic cosine functions are defined by

sinh cosh

2 2

ny ny ny ny

e e e e

ny ny

− −

− +

= =

1 1 1

( ) ( ) ( ) (cos sin )

( ) ( )

The associated harmonic fonctions are cos and sin

n n ei n n

n n n

n n

f z z x iy r r n i n

df f df f df

nz n x iy in x iy i

dz x dz y dz

r n r n

θ θ θ

θ θ

− − −

= = + = = +

∂ ∂

= = + = = + =

∂ ∂

i

( ) ln ln( ) ln( ) ln

1 1

The associated harmonic fonctions are ln and

f z z x iy re i r i

df f df f i df

dz z x x iy dz y x iy i dz

r

θ θ

θ

= = + = = +

∂ ∂

= = = = =

∂ + ∂ +

i

(10)

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 19

Expressions of the Airy stress function

∆ ∆ Α b g = 0 If P = ∆ A then ∆ = P 0  is harmonic P

( ) is analytic with

P Q

x y

f z P iQ

P Q

y x

∂ ∂

∂ ∂

∂ ∂

∂ ∂

 =

 

= + 

 = −



Calculating the harmonic function ( , ) Q x y

Q Q

dQ dx dy

x y

P P

Q dQ dx dy

y x

∂ ∂

∂ ∂

∂ ∂

∂ ∂

= +

 

= =  − + 

 

 

( ) 1 ( ) is also analytic function 4 4

4

p q

z f z dz p iq P

x y

∂ ∂

ϕ == + ==

1 1 1 1

If p = Α − pxqy then ∆ = p 0  χ ( ) z = p + iq is analytic function

A px qy p

z z z

z z z z z z

= + +  = +

= + + +

R S|

1

T| 1

2 Α Α

Re ϕ χ

ϕ χ ϕ χ

b g b g b g b g b g b g

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 20

Stresses expressions

σ

x

+ i σ

xy

= Α

,yy

i Α

,xy

= − i d Α

,x

+ i Α

,y

i

y

= − i c 2 Α

,z

h

,y

= 2 c Α

,zz

− Α

,zz

h

, , ,

x yy

y xx

xy xy

σ σ σ

= Α

= Α

= −Α

( ) ( ) ( ) ( )

' ' '' ''

x

i

xy

z z z z z

σ σ ϕ ϕ ϕ χ

 + = + − −

g g ig

g g ig

z x y

z x y

, , ,

, , ,

= −

= +

R S|

T|

1 2 1 2

d i

d i g g

x

i g g

z

g g

z

y z z

, , ,

,

(

, ,

)

= +

= −

RS T

( ) ( )

Expression of the stress function from the potential complex ( ) and ( )

1 ( ) ( )

2

z z

z z z z z z

ϕ χ

ϕ χ ϕ χ

 

Α =  + + + 

σ

y

σ

xy xx xy x y

x z x zz zz

i i i

− = Α

,

+ Α

,

= Α

,

+ Α

,

= Α = Α + Α

, , , , ,

d i 2 c h 2 c h

( ) ( ) ( ) ( )

' ' '' ''

y

i

xy

z z z z z

σ σ ϕ ϕ ϕ χ

 − = + + +

σ

y

+ σ

x

= 2 e ϕ ' b g z + ϕ ' d i z j = 4 Re c ϕ ' b g z h

( ) ( )

( )

2 2 '' ''

y x

i

xy

z z z

σ σ − + σ = ϕ + χ

(11)

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 21

Displacements expressions

2 2

2 2

2 2

2 2

µ ε σ λ

λ µ σ σ λ µ

λ µ σ σ σ

µ ε σ λ

λ µ σ σ λ µ

λ µ σ σ σ

x x x y x y y

y y x y x y x

= −

+ + = +

+ + −

= −

+ + = +

+ + −

R S ||

T || b gd i b gd i

b gd i b gd i

= +

+ −

= +

+ −

R S ||

T |

|

2 2

2

2 2

2 µ ε λ µ

λ µ µ ε λ µ λ µ

x xx

y yy

b g

b g

∆ Α Α

∆ Α Α

,

,

∆A P p

x q

= = 4 ∂ = 4 y

( ) ( )

( ) ( )

,

,

2 2 2

2 2 2

x x

y y

u p y

u q x

λ µ

µ α

λ µ λ µ

µ β

λ µ

 = + − Α +

 +

  

 = + − Α +

 +

avec α β

y cy d

x cx d

b g b g = − + = +

RS T

12

( ) 2 ( ) (

, ,

)

2 µ u

x

iu

y

2 λ µ p iq

x

i

y

λ µ

+ = + + − Α + Α

+

g g ig

g g ig

z x y

z x y

, , ,

, , ,

= −

= +

R S|

T|

1 2 1 2

d i

d i Α

,x

+ i Α

,y

= ∂

A

d i 2 z

( ) 2 ( ) 2 ( ) ( ) ( ) ( )

2 u

x

iu

y

2 z 2 2 z z z ' z ' z

z

λ µ ∂ λ µ

µ ϕ ϕ ϕ ϕ χ

λ µ ∂ λ µ

+ Α +

+ = − = − − −

+ +

( ) ( ) ( ) ( )

2 µ U

x

+ iU

y

= κ ϕ zz ϕ ' z − χ ' z

3 3 4 for plane strain with

3 for stress plane 1

λ µ v κ λ µ κ ν

ν

= + = − +

= − +

eθ

x

er

θ θ

y

e x y

e x y

r

= +

= − +

RS T

θ

cos . sin . θ θ sin . cos . θ θ e e

θr

x y

θ θ

θ θ

F HG I KJ = F

HG I

KJ −

F HG I

KJ

P avec P : cos sin sin cos u

u u u

u u

u u

r x

y

x y

x y

θ

θ θ

θ θ

F HG I KJ = F

HG I

KJ = F + +

HG I

KJ

P cos sin

sin cos

u

r

+ iu

θ

= e

iθ

( u

x

+ iu

y

) 2 µ ( u

r

+ iu

θ

) = e

iθ

( κ ϕ ( ) z z ϕ ' ( ) ( ) z χ ' z )

σ σ

h

e eθ

h

x yt

r

P P

,

=

,

    σ σ

θ

r

+ 2 σ σ i σ

rr

+

θ

=

θ

e =

2iθ

σ σ (

x

σ σ +

y

y x

+ 2 i σ

xy

)

( ) ( )

( )

2 2

2i

'' ''

r

i

r

e

θ

z z z

θ θ

σ σ − + σ = ϕ + χ

* System coordinates change

Because we will use of polar coordinates in the solution of many

problems in elasticity, the previous governing equations will now be

developed in this curvilinear system.

(12)

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 23

3 3

Let ( ; , , ) denote the Cartesian coordinates system and ( ; , , ) a coordinate system associated with curvilinear coordinates , .

O x y x M α β x

α β

The complex number is associated with the , coordinates and the complex is associated with the curvilinear coordinates , .

z x iy x y

ζ α i β α β

= +

= +

As ( , ) and ( , ), then we have : ( ) and '( )

x x y y

z f dz f

d

α β α β

ζ ζ

ζ

= =

= =

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 24

We easily show that '( ) | '( ) | , in other words that the argument of the complex number is equal to , the angle between the two coordinate

systems respectively associated with , and , .

f f e

i

x y ζ ζ

θ

θ

α β

=

arg '( ) arg dz arg arg , ,

f dz d u x u

ζ d ζ α θ

= ζ = − = − =

So we have '( ) | f ζ = f '( ) | ζ e

iθ

and '( ) | f ζ = f '( ) | ζ e

iθ

so that '( )

2

'( ) = f

i

f e ζ θ

ζ

( ) and dz '( )

z f f

ζ d ζ

= ζ =

(13)

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 25

Summary of key findings

The resolution of a plane elasticity problem comes down to the search for a stress function, called the Airy function A, which is bi- harmonic, that is to say ∆(∆A)=0.

The expression of this stress function, from the complex potentials ϕ and χ which are analytical functions of the complex variable z, is given by :

The search for the Airy stress function is therefore to find these complex potentials. The components of the stress tensor and the displacement vector are then determined by the following relationships :

( ) ( ) 1 ( ) ( ) ( ) ( )

Re z ϕ z χ z 2 z ϕ z χ z z ϕ z χ z

Α =  +  =  + + + 

In a Cartesian coordinates system (x,y)

In a curvilinear coordinates system associated to varaibles ( α,β )

3 4 for plane strain with 3

for stress plane 1

κ v κ ν ν

= −

= −

+

Références

Documents relatifs

Recalling the impossibility of doubting his existence and looking back to his “sum”-intuition, the Cartesian

F rom the beginning of medical school, I had heard many travel horror stories: the resident who had to deliver a baby at 10 000 feet; the physician who had to manage a

BD-LETTER.LISP The book design specifications for the Letter Generic, Letter Screen, and Letter LGP2 document device types.. Various com- mands and environments used only by the

When the SNMP agent receives a PDU containing an SNMP GET request for a variable that a sub-agent registered with the agent, it passes an SNMP DPI GET packet to the

These criteria assume that an organization which meets this profile will continue to grow and that assigning a Class B network number to them will permit network growth

The IR or the registry to whom the IR has delegated the registration function will determine the number of Class C network numbers to assign to a network subscriber based on

Categorizing errors helps both Call Agent and gateway developers: it helps gateway developers choose an appropriate return code when a specific one for the situation is

If the value in the document is more than one higher than the local version number, the local version number is set to the value in the new document, the document is