• Aucun résultat trouvé

DIRECT OBSERVATION OF THE TRANSITION STATE OF A PHOTOCHEMICAL REACTION ; THE Hg3 P1, Cl2 SYSTEM

N/A
N/A
Protected

Academic year: 2021

Partager "DIRECT OBSERVATION OF THE TRANSITION STATE OF A PHOTOCHEMICAL REACTION ; THE Hg3 P1, Cl2 SYSTEM"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00224508

https://hal.archives-ouvertes.fr/jpa-00224508

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DIRECT OBSERVATION OF THE TRANSITION STATE OF A PHOTOCHEMICAL REACTION ; THE

Hg3 P1, Cl2 SYSTEM

C. Jouvet, B. Soep

To cite this version:

C. Jouvet, B. Soep. DIRECT OBSERVATION OF THE TRANSITION STATE OF A PHOTO-

CHEMICAL REACTION ; THE Hg3 P1, Cl2 SYSTEM. Journal de Physique Colloques, 1985, 46

(C1), pp.C1-313-C1-318. �10.1051/jphyscol:1985131�. �jpa-00224508�

(2)

JOURNAL DE PHYSIQUE

Colloque C i , supplément au n ° l , Tome 46, janvier 1985 page Cl-313

DIRECT OBSERVATION OF THE TRANSITION STATE OF A PHOTOCHEMICAL REACTION ; THE Hg

3

Pi> Cl2 SYSTEM

C. Jouvet and B. Soep

Laboratoire de Photophysique Moléculaire du CNRS, Bâtiment 213, Université Paris-Sud, 91405 Orsay Cedex, France

Résumé - Nous avons développé une méthode originale qui permet l'observa- tion du complexe collisionnel dans une réaction photochimique, ce complexe conduisant à l'état de transition. Ici, les réactifs Hg, Clp ont été condensés dans un complexe de van der Waals (Hg Clg) puis portés par une excitation optique à 250 nm sur la surface réactive. Le spectre du complexe, extrêmement étendu, est attribuable à l'intermédiaire de réaction Hg Cl^-

Abstract - A novel method designed to observe the collision complex of a photochemical reaction is reported here. The reactants Hg, CI2 are frozen in a van der Waals complex (Hg—CI2), and then promoted by an optical exci- tation (250 nm) to the reactive state. The broad complex action spectrum, presumably due to the Hg

+

-ClZ intermediate, is monitored through the HgCl ( B E ) fluorescence. 2 +

The main difficulty in describing a chemical reaction Lies in the discontinuity which arises at a given point between the reactants and the products. This discon- tinuity has been described as the transition state by Eyring andPolanyi (1). Since the early efforts (2) to observe directly such a state, key to the reaction, not many experiments have been conducted until recently (3) However such experiments are difficult as, during the short time of the reactive collision, the transition state is passed over rapidly with a considerable averaging over the impact parameter, and the internal states of the collision complex.

We describe herein a method leading directly to observation of the collision complex in photochemical reactions, the photochemistry of van der Waals complexes. Here the reactants are first frozen in the non reactive ground state of a van der Waals complex produced in a supersonic expansion, then a light puLse promotes this complex on the reactive potential surface. The immediate advantage of this method lies in its sensitivity : the number of observed species is directly proportional to the high number of van der Waals complexes suitably formed in the ground state.

Moreover the optical excitation promotes selectively the cooled complex on a limited part of the reactive potential surface with fixed geometry and impact parameter, this surface being subsequently explored by the Light pulse tuning, within the optical absorption limits.

Finally this method shouLd allow a time dependent observation. We selected as a demonstrative example the Hg, CLj system weakly reactive in the ground Hg(6

1

Sg) state, owing to a = 0,2 eV barrier, and undergoing a chemiluminescent reaction in the ('p) Hg states. The reactions Hg + halogens have been extensively studied (4,9) and as proposed the Hg(^Pg -| 2^ reaction mechanism involves CI2 harpooning through an electron jump, we suggest here the following reactions :

Hg Cl

2

+ h v (253 nm) ->. Hg

+

Cl

2

~ Hg

+

Cl

2

" -*- HgCL (B

2

£

+

) + CI (

2

P-|

/2 3 / 2 )

HgCl (B 2

+

) ->• h v (500 nm) + HgCl (XS

+

)

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1985131

(3)

J ~ U R N A L DE PHYSIQUE

F i g u r e 1 - a - A c t i o n spectrum o f t h e Hg---CL 2 . complex i n t h e 250 nm r e g i o n w i t h on t h e same s c a l e t h e Hg-Kr f l u o r e s c e n c e e x c ~ t a t i o n spectrum

b - Hg---Kr f l u o r e s c e n c e e x c i t a t i o n spectrum (enlarged)

c - Hg---N2 f l u o r e s c e n c e e x c i t a t i o n spectrum. The arrow i n d i c a t e s

t h e onset o f Hg 3 ~ , + N2 d i r e c t d i s s o c i a t i o n . The s t r e t c h i n g v i b r a t i o n

i n t h e p a r a l l e l s t a t e a r e Labeled.

(4)

Thus the t r a n s i t i o n s t a t e H ~ + - - - c L ~ . w i l l be d i r e c t l y e v i d e n ~ e d - through i t s f l u o - rescence a c t i o n spectrum, i.e t h e emission o f HgCL

B ~ c + .

EXPERIMENTAL

The supersonic j e t apparatus i s t h e same as p r e v i o u s l y d e s c r i b e d except f o r t h e pumping speed which has been increased t o 2000 m3/h (5). We a r e working w i t h a 200pm n o z z l e and a backing p r e s s u r e o f 20 bar. The chamber i s m a i n t a i n e d a t a pressure Less than 1 t o r r . The c o o l i n g e f f i c i e n c y was t e s t e d w i t h benzene f o r which we measured a r o t a t i o n a l temperature o f I0K.

As Hg and CL2.react a t h i g h temperature, we were o b l i g e d t o b u i l d a double e n t r y n o z z l e t o m i n ~ m i z e t h e i n t e r a c t i o n t i m e between t h e two compounds a t t h e tempera- t u r e o f 1 0 0 " ~ used t o v a p o r i s e the mercury. So t h e Hg seeded i n He

( =

5 x 10-5 Hg/He) i s mixed w i t h C12 d i l u t e d i n He (10-2 Ct2/He) a t 1 mm upstream t h e nozzle.

When C L 2 was added i t s molar f r a c t i o n was Less t h a n 0,5

%.

W e v e r i f i e d t h e e f f e c t i v e n e s s o f t h i s s m a l l t r a n s i t t i m e system, m o n i t o r i n g t h e mercury s i g n a l i n presence o f c h l o r i n e b u t i n a pressure domain o u t s i d e van der Waals complexes f o r m a t i o n (P

<

2 b a r ) . The j e t i s crossed a t 5 t o 7 nm downstream by t h e beam o f a

YAG

( ~ u a n t e ? ) pumped dye l a s e r (home made), frequency doubled by means o f an angle tuned l i t h i u m formate c r y s t a l . The f l u o r e s c e n c e l i g h t i s c o l l e c - t e d on a p h o t o m u l t i p l i e r (RCA 8850) through f i l t e r s which a l l o w o n l y t h e X

>

500 nm l i g h t t o be detected, o r

i t

i s d i s p e r s e d by a -75 m J o b i n Yvon monochromator.

RESULTS AND DISCUSSION

We have observed i n t h e 250 nm (40 000 cm-I) s p e c t r a l r e g i o n a f l u o r e s c e n c e a c t i o n spectrum d i s p l a y e d i n f i g . l a t h a t we a s c r i b e t o t h e Hg---CL2 complex.

1 ) The a c t i o n spectrum i s c h a r a c t e r i s t i c o f t h e cooled j e t zone : t h e f l u o r e s - cence s i g n a l disappears when t h e e x c i t i n g l i g h t p u l s e p r o b l e s a " h o t " domain.

2) This spectrum i s due t o a mixed Hg, CL2 van der Waals complex, i t s i n t e n s i t y i n c r e a s i n g r a p i d l y w i t h t h e backing pressure Po, t h e r e l a t i v e o r a b s o l u t e concen- t r a t i o n s o f mercury and c h l o r i n e . However some s t a b l e HgCL2 i s formed i n t h e ground s t a t e b e f o r e t h e expansion. But t h e UV f l u o r e s c e n c e emission o f HgCL2 e x c i t e d around 250 nm i s v e r y weak and

i t

cannot e n e r g e t i c a l l y y i e l d f l u o r e s c e n t HgCL ( f i g . 2).

I l l "

I

detected, hv i

I I

Fig. 2 - P a r t i a l p o t e n t i a l energy diagram w i t h entrance and e x i t channels i n d i c a t e d

(5)

CI-316 JOURNAL DE PHYSIQUE

3) When e x c i t i n g t h e complex a t t h e maximum o f t h e a b s o r p t i o n spectrum, t h e r e s u l t i n 9 d i s p e r s e d emission can be c l e a r l y i d e n t i f i e d i n Fig. 3 as t h e HgCL

B ~ E + -t

X c'.

Fig. 3 - Emission s p e c t r a o f HgCl (B-XI. From t o p t o bottom : - emission spectrum o f Hg 3 ~ 1 + C L Z r e a c t i n g i n t h e r m a l c o l l i s i o n c o n d i t i o n s . A s t e r i s k s denote mercury emission l i n e s . - emission spectrum r e s u l t i n from t h e e x c i t a t i o n o f t h e complex a t t h e maximum (39600 cm-I) o f t h e HCJ---CLZ, a c t i o n spectrum. - emission

spectrum reproduced from Setser e t a1 r e f (8) r e s u l t i n g from t h e c o l l i s i o n s o f H ~ + ~

C C L 4

P thermal col1ision.A i n d i c a t e s Laser s c a t t e r e d L i g h t . ~

The a c t i o n spectrum . l a i s very broad(1000cm-~) and d i f f u s e even w i t h a 0,l cm-I l a s e r r e s o l u t i o n and a s i g n a l t o n o i s r a t i o o f 20. The s p e c t r a l e x c i t a t i o n domain over- l a p s t h e Hg t r a n s i t i o n s ( I s o

+

'PI) and ( t ~ o

+

3 ~ 0 , forbidden), s t o p p i n g a b r u p t l y + 200 cm-I above t h e resonance Line.

We can show, comparing w i t h t h e f l u o r e s c e n c e e x c i t a t i o n s p e c t r a o f o t h e r mercury van der Waals complexes, t h a t t h e a c t i o n spectrum i s i n t r i n s i c a l l y d i f f u s e and does n o t correspond t o an upper van d e r Waals s t a t e . The k r y p t o n mercury van der Waals complex e x c i t a t i o n spectrum i s shown i n f i g . I b t o g e t h e r w i t h t h e n i t r o g e n

complex ( f i g . I c ) . The s p e c t r a appear as almost l i n e l i k e and e x h i b i t two d i s t i n c lobes corresponding, i n t h e k r y p t o n -Hg spectrum t o t h e 3 T I + 1 ~ ( r e d - s h i f t e d ) 3~

+ C

1

( b l u e s h i f t e d ) t r a n s i t i o n s . I n b o t h cases t h e spectrum i s r e s t r i c t e d t o a few hundred wavenumbers as compared t o Hg---CL2 which extends over 2000 cm-1. From t h e v i b r a t i o n a l a n a l y s i s (7) o f t h e HgN HgKr s p e c t r a t h e b i n d i n g energy o f t h e complexes ranges between 100 cm-I ag: 300 cm-I i n t h e e x c i t e d s t a t e s . Thus t h e i n c r e a s e d p o l a r i z a b i l i t y o f c h l o r i n e ( t w i c e k r y p t o n ' s ) cannot account f o r t h e e x t e n s i o n o f t h e HgCL2 spectrum and t h e u p p e r s t a t e bonding energy o f t h e complex.

Moreover t h e observed d i f f u s e n e s s cannot be a s c r i b e d t o sequence congestion owing

t o t h e Low temperatures achieved i n the supersonic expansion. The HgN2 spectrum i s

o f course more complex than t h e d i a t o m i c spectrum o f HgKr, b u t c l e a r p r o g r e s s i o n s

can be i d e n t i f i e d Leading a t t h e b l u e edge t o a quasi-continuum. T h i s continuum i n

(6)

the HgN2 spectrum corresponds t o t h e d i r c t e x c i t a t i o n o f t h e r e p u l s i v e curve o f t h e vdw e x c i t e d p o t e n t i a l Leading t o Hg fP1 + N2. We v e r i f i e d (7) this, m o n i t o r i n g t h e H ~ atoms w i t h a probe Laser on t h e Hg 7's1 ~ P ~

+

6 3 ~ 1 t r a n s i t i o n . We repeated t h e experiment over t h e e n t i r e Hg--CL2 a c t i o n spectrum, p r o b i n g t h e 3 ~ 1 Hg atoms w i t h o u t d e t e c t i n g any 3 ~ 1 s i g n a l . Thus t h e continuous c h a r a c t e r o f the HgCL2 a c t i o n spectrum does n o t o r i g i n a t e f r o m u n r e s o l v e d v i b r a t i o n a l s t r u c t u r e n o r from d i s s o c i a - t i o n t o C L 2 + Hg 3 ~ 1 . We must consider t h a t t h e a c t i o n spectrum i s i n t r i n s i c a l l y d i f f u s e due t o t h e r a p ~ d r e a c t i o n Hg---CL2, ( 3 ~ 1 )

-t

HgCL (B) + C L .

Such a deep Hg--CL * upper s t a t e must correspond t o a mixed s t a t e r e s u l t i n g

f

rom t h e s t r o n g i n t e r a c f i o n o f t h e L o c a l l y e x c i t e d van der Waals w i t h t h e n e i g h b o u r i n g s t a t e s . The most L i k e l y candidate i s t h e ~ g + , C L - charge t r a n s f e r s t a t e as i t cros- ses the vdw curve a t a d i s t a n c e near t h e ground s t a t e e q u i l i b r i u m geometry. The presence o f t h e charge t r a n s f e r s t a t e has a l s o been accounted f o r i n t h e Laser a s s i s t e d r e a c t i o n Xe + C L 2 (10).

The very r a p i d r e a c t i o n i n d i c a t e s t h a t one scans o p t i c a l l y a downward valley, the t r a n s i t i o n s t a t e beeing e n t i r e l y r e p u l s i v e as i n t h e e l e c t r o n jump mechanism.

We then probed t h e i n t e r n a l energy d i s t r i b u t i o n o f t h e products HgCl ~ ~ i s s u e d 2 ' from t h e r e a c t i o n whose emission spectrum i s v e r y s e n s i t i v e t o i n t e r n a t s t a t e popu- l a t i o n (8) . We observed t h a t the emission spectrum HgCl B-X o b t a i n e d from e x c i t a - t i o n a t the maximum o f the complex a c t i o n spectrum ( f i g . 3 m i d d l e t r a c e ) i s s i m i l a r t o . t h e one o b t a i n e d by t h e thermal r e a c t i o n Hg 3 ~ 1 + C L 2 ( f i g . 3 top). Furthermore these emission s p e c t r a a r e c l o s e l y matched by t h e spectrum o b t a i n e d w i t h t h e reac- t i o n Hg 3 ~ 2 +

C C L 4

( f i g . 3 bottom) whose excess energy i s i d e n t i c a l (0,8 eV).

Thus, t h e s i m i l a r energy d i s t r i b u t i o n i n t h e HgCL fragment f o r t h e complex r e a c t i o n and t h e thermal H ~ + ~ C L 2 P and ~

H ~ + C C L ~

i n d i c a t e s t h a t t h e r e a c t i o n pathways depend more an the excess energy I n the r e a c t a n t s than on t h e r e a c t i o n geometry. The HgCl B-X emission spectrum should then be an i n t e r e s t i n g probe o f t h e r e a c t i v e surface u t t e r l y s e n s i t i v e t o excess energy, i n t h e ( H ~ - - - c L ~ ) * complex.

I n c o n c l u s i o n t h i s van der Waals complex r e a c t i o n has enabled t h e d i r e c t probe of t h e Hg--C12, C3p1) r e a c t i o n s u r f a c e r e v e a l i n g t h e

H ~ + , C i -

i n t e r m e d i a t e . We a r e c u r r e n t l y i n v e s t i g a t i n g o t h e r systems such as Hg---H

(

PI) where we expect t o observe a s t r u c t u r e d i n t e r m e d i a t e spectrum owing t o f i e much s m a l l e r r e a c t i o n cross s e c t i o n ( 8 ~ 2 ) o f t h e Hg 3 ~ 1 + H

+

HgH r e a c t i o n . D e t a i l e d s p e c t r o s c o p i c informa- t i o n should Lead t o a p r e c i s e an5 d i r e c t knowledge o f t h e r e a c t i v e p o t e n t i a l surface.

REFERENCES

1 - EYRING

?4.

and POLANYI M., J. Phys. Chem. Abt B, 12 (1951) 279 2 - POLANYI q . , 2. Phys. 3 (1920) 31

3

2

FOTH M.J., H.H. TELLE and POLANYI J.C., J. Phys. Chem. 86 (1982) 5027 WILCOMB B.E. and BURN HAM, J. Chem. Phys. 76 (1981) 6 7 8 4

MAGUIRE T.C., BROUKS P.R. and CURL J r

R.F.,

Phys. Rev. L e t t . 50 (1983) 1918 and accompanying paper

4 - ROXLO C.B., Master Thesis MIT (1979)

DREILING T.D., Ph.

D.

Thesis Kansas U n i v e r s i t y (1982) and r e f e r e n c e s t h e r e i n MAYER T.M., MUCKERMAN J.T., WILCOMB B.E., BERNSTEIN R.B., J. Chem. Phys. 67,

(1977) 352.2

KRAUSE H.F., JOHNSON

S . G . ,

DATZ

S.

and SCHMIDT-BLEEK F.K., Chem. Phys. L e t t . 31 (1975) 577

-

5 - SOEP B., TRAMER A., Chem. Phys. L e t t . - 64 (1979) 485 JOUVET

C.,

These Orsay 1981

6 - TANG K.Y., HUNTER R.0, OLDENETTEL J r and J., HUESTIS D.L., J. Chem. Phys.

70 (1979) 1492

-

(7)

(21-318 JOURNAL DE PHYSIQUE

7 - JOUVET C. and SOEP

B.,

t o be p u b l i s h e d

8 - DREILING

T.D.

and SETSER D.W., J. Chem. Phys. - 79 (1983) 5423 9 - WEINER J., J. Chem. Phys. 72 (1980) 5731

10 - KU J.K., INOUE G. and SETSER

D.W., J .

Chem. Phys. 87 (1983) 2989

Références

Documents relatifs

1.1 Solubilité des hydrates du ciment en fonction de la température 1.2 Influence des alcalins sur la sorption des sulfates sur les CSH.. Multon, “Chemical modelling of

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Given the nearly total absence of empirical data about bird mortality as a result of roadside maintenance operations, we chose a modelling approach to estimate incidental

However, our results show that the profits of airlines can be higher if they invest in more efficient aircraft: eventhough the activity would increase, the emissions are lower

Abstract Weighted labelled transition systems (WLTSs) are an estab- lished (meta-)model aiming to provide general results and tools for a wide range of systems such

As for the variational methods, the differential method call on a family of trial functions that supposedly mimic the ground-state and that allow for the construction of a function

Therefore, objective of this study was to investigate whether the number of reported vertigo attacks was equiva- lent between two reporting strategies: (1) event sampling using

Nevertheless, satellite communications provide a more cost-effective solution with respect to other terrestrial technolo- gies [22] and have the potential to play an important role