• Aucun résultat trouvé

Quantitative determination and validation of 17 cannabinoids in cannabis and hemp using liquid chromatography-tandem mass spectrometry

N/A
N/A
Protected

Academic year: 2021

Partager "Quantitative determination and validation of 17 cannabinoids in cannabis and hemp using liquid chromatography-tandem mass spectrometry"

Copied!
12
0
0

Texte intégral

(1)

1

Analytical and Bioanalytical Chemistry

Electronic Supplementary Material

Quantitative determination and validation of 17 cannabinoids in cannabis and

hemp using liquid chromatography−mass spectrometry

(2)

2

Table of Contents

List of Tables

Table S1

Calibration standard and QC sample concentrations

Table S2

Chromatographic peak resolution

List of Figures

Figure S1

Δ9-THC linear regression

Figure S2

Δ9-THCA linear regression

Figure S3

CBD linear regression

Figure S4

CBDA linear regression

Figure S5

CBG linear regression

Figure S6

CBGA linear regression

Figure S7

CBN linear regression

Figure S8

CBNA linear regression

Figure S9

CBC linear regression

Figure S10

CBCA linear regression

Figure S11

THCV linear regression

Figure S12

THCVA linear regression

Figure S13

CBDV linear regression

Figure S14

CBDVA linear regression

Figure S15

CBL linear regression

Figure S16

CBLA linear regression

Figure S17

Δ8-THC linear regression

(3)

3

Table S1 Calibration standard and QC sample concentrations (prepared in methanol, concentrations

for each of 17 cannabinoids for each standard level)

Standard / QC Sample

ID

Cannabinoid Concentration

(ng/mL)

STD-10

10 000

STD-9

9 000

STD-8

6 000

STD-7

2 000

STD-6

1 000

STD-5

400

STD-4

100

STD-3

40

STD-2

20

STD-1

10

STD-0

0

QC-3

8 000

QC-2

1 500

QC-1

30

QC-LLOQ

10

Table S2 Chromatographic peak resolution of key cannabinoids within 2 m/z of each other

Cannabinoid-1

Cannabinoid-2

Δ m/z

Resolution

CBDV

THCV

0

5.8

CBD

Δ9-THC

0

7.2

Δ9-THC

Δ8-THC

0

1.9

Δ8-THC

CBC

0

1.9

CBC

CBL

0

2.4

CBD

CBG

2

4.7

CBG

Δ9-THC

2

2.1

CBDVA

THCVA

0

7.4

CBDA

Δ9-THCA

0

8.5

Δ9-THCA

CBCA

0

3.6

CBCA

CBLA

0

2.1

CBDA

CBGA

2

9.5

Δ9-THCA

CBGA

2

1.0

(4)

4

Fig. S1 Δ9-THC Linear regression, weighted 1/x

2

(duplicate injection of a calibration curve,

beginning and end of batch)

Fig. S2 Δ9-THCA Linear regression, weighted 1/x

2

(duplicate injection of a calibration curve,

beginning and end of batch)

THC-1 Y = -0.00133272+0.00233073*X R^2 = 0.9982 W: 1/X^2 0 2000 4000 6000 8000 10000 ng/mL 0 5 10 15 20 25 A re a R a tio THCA-1 Y = -0.00352983+0.00467283*X R^2 = 0.9986 W: 1/X^2 0 2000 4000 6000 8000 10000 ng/mL 0 5 10 15 20 25 30 35 40 45 50 A re a R a tio

(5)

5

Fig. S3 CBD Linear regression, weighted 1/x

2

(duplicate injection of a calibration curve,

beginning and end of batch)

Fig. S4 CBDA Linear regression, weighted 1/x

2

(duplicate injection of a calibration curve,

beginning and end of batch)

CBD-1 Y = -0.00179668+0.00237553*X R^2 = 0.9990 W: 1/X^2 0 2000 4000 6000 8000 10000 ng/mL 0 5 10 15 20 25 A re a R a tio CBDA-1 Y = -0.00492675+0.00797955*X R^2 = 0.9989 W: 1/X^2 0 2000 4000 6000 8000 10000 ng/mL 0 10 20 30 40 50 60 70 80 A re a R a tio

(6)

6

Fig. S5 CBG Linear regression, weighted 1/x

2

(duplicate injection of a calibration curve,

beginning and end of batch)

Fig. S6 CBGA Linear regression, weighted 1/x

2

(duplicate injection of a calibration curve,

beginning and end of batch)

CBG-1 Y = -0.00704226+0.00600656*X R^2 = 0.9989 W: 1/X^2 0 2000 4000 6000 8000 10000 ng/mL 0 10 20 30 40 50 60 A re a R a tio CBGA-1 Y = -0.0198632+0.016551*X R^2 = 0.9986 W: 1/X^2 0 2000 4000 6000 8000 10000 ng/mL 0 20 40 60 80 100 120 140 160 180 A re a R at io

(7)

7

Fig. S7 CBN Linear regression, weighted 1/x

2

(duplicate injection of a calibration curve,

beginning and end of batch)

Fig. S8 CBNA Linear regression, weighted 1/x

2

(duplicate injection of a calibration curve,

beginning and end of batch)

CBN-1 Y = -0.00214749+0.00254246*X R^2 = 0.9991 W: 1/X^2 0 2000 4000 6000 8000 10000 ng/mL 0 5 10 15 20 25 A re a R a tio CBNA-1 Y = -0.000645604+0.000788326*X R^2 = 0.9985 W: 1/X^2 0 2000 4000 6000 8000 10000 ng/mL 0 1 2 3 4 5 6 7 8 A re a R at io

(8)

8

Fig. S9 CBC Linear regression, weighted 1/x

2

(duplicate injection of a calibration curve,

beginning and end of batch)

Fig. S10 CBCA Linear regression, weighted 1/x

2

(duplicate injection of a calibration curve,

beginning and end of batch)

CBC-1 Y = -0.00120058+0.000652256*X R^2 = 0.9985 W: 1/X^2 0 2000 4000 6000 8000 10000 ng/mL 0 1 2 3 4 5 6 7 A re a R a tio CBCA-1 Y = -9.82385e-005+0.000505312*X R^2 = 0.9975 W: 1/X^2 0 2000 4000 6000 8000 10000 ng/mL 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 A re a R a tio

(9)

9

Fig. S11 THCV Linear regression, weighted 1/x

2

(duplicate injection of a calibration curve,

beginning and end of batch)

Fig. S12 THCVA Linear regression, weighted 1/x

2

(duplicate injection of a calibration curve,

beginning and end of batch)

THCV-1 Y = -0.00191128+0.00243802*X R^2 = 0.9990 W: 1/X^2 0 2000 4000 6000 8000 10000 ng/mL 0 5 10 15 20 25 A re a R a tio THCVA-1 Y = -0.00412588+0.00483084*X R^2 = 0.9981 W: 1/X^2 0 2000 4000 6000 8000 10000 ng/mL 0 5 10 15 20 25 30 35 40 45 50 A re a R a tio

(10)

10

Fig. S13 CBDV Linear regression, weighted 1/x

2

(duplicate injection of a calibration curve,

beginning and end of batch)

Fig. S14 CBDVA Linear regression, weighted 1/x

2

(duplicate injection of a calibration curve,

beginning and end of batch)

CBDV-1 Y = -0.00196683+0.00249242*X R^2 = 0.9991 W: 1/X^2 0 2000 4000 6000 8000 10000 ng/mL 0 5 10 15 20 25 A re a R a tio CBDVA-1 Y = -0.00962057+0.00918429*X R^2 = 0.9988 W: 1/X^2 0 2000 4000 6000 8000 10000 ng/mL 0 10 20 30 40 50 60 70 80 90 100 A re a R a tio

(11)

11

Fig. S15 CBL Linear regression, weighted 1/x

2

(duplicate injection of a calibration curve,

beginning and end of batch)

Fig. S16 CBLA Linear regression, weighted 1/x

2

(duplicate injection of a calibration curve,

beginning and end of batch)

CBL-1 Y = -0.00734437+0.00873114*X R^2 = 0.9990 W: 1/X^2 0 2000 4000 6000 8000 10000 ng/mL 0 10 20 30 40 50 60 70 80 90 A re a R a tio CBLA-1 Y = -0.000491829+0.000467184*X R^2 = 0.9958 W: 1/X^2 0 2000 4000 6000 8000 10000 ng/mL 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 A re a R a tio

(12)

12

Fig. S17 Δ8-THC Linear regression, weighted 1/x

2

(duplicate injection of a calibration curve,

beginning and end of batch)

d8-THC-1 Y = -0.00178739+0.00196621*X R^2 = 0.9987 W: 1/X^2 0 2000 4000 6000 8000 10000 ng/mL 0 2 4 6 8 10 12 14 16 18 20 A re a R a tio

Figure

Table S2 Chromatographic peak resolution of key cannabinoids within 2 m/z of each other  Cannabinoid-1  Cannabinoid-2  Δ m/z   Resolution
Fig.  S2  Δ9-THCA  Linear  regression,  weighted  1/x 2  (duplicate  injection  of  a  calibration  curve,  beginning and end of batch)
Fig.  S4  CBDA  Linear  regression,  weighted  1/x 2  (duplicate  injection  of  a  calibration  curve,  beginning and end of batch)
Fig.  S6  CBGA  Linear  regression,  weighted  1/x 2  (duplicate  injection  of  a  calibration  curve,  beginning and end of batch)
+6

Références

Documents relatifs

Doing a linear regression on polynomial transformations of variables is like doing a polynomial regression.. Of course other bases (transformations) exist like regression on

Problème non-linéaire : régression polynomiale, spline, à noyau L’hypothèse que les observations Y i s’explique comme une combinaison des variables explicatives X i,j peut

Finally, instead of imposing Assumption 2’, one may …rst test for which coe¢ cients the hypothesis of constant e¤ect is rejected or not in typical quantile regression estimation, so

Chernozhukov V, Hansen C (2006) Instrumental Quantile Regression Inference for Structural and Treatment Effect Models.. Chernozhukov V, Hansen C (2008a) Instrumental Variable Quantile

The original data are n = 506 observations on p = 14 variables, medv median value, being the target variable. crim per capita crime rate

• Etape k , on ajoute au Mod`ele M k le r´egresseur qui augmente le plus le R 2 global parmi les r´egresseurs significatifs.. • On it`ere jusqu’`a ce qu’aucun r´egresseur

The objective of this lecture is to realize some linear regressions and the associated confidence intervals and tests1. 1

Objectives: Realize some linear regressions and the associated confidence intervals and tests.. 1