• Aucun résultat trouvé

A note on a.s. finiteness of perpetual integral functionals of diffusions

N/A
N/A
Protected

Academic year: 2021

Partager "A note on a.s. finiteness of perpetual integral functionals of diffusions"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: hal-00013789

https://hal.archives-ouvertes.fr/hal-00013789

Preprint submitted on 14 Nov 2005

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

A note on a.s. finiteness of perpetual integral

functionals of diffusions

Paavo Salminen, Marc Yor

To cite this version:

Paavo Salminen, Marc Yor. A note on a.s. finiteness of perpetual integral functionals of diffusions.

2005. �hal-00013789�

(2)

ccsd-00013789, version 1 - 14 Nov 2005

fun tionals of diusions

Paavo Salminen

ÅboAkademi University,

Mathemati alDepartment,

Fänriksgatan 3 B,

FIN-20500Åbo,Finland,

email: phsalminabo.

Mar Yor

UniversitéPierre etMarieCurie,

Laboratoire de Probabilités

etModèles aléatoires,

4,Pla e Jussieu, Case 188

F-75252Paris Cedex05,Fran e

Abstra t

Inthis note, with thehelp of the boundary lassi ation of diu-sions, we derive a riterion of the onvergen e of perpetual integral

fun tionals of transient real-valued diusions.

In the parti ular ase of transient Bessel pro esses, we note that this riterion agrees with the one obtained via Jeulin's onvergen e

lemma.

Keywords: Brownian motion, random time hange, exit boundary,

lo al time,additive fun tional,sto hasti dierential equation.

AMS Classi ation: 60J65, 60J60.

1. Consider a diusion

Y

on an open interval

I = (l, r)

determined by the SDE

dY

t

= σ(Y

t

) dW

t

+ b(Y

t

) dt,

where

W

isastandardWienerpro essdenedina ompleteprobabilityspa e

(Ω, F , {F

t

}, P).

It is assumed that

σ

and

b

are ontinuous and

σ(x) > 0

for

all

x ∈ I

. We assumealsothat

Y

is transient and

lim

t→ζ

Y

t

= r

a.s.,

(3)

where

ζ

isthe life timeof

Y.

Hen e, if

ζ < ∞

then

ζ = H

r

(Y ) := inf{t : Y

t

= r}.

For the speed and the s ale measure of

Y

we use

m

Y

(dx) = 2 σ

2

(x)e

B

Y

(x)

dx and S

Y

(dx) = e

B

Y

(x)

dx,

(2) respe tively,where

B

Y

(x) = 2

Z

x

b(z)

σ

2

(z)

dz.

(3)

Let

f

be a positive and ontinuous fun tion dened on

I,

and onsider the perpetual integralfun tional

A

ζ

(f ) :=

Z

ζ

0

f (Y

s

) ds.

Weareinterestedinndingne essaryandsu ient onditionsfora.s.

nite-nessof

A

ζ

(f ).

When

Y

isaBrownianmotionwithdrift

µ > 0

su ha ondition

is that the fun tion

f

is integrable at

+∞

(see Engelbert and Senf [4℄ and Salminenand Yor[9℄). This onditionis derived in[9℄via Ray-Knight

theo-rems and the stationarity property of the lo altime pro esses (whi hmakes

Jeulin's lemma appli able). In this note a ondition (see Theorem 2) valid

forgeneral

Y

isdedu edbyexploitingthefa tthat

A

H

x

(f )

for

x < r

an,via

random time hange, be seen as the rst hitting time of a point for another

diusion.

2. The next proposition presents the key result onne ting perpetual

integral fun tionals to rst hitting times. The result is a generalization of

Proposition 2.1in[8℄ dis ussed in Propositions2.1and 2.3in[2℄.

Proposition 1. Let

Y

and

f

be as above, and assume that there exists a twotimes ontinuously dierentiable fun tion

g

su h that

f (x) = g

(x)σ(x)



2

,

x ∈ I.

(4) Set for

t > 0

A

t

:=

Z

t

0

f (Y

s

) ds.

(5)

and let

{a

t

: 0 ≤ t < A

ζ

}

denotethe inverse of

A,

that is,

a

t

:= min



s : A

s

> t

(4)

Then the pro ess

Z

given by

Z

t

:= g (Y

a

t

) ,

t ∈ [0, A

ζ

),

is a diusionsatisfying the SDE

dZ

t

= df

W

t

+ G(g

1

(Z

t

)) dt,

t ∈ [0, A

ζ

).

where

W

f

t

isa Brownianmotion and

G(x) =

1

f (x)



1

2

σ(x)

2

g

′′

(x) + b(x) g

(x)



.

Moreover, for

l < x < y < r

A

H

y

(Y )

= inf{t : Z

t

= g(y)} =: H

g(y)

(Z) a.s.

(6)

with

Y

0

= x

and

Z

0

= g(x).

3. Toxideas,assumethatthefun tion

g

asintrodu edinProposition1 isin reasing. Wedene

g(r) := lim

x→r

g(x),

andusethesame onventionfor any in reasing fun tion dened on

(l, r).

The state spa e of the diusion

Z

is the interval

(g(l), g(r))

and a.s.

lim

t→ζ(Z)

Z

t

= g(r).

Clearly,letting

y → r

in (6) it follows that

A

H

r

(Y )

= inf{t : Z

t

= g(r)} a.s.,

(7)

where both sides in(7) are eithernite or innite. Now we have

Theorem 2. For

Y, A, f

and

g

asabove itholdsthat

A

ζ

is a.s. niteif and only if for the diusion

Z

the boundary point

g(r)

is anexit boundary, i.e.,

Z

g(r)

S

Z

(dα)

Z

α

m

Z

(dβ) < ∞,

(8)

where the s ale

S

Z

and the speed

m

Z

of the diusion

Z

are given by

S

Z

(dα) = e

B

Z

(α)

dα and m

Z

(dβ) = 2 e

B

Z

(β)

with

B

Z

(β) = 2

Z

β

G ◦ g

1

(z) dz.

The ondition (8) isequivalent with the ondition

Z

r

S

Y

(r) − S

Y

(v)



f (v) m

Y

(dv) < ∞.

(5)

its exit boundary with positiveprobability and anexit boundary annot be

unattainable(see[5℄or[1℄). This ombinedwith(7)andthe hara terization

of an exitboundary(see [1℄ No. II.6 p.14) provesthe rst laim. It remains

to showthat (8) and (9) are equivalent. We have

B

Z

(α) = 2

Z

g

−1

(α)

G(u) g

(u) du

= 2

Z

g

−1

(α)



1

2

g

′′

(u)

g

(u)

+

b(u)

σ

2

(u)



du

= log(g

(g

1

(α))) + B

Y

(g

1

(α)).

Consequently,

S

Z

(dα) = e

B

Z

(α)

dα =

1

g

(g

1

(α))

exp −B

Y

(g

1

(α))



and

m

Z

(dα) = 2 e

B

Z

(α)

dα = 2 g

(g

1

(α)) exp B

Y

(g

1

(α))



dα.

Substitutingrst

α = g(u)

intheouterintegralin(8)andafterthis

β = g(v)

in the inner integral yield

Z

g(r)

S

Z

(dα)

Z

α

m

Z

(dβ) = 2

Z

r

du e

B

Y

(u)

Z

u

dv (g

(v))

2

e

B

Y

(u)

= 2

Z

r

dv (g

(v))

2

e

B

Y

(v)

Z

r

v

du e

B

Y

(u)

by Fubini's theorem. Using the expressions given in (2) for the speed and

the s aleof

Y

and the relation(4) between

f

and

g

omplete the proof. 4. Itiseasytoderivea onditionthatthemeanof

A

ζ

(f )

isnite. Indeed,

E

x

(A

ζ

(f )) =

Z

0

E

x

(f (Y

s

)) ds

=

Z

r

l

G

Y

0

(x, y) f (y) m

Y

(dy) < ∞,

(10) where

G

Y

0

is the Green kernel of

Y

w. r. t.

m

Y

.

Under the assumption (1)

we may takefor

x ≥ y

(6)

(10).

5. Sin e the exit ondition (8) plays a ru ial rle in our approa h we

dis uss here shortly two proofs of this ondition, thus making the paper as

self- ontained aspossible.

Let

Y

be an arbitrary regular diusion livingon the interval

I

with the end points

l

and

r.

The s ale fun tion of

Y

is denoted by

S

and the speed measure by

m.

It isalsoassumed that the killingmeasure of

Y

isidenti ally zero. Re all the denition due to Feller

r is exit

Z

r

S(dα)

Z

α

m(dβ) < ∞.

(11)

Note that by Fubini's theorem

Z

r

S(dα)

Z

α

m(dβ) =

Z

r

m(dβ)(S(r) − S(β)),

and, hen e,

S(r) < ∞

if

r

is exit. Moreover, if

r

is exit then

H

r

< ∞

with positiveprobability.

5.1. We give nowsome details of the proof of (11) following losely

Kallen-berg [7℄ (see also Breiman [3℄). For

l < a < b < r

let

H

ab

:= inf{t : Y

t

=

a or b}.

Then for

a < x < b

E

x

(H

ab

) =

Z

b

a

b

G

Y

0

(x, z) m(dz),

(12) where

G

b

Y

0

is the (symmetri ) Green kernel of

Y

killed when it exits

(a, b),

i.e.,

b

G

Y

0

(x, z) =

(S(b) − S(x))(S(y) − S(a))

S(b) − S(a)

x ≥ y.

If

r

is exit there exists

h > 0

su h that

P

x

(H

r

< h) > 0

for any xed

x ∈ (a, r).

Usingthis propertyit an bededu ed (see[7℄p. 377)that forany

a ∈ (l, r)

E

x

(H

ar

) < ∞,

whi h,from (12), isseen tobe equivalentwith (11).

5.2. Another proof of (11) an be found inIt and M Kean [5℄ p. 130. To

present also this briey re all rst the formula

E

x

(exp(−λ H

b

)) =

ψ

λ

(x)

ψ

λ

(b)

(7)

where

λ > 0

and

ψ

λ

is an in reasing solution of the generalized dierential equation

d

dm

d

dS

u = λu.

(14)

Letting

b → r

in(13) it isseen that

r is exit

lim

b→r

ψ

λ

(b) < ∞.

Let

ψ

+

λ

denote the (right) derivative of

ψ

λ

with respe t to

S.

Sin e

ψ

λ

is in reasing itholds that

ψ

+

λ

> 0.

Thefa t that

ψ

λ

solves(14) yieldsfor

z < r

ψ

λ

+

(r) − ψ

+

λ

(z) = λ

Z

r

z

ψ

λ

(a) m(da).

In parti ular,

ψ

+

λ

is in reasing and

ψ

+

λ

(r) > 0.

Hen e, assuming now that

ψ

λ

(r) < ∞

we obtain

S(r) < ∞,

and, further,

λ ψ

λ

(z)

Z

r

z

S(dα)

Z

α

z

m(dβ) ≤ λ

Z

r

z

S(dα)

Z

α

z

ψ

λ

(β)m(dβ)

=

Z

r

z

S(dα) ψ

λ

+

(α) − ψ

λ

+

(z)



= ψ

λ

(r) − ψ

λ

(z) − ψ

+

λ

(z) (S(r) − S(z)) < ∞,

whi hyields the ondition onthe right hand side of (11). Assume next that

the ondition onthe right hand side of (11) holds, and onsider for

z < β

0 ≤ (ψ

λ

(β))

1

ψ

λ

+

(β) − ψ

λ

+

(z)



= (ψ

λ

(β))

1

Z

β

z

ψ

λ

(α)m(dα).

Integrating over

β

gives

log(ψ

λ

(r)) − log(ψ

λ

(z)) − ψ

λ

+

(z)

Z

r

z

λ

(β))

1

S(dβ)

=

Z

r

z

S(dβ) (ψ

λ

(β))

1

Z

β

z

ψ

λ

(α)m(dα)

Z

r

z

S(dβ)

Z

β

z

m(dα) < ∞,

(8)

dimension parameter

δ > 2.

Let

R

denotethis pro ess. Itis wellknown that

lim

t→∞

R

t

= +∞

and that

R

solves the SDE

dR

t

= dW

t

+

δ − 1

2R

t

dt,

where

W

is a standard Brownian motion. Here the fun tion

B

R

( f. (3))

takesthe form

B

R

(v) = (δ − 1) log v,

and, onsequently,

Z

dv (g

(v))

2

e

B

R

(v)

Z

v

du e

B

R

(u)

=

Z

dv (g

(v))

2

v

δ−1

Z

v

du u

δ+1

=

Z

dv (g

(v))

2

v

δ−1

1

δ − 2

v

δ+2

leading to

Z

0

f (R

t

) dt < ∞

Z

u f (u) du < +∞.

Anotherwaytoderivethis onditionisvialo altimesandJeulin'slemma

[6℄. Indeed, bythe o upationtime formulaand Ray-Knighttheorem forthe

total lo altimes of

R

(see, e.g. [10℄Theorem 4.1p. 52) we have

Z

0

f (R

s

) ds

(d)

=

Z

0

f (a)

ρ

a

γ

γ a

γ−1

da

=

1

γ

Z

0

a f (a)

ρ

a

γ

a

γ

da

where

δ = 2 + γ

and

ρ

is a squared 2-dimensional Bessel pro ess. Using the s aling property, it is seen that the distribution of the random variable

ρ

a

γ

/a

γ

doesnot depend on

a.

Hen e,weobtainbyJeulin'slemmathatif the fun tion

a 7→ a f (a), a > 0,

is lo allyintegrableon

[0, ∞)

then

Z

0

f (R

s

) ds < ∞

Z

(9)

Z

0

g(W

s

(µ)

) ds < ∞

Z

g(x) dx < ∞.

(16)

where

g

is any non-negative lo ally integrable fun tion and

W

(µ)

denotes a

Brownian motion with drift

µ > 0.

To see this, write

g(x) = f (e

x

)

and use Lamperti's representation

exp(W

s

(µ)

) = R

(µ)

A

(µ)

s

,

s ≥ 0,

where

A

(µ)

s

=

Z

s

0

du exp(2W

u

(µ)

)

and

R

(µ)

is aBesselpro ess withdimension

d = 2(1 + µ)

startingfrom1,we obtain ( f. [8℄Remark 3.3.(3))

Z

0

f (exp(W

s

(µ)

)) ds =

Z

0

R

(µ)

u



2

f (R

u

(µ)

) du a.s.,

and, in order toget (16) it nowonly remains touse the equivalen e(15).

We wish to underline the fa t that in Theorem 2 it is assumed that the

fun tion

f

is ontinuouswhereas the approa hvia Jeulin'slemma,whi hwe developed above,demands onlylo alintegrability.

Referen es

[1℄ A.N. Borodin and P. Salminen. Handbook of Brownian Motion  Fa ts

and Formulae, 2nd edition. Birkhäuser, Basel, Boston, Berlin,2002.

[2℄ A.N.BorodinandP.Salminen.Onsomeexponentialintegralfun tionals

of BM(

µ

) and BES(3). Zap. Nau hn. Semin. POMI, 311:5178, 2004. Preprintavailable inhttp://arxiv.org/abs/math.PR/0408367.

[3℄ L. Breiman. Probability. Addison Wesley,Reading, MA, 1968.

[4℄ H.J.Engelbertand T.Senf. On fun tionalsof Wienerpro esswithdrift

and exponential lo al martingales. In M. Dozzi, H.J. Engelbert, and

D. Nualart, editors,Sto hasti pro esses and related topi s. Pro .

Win-ters h. Sto hasti Pro esses, Optim. Control, Georgenthal/Ger. 1990,

(10)

Springer Verlag, Berlin,Heidelberg, 1974.

[6℄ T. Jeulin. Sur la onvergen e absolue de ertaines intégrales. In J.

Azéma and M. Yor, editors, Séminaire de Probabilités XVI, number

920 in Springer Le ture Notes in Mathemati s, pages 248256, Berlin,

Heidelberg, New York, 1982.

[7℄ O.Kallenberg. Foundationsofmodernprobability. SpringerVerlag,New

York, Berlin,Heidelberg, 1997.

[8℄ P.SalminenandM. Yor. Perpetual integralfun tionalsashittingtimes

and o upation times. Ele t. J.Prob., 10:371419, 2005.

[9℄ P.Salminenand M. Yor. Properties ofperpetualintegralfun tionalsof

Brownian motionwith drift. Ann. I.H.P., 41(3):335347,2005.

[10℄ M. Yor. Some Aspe ts of Brownian Motion. Part I: Some spe ial

Références

Documents relatifs

L’accès aux archives de la série « Publications du Département de mathématiques de Lyon » im- plique l’accord avec les conditions générales d’utilisation

The problem, whether a language contains an infinité regular set— is an 1RS language — is decidable for the deterministic context-free languages and undecidable for the

We obtain the result as a direct consequence of the existence of solutions for the following problem related to the Monge-Ampere equation.. We refer to [GT]

This is to say, we get an expression for the Itô excursion measure of the reflected Langevin process as a limit of known measures.. This result resembles the classical approximation

However, for exponential moments of integral functionals of Brownian motion over a finite time interval, see Engelbert and Schmidt [11] whose result is shortly explained in

Claim (ii) of Proposition 1 implies that a graph F is simple (no loop and no multiple edge) if and only if the lattice A 1 (r) has minimal norm at least 3... Let A be a lattice in

The classical integral representation results of relaxed functionals in the vectorial case (i.e. when min{d, m} ≥ 2) require polynomial growth conditions (or at least integrands

http://www.numdam.org/.. From the theorems XIII and XIV of the work cited in note 2 ), it results in fact that the totality of continuous and rectifiable curves (of the