• Aucun résultat trouvé

Neural correlates of rhythmic rocking in prefrontal seizures

N/A
N/A
Protected

Academic year: 2021

Partager "Neural correlates of rhythmic rocking in prefrontal seizures"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: hal-02937170

https://hal.archives-ouvertes.fr/hal-02937170

Submitted on 12 Sep 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

seizures

Arnaud Zalta, Jen-Cheng Hou, Monique Thonnat, Fabrice Bartolomei,

Benjamin Morillon, Aileen Mcgonigal

To cite this version:

Arnaud Zalta, Jen-Cheng Hou, Monique Thonnat, Fabrice Bartolomei, Benjamin Morillon, et al..

Neural correlates of rhythmic rocking in prefrontal seizures. Neurophysiologie Clinique/Clinical

Neu-rophysiology, Elsevier Masson, 2020, �10.1016/j.neucli.2020.07.003�. �hal-02937170�

(2)

Disponibleenlignesur

ScienceDirect

www.sciencedirect.com

ORIGINAL

ARTICLE

Neural

correlates

of

rhythmic

rocking

in

prefrontal

seizures

Arnaud

Zalta

a,b

,

Jen-Cheng

Hou

c

,

Monique

Thonnat

c

,

Fabrice

Bartolomei

a,d

,

Benjamin

Morillon

a,1

,

Aileen

McGonigal

a,d,1,∗

aAixMarseilleUniversity,Inserm,INS,InstitutdeNeurosciencesdesSystèmes,Marseille,France

bAPHM,INSERM,InstNeurosciSyst,ServicedePharmacologieCliniqueetPharmacovigilance,AixMarseille University,13005Marseille,France

cINRIASophieAntipolis-Méditerranée,UniversitéNiceCôted’Azur,06902Valbonne,France dAP-HM,HôpitaldelaTimone,ServicedeNeurophysiologieClinique,13005Marseille,France

Received5June2020;accepted21July2020

KEYWORDS Seizure; Semiology; Oscillations; Rocking; Phaseamplitude coupling; Delta; gamma Abstract

Objectives.—Rhythmicbody rocking movementsmay occur inprefrontalepileptic seizures. Here,wecomparequantifiedtime-evolvingfrequencyofstereotypedrockingwithsignal anal-ysisofintracerebralelectroencephalographicdata.

Methods.—Inasinglepatient,prefrontalseizureswithrhythmicanteroposteriorbodyrocking recordedonstereoelectroencephalography(SEEG)wereanalyzedusingfastFouriertransform, time-frequencydecompositionandphaseamplitudecoupling,withregardstoquantifiedvideo data.Comparisonwasmadewithseizureswithoutrockinginthesamepatient,aswellasresting statedata.

Results.—Rockingmovementsinthedelta(∼1Hz)rangebeganafewsecondsafterSEEGonset oflowvoltagefastdischarge.Duringrockingmovements:(1)presenceofapeakofdeltaband activitywas visibleinbipolarmontage,withmaximalpower inepileptogenic zoneand cor-respondingtomeanrockingfrequency;(2)correlation, usingphaseamplitudecoupling,was shown betweenthephaseofthisdeltaactivityandhigh-gammapower intheepileptogenic zoneandtheanteriorcingulateregion.

Conclusions.—Here,deltarangerhythmicbodyrockingwasassociatedwithcorticaldelta oscil-latoryactivityandphase-coupledhigh-gammaenergy.Theseresultssuggestaneuralsignature during expressionofmotor semiology incorporatingbothtemporal featuresassociated with rhythmicmovementsandspatialfeaturesofseizuredischarge.

©2020ElsevierMassonSAS.Allrightsreserved.

Correspondingauthorat:ServicedeNeurophysiologieClinique,CHUTimone,AP-HM,Marseille,France.

E-mailaddress:aileen.mcgonigal@univ-amu.fr(A.McGonigal). 1 Theseauthorscontributedequallytothiswork.

https://doi.org/10.1016/j.neucli.2020.07.003

(3)

ARTICLE IN PRESS

2 A.Zaltaetal.

Introduction

Complex rhythmic movements seen in some epileptic seizuresinvolveautomatic motorbehaviorssuchas chew-ing or pedaling movements [26]. Such behaviors may be associated not only with epileptic seizures but also with sleepdisorders[15] or other neurologicalconditions[10], and have been conceptualized as being associated with centralpatterngenerators[26]likelyinvolvingsubcortical circuitry[3,18].Whenoccurringinthecontextofaseizure, these more complex patternsare generally not concomi-tantwithafocalseizuredischargeconfinedtoasinglebrain regionbutratheremergewhenseveralconnectedstructures withinassociativecortexareinvolvedbyearlypropagation of seizure discharge [2,5,8,18]. Not only anatomical con-straintsbutalsothetemporalcharacteristicsoftheseizure discharge(e.g.rhythmicity,frequency,time-lag,coherence betweenstructures)influenceclinicalexpression[5,8,18].

Body rockingoccurs fairlyrarely in prefrontal seizures

[6,14,24]andisobservedinvariousotherphysiologicaland pathologicalcontexts including autisticspectrum disorder (ASD) [16]. However, neural correlates of rhythmic body rockinginhumansareunknown.

We previously reported video quantification of antero-posteriorrhythmicrocking[12]asastereotypedexpression offrontalseizuresemiology[6,12,19].Here,weinvestigate neuralcorrelatesduringtheperiodofrocking,inapatient recordedonSEEG.Wewishedtoevaluatewhetherrhythmic neuralactivitycouldbeevidencedinrelationtothe rhyth-micbodymovements,andtodescribethetemporo-spatial relationbetweenseizure-andbodyrocking-basedactivities.

Methods

Clinicalcase

A 32-year-old right-handed woman presented pharma-coresistant frontal lobe epilepsy from the age of 18 years. Seizures consisted of abrupt onset of stereotyped hyperkinetic motor behavior characterized by rhythmic antero-posteriortruncalrockingmovements,duringwhich the patient was unresponsive. Neuroimaging wasnormal. Followingnon-invasivepresurgicalinvestigations,SEEGwas performed,duringwhichhabitualseizureswithrockingwere recorded.Thepatientalsopresentedsomeseizureswithout bodyrocking,characterizedbyhyperkineticbehaviormainly oflowerlimbswhilesheremainedlyingonthebed (consid-ered‘‘controlseizures’’forthepresentstudy).Allseizures hadsimilarpatternonseizureonsetonSEEG.Aspreviously reported,automated video analysisallowed characteriza-tionoftherhythmicbodymovements[12]andshowedmean rocking frequency that varied between 0.48 and 1.01Hz acrossallseizuresforthispatient

(Patient1,Seizures2and4inthepreviousstudy[12]). SEEG exploration in 2005 consisted of 7 orthogonally implantedelectrodes,with6exploringrightpremotorand prefrontal structures (see Fig. 1) and one contralateral electrodeinleftprefrontalcortex. AnalysisofSEEGdata, includingquantification of seizure onset with the Epilep-togenicityIndex[4]showedinitialorganizationofseizures (epileptogeniczone,EZ)predominantlyinvolvingright

dor-solateral prefrontal cortex (see Fig. 1); however, early involvementofcontralateraldorsolateralprefrontalcortex was also noted, as well as rapid spread of tonic dis-charge tomesial regions includinganterior cingulate and pre-supplementary motor area (pre-SMA). To complement visual analysis,the EpileptogenicityIndex[4]wasapplied toquantifyseizureonset.Thisisasemi-automaticmethod of quantifyingfastactivityat seizureonset,incorporating measures ofrapidityofdischargeandearlinessof appear-ance.ThisshowedmaximalvaluesinlateralcontactsofCR and FD (thus, predominantly right dorsolateral prefrontal cortex)(Fig.1A).Semiologyonsetoccurredaround2safter dischargeonset,atwhichtimeslowerrhythmicactivitywas visible.SubsequenttoSEEGexploration,cortectomy includ-ing right superior andmiddle frontal gyri wasperformed. Histopathologyshowednon-specificgliosis.Thepatienthad satisfactorysurgicaloutcomeat10years(ILAEclass2).

SEEGsignalanalysis

Atotalof4seizureswereanalyzedfromthebeginningtothe endofthesemiologycorrespondingtoclinicalseizures(two withrocking,called‘‘seizures1and2;twowithoutrocking, called ‘‘control seizures (seizures 3 and 4)’’ ) as well as resting backgroundactivity without pathologicalneuralor clinicalactivity(baselineperiod),withinthesamepatient. Methodologyconsistedofseveralsteps:

(1) Preprocessing.Dataanalysiswasperformedwith Brain-storm [25] and Matlab (The Mathworks). SEEG data associatedwithfourseizures (two seizures associated with rhythmic body rocking, called seizure 1 and 2 here;also,twocontrolseizureswithoutrocking,called seizure 3 and 4), as determined by a clinician were selected.Fourbaselineepochs,ofsimilardurationsto thefourseizures,butcorrespondingtoadatasegment from the interictal period while the patient was at rest, each obtained the same day asthe correspond-ingseizure,werealsoselected.Channelsthatpresented significantartefactduringtheseizureswerediscarded aftervisualinspectionofthesignal.Weestimatedthe focalneuralactivitybetweentwochannelsbyapplying abipolarmontageontheremainingneighboring chan-nels. Of note, all the analyses were done on all the implantedelectrodestoinvestigatethedynamicofthe neuralnetworksuspectedtobeinvolvedintheseizure. (2) FastFourier transform(FFT).AfastFourier transform wasappliedtothecoordinatesoftheheadmovements extractedfromthequantifiedvideo[11]andtothe neu-raldatatoestimatetheirrespectivepowerspectrumin thedeltarange(0.5−4Hz).

(3) Estimation of high-gamma power. A time-frequency decomposition of the neural signal was performed between60and150Hzinlogarithmic scale,by apply-ingatime-frequencywavelettransform,usingafamily ofcomplexMorletwavelets[centralfrequencyof1Hz, time resolution (FWMH) of 3s; hence, three cycles]. Wethen estimatedhigh-gamma powerindecimal log-arithmic units (in dB), and applied a grand-average, acrossfrequenciesandtime,toobtainaglobalestimate

(4)

Fig.1 A.SEEGtraceofatypicalseizurecharacterizedbyrocking.Semiologicalonsetoccurred2safteronsetoflowvoltagefast activity(bluearrow).LowerrightinsetshowsschematicrepresentationofSEEGelectrodesintherighthemisphere.Sixorthogonal electrodesexploredrightfrontallobe,reachingmedialstructures.ThereisalsoonecontralateralelectrodeFD’,symmetricwithFD (notshowninfigure).Theredovalrepresentsthezonemaximallyinvolvedbyseizureonset(electrodesFP,CR,FD)andtheyellow ovalrepresentsthezoneofseizurepropagation(electrodesSA,PMandCC).ThetoprightinsetshowsamapoftheEpileptogenicity Index[4](seetextforexplanation)forthisseizure,whichshowsmaximalvaluesatseizureonsetintheexternalcontactsofFD andCR.B,C:Selectedclinicalsemiologyandneuraltimecoursesofseizures1(left)and2(right).B.Amplitudeofbodyrocking movementextractedfromvideo.C.Amplitudeofneuralsignalforbipolarmontagedata(Forinterpretationofthereferencesto colourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle).

of high-gamma activity for the seizure and baseline epochs.

(4) Phase-amplitudecoupling(Pac).Inordertoinvestigate theinter-dependence between delta andhigh-gamma oscillations, we estimated thephase-amplitude cross-frequency coupling between the phase of the neural signal corresponding to the body rocking movement (∼1Hz)andthehigh-gamma amplitude[1,22], follow-ingthemethoddescribedinÖzkurtandSchnitzler[22].

This estimates co-fluctuations between low and high frequency neuralsignals andquantifiestheamount of high-gammaactivitymodulatedinphasewiththebody rockingmovement.Thesameprocedurewasappliedto seizureandbaselineepochs.

(5) Combining the two rocking seizures. Finally, in order to obtain an overall estimate of the seizure-related activity,wefirstcontrastedneuralindexes(either,FFT, high-gammapower,orPac)duringseizureandbaseline

(5)

ARTICLE IN PRESS

4 A.Zaltaetal.

Fig.2 Powerspectra(involtsforneuralsignal;arbitraryunitsforbodyrockingmovement)of(A)bodyrockingmovementsand (B)ofneuralactivityfrombipolarmontagedataforeachcontact,forseizures1(left)and2(right).C.Delta(∼1Hz)powerduring seizuresrelativetobaseline,extractedfromthebipolarmontagedata;pairedttestsagainstzero(Bonferronicorrectedwitha factor4):t(80)=5.83andt(80)=7.96forseizures1and2respectively;allp<0.01.D.Spatialdistributionofdeltapowercombined acrossthetwoseizures(involt2).Contactsareplottedforeachelectrodefollowingamedio-lateralgradient(frommedialtolateral: 1-14).Eachlineorpointcorrespondstoonecontact.

periods.Wethencombinedthetwoseizuresofsimilar nature (i.e.associated withrhythmic bodyrocking or not)bymultiplyingtheirrespectiveindexes,per chan-nel(i.e.,percontact).Thisallowedustohighlightthe channels forwhichneuralactivitywashighrelativeto baseline duringSeizures 1and 2.We alsoappliedthe samemethodtothetwocontrol(non-rocking)Seizures 3and4.

(6) Statistical procedure. Paired t tests, Bonferroni cor-rected with a factor 4, were performed at the level of individual electrode contacts (bipolar montage) betweenseizureandbaselineepochs.

Results

Bodyrockingmovement andtheneural signal forthe two seizurespresent a strong similarity(Fig.1 B,C)supported bythecomputationofpowerspectrumwhichrevealedthe modalfrequencyofthebodyrockingmovement (Fig.2A) andneural activity in the delta range(Fig. 2B) -1Hz for seizure1and0.9Hz forseizure2.Using bipolarmontage, weextractedtheneuralpowerat thepeakfrequencyand contrasted it from baseline periods (Fig. 2C). Across the

twoseizures(Fig.2D),externalcontactsofFP,CRandFD’ electrodes(exploringrightandleftdorsolateralprefrontal cortex)emerged.Thefirsttwocapturedneuralactivity situ-atedintheEZ,whileFD’issituatedintheearlypropagation zone.

We next investigated the relationship between body rhythmic movements and high-gamma neural activity (60−150Hz), which best approximates multi-unit activity

[23]. We computed the phase-amplitude coupling (PAC) between the phase of the delta (∼1Hz) activity and the amplitudeofthehigh-gammaactivity onthebipolar mon-tagedatacontrastedtobaselineperiods(Fig.3A).Weshow anoverallincreaseofdelta-gammacouplingduringseizures (paired t tests againstzero: t (80)=7.99 andt (80)=15.9 for seizures 1 and 2 respectively;all p<0.01). Combining thecouplingstrengthofthetwoseizures(relativeto base-line;seeMethods;Fig.3B)weobservedamaximalcoupling ininthedorsolateralprefrontalcortexcorrespondingtoEZ (wherealargedeltaactivitywasobserved)andinthemotor cingulateregion(BA24;CCelectrode).

Finally, we computed the overall high-gamma power relative to baseline to investigate whether the previous resultwasspecifictoahigh-gammaactivitylockedtobody rhythmicmovements.We observedan overall larger

(6)

high-Fig.3 A.Phase-amplitudecoupling(PAC),computedbetweenthephaseofdelta(∼1Hz)activityandhigh-gamma(60-150Hz) amplitude,extractedfrombipolarmontagedataandnormalizedtobaseline,forseizures1(left)and2(right).B.Spatialdistribution ofPACcombinedacrossthetwoseizures.SameconventionasFig.2C.Powerofhighgammaactivity(60-150Hz),indecibel(dB), extractedfromthebipolarmontagedataandnormalizedtobaseline,forseizures1(left)and2(right).D.Spatialdistributionof high-gammapowercombinedacrossthetwoseizures(indB2).SameconventionasFig.2.Eachlineorpointcorrespondstoone contact.

gammaactivityduringseizures(pairedttestsagainstzero:t (80)=26.4andt(80)=25.3forseizures1and2respectively; allp<0.01;Fig.3C).Combining theprofileofresponseof thetwoseizures(Fig.3D)weobservedamaximalresponse inthemostmedialcontactsofelectrodeCR,alsosituated in the early propagation zone, but in anterior cingulate gyrus (BA32), a regionnot reported in the previous anal-yses. These results indicate selective coupling between delta and high gamma activity that is notmerely related tonon-specific globalincrease in gammaactivity in these locations.

We appliedthe same analysis pipelineused for rhyth-micbodyrockingseizuresontwocontrolseizuresfromthe samepatient(Seizures 3and4).They werecharacterized by hyperkinetic motor behavior but did not present the body rocking movement semiology of the other seizures. As expected, we did not find a selective pattern of low-frequency activity in the neural time-course (Fig. 4A) or in the power spectrum(Fig. 4B). In particular, thepower spectrum ofbipolar montage data at 1Hz wasnot differ-entinthesecontrolseizuresthanbaselineactivity(paired t testsagainstzero : t(82) =-3.4, p<0.01and t (82)= -0.99,p>0.05forseizures3and4respectively;Fig.4C-D). Nosignificantdelta-high gammaphase-amplitudecoupling wasobservedneither(paired ttestsagainstzero:t (82)= -1.21andt(82)=0.62forseizures3and4respectively;all p>0.05;Fig. 5A-B),confirming the selectivityof the neu-ralactivity lockedtotherhythmicbodyrockingdescribed previously.Finally,weobservedthepresenceofsignificant high-gammaactivity inthetwocontrolseizurescompared tobaseline(paired ttestsagainstzero:t (82)=-11.2and

t(82)=14.5forseizures 3and4 respectively;allp<0.01;

Fig.5C)inBA32regionaspreviouslyobserved(Fig.5D).

Discussion

To our knowledge, this is the first study analyzing neu-ral correlates of rhythmic body rocking during epileptic seizures,associatingquantifiedvideoandintracerebralEEG data.Here,wedescribetwomaincharacteristicsofcortical activity associatedwith rhythmicbody rockingsemiology, compared toseizures without rocking movements and to interictal rest periods. First, using fast Fourier transform analysis(FFT),apeakofdeltabandactivity,maximalinEZ andearlypropagationzones,wasobservedduringrhythmic bodyictalrocking,correspondingtoquantifiedrocking fre-quency.Secondly, usingphase-amplitudecoupling[1],the phase of the clear delta peak was correlated with high-gamma(60−150Hz) activity, in EZand propagationzones includingmotorcingulateregions.Thus,aswellasbringing additionalevidence of the tightrelation between seizure onsetandpropagationzonesin both temporalandspatial aspects[11], ourdata highlight a clear temporal relation betweencorticalactivityandrhythmicityofmotorclinical expression.

Alimitationhere, apartfromthesmallnumberofdata (duetorarityofSEEGrecordingofthisclinicalpattern),is thepossibilityofan artefactualcausefor thedelta activ-ity,notablymovement artefactfromthe rhythmicrocking being transmitted via the SEEG cable, suggested by the similarityofamplitudeacrosselectrodecontacts.However,

(7)

ARTICLE IN PRESS

6 A.Zaltaetal.

Fig.4 A.Neural time coursesof thetwo controlseizures3(left)and 4(right),withoutbody rocking movementsemiology. Amplitudeofneuralsignalsforbipolarmontagedata.B.Powerspectraofneuralactivityfrombipolarmontagedataforthetwo controlseizures.C.Delta(∼1Hz)powerduringcontrolseizuresrelativetobaseline,extractedfromthebipolarmontagedata.D. Spatialdistributionofdeltapowercombinedacrossthetwocontrolseizures(involt2).SameconventionasinFig.2.Eachlineor pointcorrespondstoonecontact.

weinvestigatedthispossibilitybyusingabipolarmontage, consideredtoproducespatialfiltering,thusminimizing arte-factfromacommonsource[7];thesamedeltabandpeak persistedintheseconditions.Whileheadmovementwould be more likelyto introduce artefact in contacts close to theskull[13,20]andinawidespreaddistribution,maximal deltaactivitywasobservedinseizureonsetandpropagation zones, which included deeper cerebral contacts far from electrodeskullentrypoints;thetopographicaldistribution ofthiseffectthus alsotends toargueagainstan artefac-tualcause.Non-rockingseizuresin thesamepatientwere characterizedbyhyperkinetic, non-rhythmic bodyandleg movements;theseshowedsimilarseizureonsetpatternbut werenotassociatedwithvisible 1HZactivity ontheSEEG traceduringsemiologicalexpression.

Wealsoinvestigatedthedynamicsofhigh-gamma activ-ity,typicallythepredominantfrequencyrangeinneocortical seizures[5,27]. Highgammaband activity closely approx-imates multi-unit activity [23] and cannot be induced by cablemovements.Inallseizures(with(Fig.3)andwithout (Fig. 5C-D) body rocking semiology), high-gamma activ-itywas maximallypresent in the anteriorcingulate gyrus (BA32),possiblyrelatedtoitsimportantrolehereinseizure propagation.

Wenextevidenceda correlationbetween thephaseof deltabandpeakandtheamplitudeofhigh-gamma oscilla-tionsselectivelyduringtheperiodsofrhythmicrocking.This effectwasparticularlymarkedwithinelectrodecontactsin theEZ.Additionally,strongdelta-highgammacouplingwas observedintheelectrodeexploringtheBA24sectionofthe cingulategyrus. This portionofthe cingulatehasamajor role within the motor system, notably in terms of motor coordinationandselection[9,21].

Onepossibleexplanationof thetopographical distribu-tionofourresultscouldreflecttheusualevolution ofthe seizuredischargeasitspreads tocingulatemotorregions. Thiscouldhavearoleindrivingrockingbehaviorforexample byinductionofmulti-unitactivitybydeltaactivity,leading toactivation ordisinhibition ofan intrinsicneural oscilla-tor[17], perhaps involving thestriatal connectionsof the anteriorcingulate[9].

Established modelsof epilepsynetworks based on sig-nalanalysisfromintracerebralEEGdatahaveshown that, duringseizures,connectionsbetweenneuralgroups in dif-ferentanatomical structuresareabnormally selected and facilitated[5,29].Instudyingtheserelationsbetween neu-ralactivities, mostworktodateonepilepsynetworkshas focusedontheperiodofseizureonset[28];relativelyfew

(8)

Fig.5 A.Phase-amplitudecoupling(PAC),computedbetweenthephaseofdelta(∼1Hz)activityandhigh-gamma(60-150Hz) amplitude,extractedfrombipolarmontagedataandnormalizedtobaseline,forthetwocontrolseizures.B.Spatialdistribution ofPACcombinedacrossthetwoseizures.SameconventionasFig.2C.Powerofhighgammaactivity(60-150Hz),indecibel(dB), extractedfromthebipolarmontagedataandnormalizedtobaseline,forthetwocontrolseizures.D.Spatialdistributionof high-gammapowercombinedacrossthetwocontrolseizures(indB2).SameconventionasFig.2.Eachlineorpointcorrespondstoone contact.

works have investigated links to putative mechanisms of semiological production [18]. While firm conclusions can-notbedrawnfromthepresent workduetosmallnumber ofdata,ourresultssuggestthatcorrelatingquantifiedictal movement patternswithquantified cerebraldatais feasi-ble.Studyofa largerdatasetcouldhelptoshedlighton underlyingpathophysiologyofcomplexictalbehaviors.

Conflicts

of

interest

None.

Acknowledgements

This paper has been carried out within the Federation Hospitalo-Universitaire(FHU)EPINEXTthankstothesupport oftheA*MIDEXproject(ANR-11-IDEX-0001-02)fundedbythe ¨Investissementsd’Avenir¨FrenchGovernmentprogram man-agedby the French National Research Agency(ANR). The authors wishtothankChristian Bénar, Jean-MichelBadier andothermembersoftheDynamapteam,INS,Aix-Marseille University,forhelpfuldiscussion.

References

[1]AruJ,AruJ,PriesemannV,WibralM,LanaL,PipaG,etal. Untanglingcross-frequencycouplinginneuroscience.CurrOpin Neurobiol2015;31:51—61.

[2]Aupy J, Noviawaty I, Krishnan B, Suwankpakdee P, Bulacio J,Gonzalez-MartinezJ,etal.Insulo-opercularcortex

gener-atesoroalimentaryautomatismsintemporalseizures.Epilepsia 2018;59:583—94.

[3]Aupy J, Wendling F, Taylor K, Bulacio J, Gonzalez-Martinez J,ChauvelP.Cortico-striatalsynchronizationinhumanfocal seizures.Brain2019;142:1282—95.

[4]BartolomeiF,ChauvelP,WendlingF.Epileptogenicityofbrain structuresinhumantemporallobeepilepsy:aquantifiedstudy fromintracerebralEEG.Brain2008;131:1818—30.

[5]BartolomeiF,LagardeS,WendlingF,McGonigalA,JirsaV,Guye M,etal.Definingepileptogenicnetworks:contributionofSEEG andsignalanalysis.Epilepsia2017;58:1131—47.

[6]BoniniF,McGonigalA,TrebuchonA,GavaretM,BartolomeiF, GiusianoB,etal.Frontallobeseizures:fromclinicalsemiology tolocalization.Epilepsia2014;55:264—77.

[7]Bonmassar G, Purdon PL, Jääskeläinen IP, Chiappa K, Solo V, Brown EN, et al. Motion and ballistocardiogram artifact removalforinterleavedrecordingofEEGandEPsduringMRI. Neuroimage2002;16:1127—41.

[8]ChauvelP,McGonigalA.Emergenceofsemiologyinepileptic seizures.EpilepsyBehav2014;38:94—103.

[9]DevinskyO,MorrellMJ,VogtBA.Contributionsofanterior cin-gulatecortextobehaviour.Brain1995;118:279—306.

[10]GoldmanS,GreenePE.Stereotypiesinautism:avideo demon-stration of their clinical variability. Front Integr Neurosci 2012;6:121.

[11]GrinenkoO,LiJ,MosherJC,WangIZ,BulacioJC, Gonzalez-MartinezJ, etal.A fingerprintoftheepileptogeniczonein humanepilepsies.Brain2018;141:117—31.

[12]HouJC,ThonnatM,HuysR,BartolomeiF,McGonigalA. Rhyth-microckingstereotypiesinfrontallobeseizures:aquantified videostudy.NeurophysiolClin2020;50:75—80.

[13]JerbiK,FreyermuthS,DalalS,KahaneP,BertrandO,Berthoz A, etal.Saccade relatedgamma-bandactivityin

(9)

intracere-ARTICLE IN PRESS

8 A.Zaltaetal.

bralEEG:dissociatingneuralfromocularmuscleactivity.Brain Topogr2009;22:18—23.

[14]Jobst BC, Siegel AM,Thadani VM, Roberts DW, Rhodes HC, WilliamsonPD.Intractableseizuresoffrontallobeorigin: clin-ical characteristics, localizing signs, and resultsof surgery. Epilepsia2000;41:1139—52.

[15]LaganièreC,PennestriMH,RassuAL,BarateauL,CheniniS, Evangelista E, et al. Disturbed nighttime sleep in children and adults with rhythmic movement disorder. Sleep 2020,

http://dx.doi.org/10.1093/sleep/zsaa105,inpress.

[16]LissM,SaulnierC,FeinD,KinsbourneM.Sensoryand atten-tion abnormalities in autistic spectrum disorders. Autism 2006;10:155—72.

[17]MarderE,BucherD.Centralpatterngeneratorsandthecontrol ofrhythmicmovements.CurrBiol2001;11:R986—96.

[18]McGonigalA.Semiologyandepilepticnetworks.NeurosurgClin NAm2020;31:373—85.

[19]McGonigal A, Chauvel P. Prefrontal seizures manifesting as motorstereotypies.MovDisord2014;29:1181—5.

[20]McGonigal A, Marquis P, Medina S, BartolomeiF, Rheims S, BernardC,etal.Postictalstereo-EEGchangesfollowing bilat-eraltonic-clonicseizures.Epilepsia2019;60:1743—5.

[21]MorecraftRJ,TanjiJ.Cingulofrontalinteractionsandthe cin-gulatemotorareas.In:VogtB,editor.Cingulateneurobiology anddisease.Oxford:OxfordUniversityPress;2009.p.113—44.

[22]ÖzkurtTE,Schnitzler A. Acriticalnote onthedefinitionof phase—amplitudecross-frequencycoupling.JNeurosci Meth-ods2011;201:438—43.

[23]Parvizi J, Kastner S. Promises and limitations of human intracranial electroencephalography. Nat Neurosci 2018;21:474—83.

[24]RheimsS,RyvlinP,SchererC,MinottiL,HoffmannD,GuenotM, etal.Analysisofclinicalpatternsandunderlyingepileptogenic zonesofhypermotorseizures.Epilepsia2008;49:2030—40.

[25]TadelF,BailletS,MosherJC,PantazisD,LeahyRM.Brainstorm: auser-friendlyapplicationforMEG/EEGanalysis.ComputIntell Neurosci2011:879716.

[26]TassinariCA,Rubboli G,GardellaE,CantalupoG, Calandra-BuonauraG, VedovelloM, etal. Central pattern generators for a common semiology in fronto-limbic seizures and in parasomnias.Aneuroethologicapproach.NeurolSci2005;26. S3:S225—32.

[27]WeissSA,LemesiouA,ConnorsR,BanksGP,McKhannGM, Good-manRR, et al.Seizure localizationusing ictal phase-locked highgammaAretrospectivesurgicaloutcomestudy.Neurology 2015;84:2320—8.

[28]Wendling F, Bartolomei F, Bellanger JJ, Bourien J, Chau-vel P. Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset. Brain 2003;126: 1449—59.

[29]Wendling F, Bartolomei F, Bellanger JJ, Chauvel P. Inter-pretation of interdependencies in epileptic signals using a macroscopicphysiologicalmodeloftheEEG.ClinNeurophysiol 2001;112:1201—18.

Figure

Fig. 1 A. SEEG trace of a typical seizure characterized by rocking. Semiological onset occurred 2 s after onset of low voltage fast activity (blue arrow)
Fig. 2 Power spectra (in volts for neural signal; arbitrary units for body rocking movement) of (A) body rocking movements and (B) of neural activity from bipolar montage data for each contact, for seizures 1 (left) and 2 (right)
Fig. 3 A. Phase-amplitude coupling (PAC), computed between the phase of delta ( ∼ 1 Hz) activity and high-gamma (60-150 Hz) amplitude, extracted from bipolar montage data and normalized to baseline, for seizures 1 (left) and 2 (right)
Fig. 4 A. Neural time courses of the two control seizures 3 (left) and 4 (right), without body rocking movement semiology.
+2

Références

Documents relatifs

An alternative proxy would be the languages spoken at home.(25) Approximately 7% of women participating in the ELFE cohort reported using at least 2 languages in their household,

En parallèle, alors que la colistine est l ’antibiotique inhalé le plus employé en réanimation [36], celle-ci souffre d ’un très faible nombre d ’études de bonne

[r]

decomposition that shows precisely why the cycle is not apparent once we aggregate the different components: the first component (component (ii) in equation (5)), that is,

The variation of the first frequency

With respect to innovative discoveries, Michel had several scientific breakthroughs from the description of the solid- solution electrode and rocking-chair battery to the

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Neural correlates of delusional infestation responding to aripiprazole monotherapy: a case report.. Laura Ponson, Frédéric Andersson,